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In this paper we propose a model of polariton condensation with Kerr-type nonlinear photons. We introduce a
generalized Dicke Hamiltonian to describe our system. By constructing the partition function as a path integral,
the analytical and numerical solutions are presented. On the mean-field level, it is shown that the polariton
condensation can occur and the Kerr nonlinearity affects the character of the polariton condensate. As the
nonlinear coefficient increases, the condensate evolves from more photon-like to more exciton-like. Although the
photon nonlinearity gives rise to a chemical potential greater than the photon energy, the quasiparticle excitation
spectrum is still fully gapped. For the condensate collective excitations, the nonlinearity destroys the Goldstone
modes and mixes the phase modes with the amplitude modes, resulting four non-zero-frequency collective modes.
In addition, the influence of the photon-exciton detuning on the polariton condensate is also discussed.
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I. INTRODUCTION

In the ordinary vacuum the interaction between matter and
light is typically very weak. By confining the photons in a
small volume (e.g., in an optical cavity), the coupling strength
can be enhanced with many orders of magnitude [1]. In this
strong coupling regime, coupled oscillations of the material
polarization and the electromagnetic field are predominant
over the radiative decay. The resulting quasiparticles are
known as polaritons [2]. Since they are part matter part
light polaritons are bosons, and are good candidates for
Bose condensation. Obviously, the polariton condensation and
lasing are coherent phenomena involving photons, but they are
distinguishable in nature [3]. The lasing is a nonequilibrium
weak coupling phenomenon, and is characterized by inverted
electronic population generated by pumping-dissipation pro-
cesses. In a conventional laser the only significant ordering is
the coherence of light. However, the polariton itself stems from
the strong interaction of light and matter, and the condensation
occurs spontaneously without external pumping. Thus the po-
lariton condensation is a strong coupling phenomenon featured
by a mixture of the coherent state of photons and material
excitations. In the last decade, the investigations of polariton
condensation in solid as well as in microcavity systems have
attracted enormous attentions [4]. The highlights are many
and we only concern ourselves with those that are most
relevant to the polariton condensation in a model cavity. Initial
works were mainly aimed at studying the quasi-equilibrium
condensation of cavity polaritons [5,6] and the crossover
between lasing and condensation [7,8]. Subsequent works that
dealt with the more complicated cases have addressed the
polariton condensation with a propagating photonic mode [9],
the BCS-BEC crossover of microcavity polaritons driven by
the density fluctuations [10], the finite-size effect as well
as the photon statistics near the condensation point [11],
the nonequilibrium condensation under incoherent pumping
and dissipation [12,13], and the polariton condensation in

*zren@nju.edu.cn

the microcavity with various geometries [14,15]. Following
state-of-the-art experimental techniques, experimental setups
with evidence of polariton condensation have been realized in
laboratories [16–19].

In a dilute Fermi gas a direct pairwise interaction can be
generated and tuned by the technique of Feshbach resonance
[20]. A number of new phenomena associated with this
tunable interaction are revealed (e.g., the BCS-BEC crossover
[21] and the formation of a vortex-antivortex lattice [22]).
It is quite natural to surmise that a pairwise interaction of
photons in a boson-fermion model will also bring certain new
features to a strongly coupled matter-light system. On the
other hand, in a conventional theoretical study, the exciton-
exciton interaction is assumed to be much stronger than the
photon-photon coupling. Therefore it is also interesting to
explore the consequences if the converse is true. In a recent
work [23], a generalized Dicke model was proposed in which
we introduced the repulsive interaction among photons (i.e.,
the Kerr nonlinearity in the quantum level) and in the mean
time the exciton-exciton interaction was omitted. The photons
in our model were confined in a cavity and treated as interacting
bosons. We have shown that such an additional nonlinearity
can manipulate the quantum statistical property of cavity
photons. In the present paper we take it one step further.
We systematically examine the spontaneous coherence of
polaritons in our generalized model. By utilizing the functional
integral representation of the partition function [24], an
analytical description for the low temperature thermodynamics
of the model is obtained. It is shown that a symmetry-breaking
ground state with spontaneous condensation of polaritons
can be found. The Kerr nonlinearity of the cavity field
has the effect of suppressing the photonic component in
the polariton condensate. Furthermore, the zero-frequency
Goldstone modes vanish and the collective excitations are now
characterized by two pairs of non-zero-frequency modes. In
the subsequent section, we introduce the model Hamiltonian
and implement the path integral approach to derive an effective
action. One may argue that in the quantum optics community,
the path integral approach is not standard. In the present paper,
we show that this approach has the potential advantage to
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address the coherent phenomenon. In Sec. III we develop a
mean-field description. The free energy, the order parameter
equation, and the density equation are presented at this stage. In
Sec. IV we derive the action for quadratic fluctuations around
the saddle point to capture the picture of collective modes
which are experimentally measurable. Finally, a summary is
given in Sec. V.

II. MODEL

Let us consider an ensemble of N localized excitons
strongly coupled to a single mode Kerr-type nonlinear cavity.
Meanwhile, the interaction between different exciton sites is
omitted. In the rotating-wave approximation, the system is
described by the following Hamiltonian (in units of h̄)

H = 1

2

N∑
n=1

Eg(b†nbn − a†
nan) + ωcψ

†ψ

+ g√
N

N∑
n=1

(b†nanψ + ψ†a†
nbn) + Uψ†ψ†ψψ. (1)

Here each of the excitons are described by a two-level oscillator
with a pair of fermionic operators an and bn; ψ is the annihila-
tion operator of cavity photons; Eg and ωc are the ground-state
energy of the oscillator and the resonance frequency of the
cavity field; and the cavity mode couples to all excitons with
a homogeneous coupling constant g. The last term in Eq. (1)
denotes the Kerr nonlinearity, which has the form of a pairwise
repulsion of photons [25,26] and its strength is characterized
by U . For U = 0, the collective and cooperative emission in
the model (1) has attracted tremendous interest since the model
was proposed in a celebrated paper [27]. Remarkably, earlier
works [28,29] theoretically predicated a phase transition (i.e.,
Dicke phase transition) from the normal to the superradiant
phase. It is known that the superradiant phase cannot exist
in closed equilibrium systems [30]. As a result the Dicke
phase transition is forbidden in our investigation. In studies of
quantum optics and condensed matter physics a large number
of coupled matter-light systems were described by the Dicke
or Dicke-type models. For example, the model can be used to
describe an ensemble of two-level atoms coupled to a single
mode microcavity [31], and also can be used to modify the
localized electronic excitations, such as excitons, interacting
with photons [32,33]. Moreover, the Dicke Hamiltonian is a
basic model of the laser physics [34]. The excitons are created
from the vacuum by S+ = (1/

√
N )

∑
n b

†
nan, and the exciton

number is expressed as σz = (1/2)
∑

n (b†nbn − a
†
nan), which

is also the inversion operator for oscillators. The operator S+
is approximately a bosonic creation operator only when the
excitation density is sufficiently low. However, away from the
low excitation limit, S+ is no longer a bosonic operator, and
the conventional concept of polariton is generalized to be the
quantum of excitations of the Hamiltonian (1) [6]. Since, in
our study, the presence or absence of a localized exciton is
represented by a two-level oscillator, the anticommutators of
an and bn cannot be neglected for all excitation densities. As a
result, the Hamiltonian (1) is regarded to be a coupled boson-
fermion model [i.e., a single bosonic mode (light) coupled
with two fermionic modes (matter)], and the role of these

modes is not equivalent and interchangeable. Moreover, the
interaction between polaritons is introduced by an additional
photonic nonlinearity, thus the polaritons should be treated as
interacting bosons. The polariton number is the total number
of photons and excited two-level oscillators

Npol = L + N/2 = ψ†ψ + 1

2

N∑
n=1

(b†nbn − a†
nan) + N/2. (2)

Here the operator L is the excitation number, and the
corresponding excitation density is defined as ρex = 〈L〉/N .

In the nonlinear optics, the Kerr nonlinearity is often
generated by certain optical medium with nonzero third-order
nonlinear polarizability, such as doped semiconductor glass
[26]. Unfortunately, most of these nonlinear materials lose
their function at the quantum level. However, the recent
advances in the study of the quantum simulator (see Ref. [35]
and references therein) pave the way to consider the situation in
reverse (i.e., photon nonlinearity dominant and exciton-exciton
interaction negligible). To this end, a more feasible realization
of the Hamiltonian (1) may be a hybrid system consisting
of a semiconductor quantum dot (QD) surrounded by laser
driven four-level atoms and imbedded within a single mode
cavity. Figure 1 schematically illustrates a typical structure of
this proposal. Here the QD contains an ensemble of localized
excitons. For a small cavity volume, the strong exciton-photon
coupling and a high cooperativity of four-level atoms can be
realized simultaneously. To maintain sufficient cavity finesse,
the cavity can be fabricated into a photonic crystal platform
where the photon localization effect guarantees a very high
cavity Q factor. Concerning the atomic gas, the configuration
and the driven pattern of four-level atoms are in the same
manner as in the electromagnetically induced transparency
[35]. By modulating the detuning between external laser
and exciton resonance the driven field can act only on the
atomic gas, in the mean time the QD excitons do not feel the
presence of the external laser. In certain parameter regimes,
one can integrate out the degrees of freedom of four-level
atoms and then the remaining photon field will possess a
quartic interaction [36]. Parameters of the external laser and

FIG. 1. Sketch of a typical realization of our proposed model. The
cavity consists of a semiconductor QD surrounded by laser-driven
four-level atoms (black spots). To maintain sufficient cavity finesse,
the cavity system can be fabricated into a photonic crystal platform.
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the four-level atomic gas are encapsulated into the constant U .
Together with the Hamiltonian of the QD excitons, a system
containing an ensemble of localized excitons with adjustable
photon-photon repulsion has been achieved. In Ref. [23] we
proposed a similar setup where a two-level atomic ensemble
plays the role of QD excitons.

We consider the polariton condensation in thermal equi-
librium, and work in the grand-canonical ensemble H̃ =
H − μL with chemical potential μ. Although the current
experiments may not have reached equilibrium, there are many
sound reasons to deal with the polaritons as quasi-equilibrium
particles [10]. Expressed in the coherent state path integral,
the quantum partition function takes the form

Z =
∫

Dψ
∏
n

Dηne
−S, (3)

with the action

S =
∫ β

0
dτ [ψ̄(∂τ + ω̃c + U |ψ |2)ψ +

∑
n

η̄nMηn], (4)

where ω̃c = ωc − μ; η̄n = (b̄n ān) are the Nambu spinors for
each exciton site and the matrix M is given by

M =
(

∂τ + ε̃ gψ/
√

N

gψ̄/
√

N ∂τ − ε̃

)
, (5)

with ε̃ = (Eg − μ)/2. In Eq. (3) the integration over the
fermionic field can be taken exactly by the Gaussian integral
formula. After rescaling the field ψ → √

Nψ , it yields an
effective action for photons

Seff =
∫ β

0
dτψ̄(∂τ + ω̃c + Ũ |ψ |2)ψ − Tr ln M. (6)

Here Ũ = NU is termed as the nonlinear coefficient.
In the next two sections, we employ the action (6) to examine
the condensation of polaritons with a nonlinear light field. We
intend to address the properties that cannot be obtained for the
linear cavity polaritons.

III. MEAN-FIELD DESCRIPTION

In this section, we develop a mean-field description to
investigate the properties of the condensate. Before subjecting
the action (6) to a saddle-point analysis, it is helpful to derive
the free energy to acquire some intuition of how the nonlinear
photons affect the polariton condensation. Making the static
approximation ψ(τ ) = ψ0 and introducing the fermionic
Matsubara frequencies ωn, the matrix M has two eigenvalues
−iωn ± E for each ωn, where E =

√
ε̃2 + g2|ψ0|2. Thus

det M can be calculated in terms of the product of these
eigenvalues

det M =
∏
ωn

(−iωn + E)
∏
ωn

(−iωn − E) = cosh2

(
1

2
βE

)
.

(7)

Here the fermionic nature of an and bn is fully embodied
into the infinite product over ωn. Then the action (6) yields
that

Seff[ψ0] = β(ω̃c|ψ0|2 + Ũ |ψ0|4) − 2 ln cosh
(

1
2βE

)
. (8)

It is known that a static approximation in a field integral
amounts to replacing a quantum degree of freedom by its
classical approximation [32]. Thus this approximation gives
rise to an action of the coherent field ψ0, which will have the
physical significance of the order parameter. The free energy
is then given as

F = ω̃c|ψ0|2 + Ũ |ψ0|4 − 2

β
ln cosh

(
1

2
βE

)
. (9)

For the Kerr nonlinearity, the constant Ũ is positive defined.
Since in the condensed state ψ0 �= 0, the quartic field term has
a positive contribution to the free energy. This contribution
will prevent the system achieving minimal energy, thus it
has a demolished effect on the photonic component of the
condensate. In turn, when the free energy reaches its minimum,
the energy contribution from the Kerr effect will suppress the
coherent field amplitude ψ0. In short a small magnitude of ψ0 is
energetically favorable for the equilibrium state. In the normal
state ψ0 = 0, the contribution of nonlinear term vanishes.
Thus on the mean-field level, the normal state, the transition
temperature, and the phase boundary are essentially unaffected
by the nonlinear photons. This allows us to concentrate on
discussing the properties of the polariton condensate. One
could note that when the first two terms of the free energy (9)
dominates we obtain a textbook example of Ginzburg-Landau
theory. In this regime, the system is trivial and the ground
state should be a Fock state (i.e., there is no coherence at all).
However, this is not the case since the third term contributes
significantly for all temperature scales.

We then proceed by minimizing the effective action to
obtain the order parameter equation. This equation is qualified
by the condition of vanishing functional derivative. For the
action (8) it gives that

(ω̃c + 2Ũ |ψ0|2)ψ0 = g2ψ0

2E
tanh

(
1

2
βE

)
. (10)

Here it relates the coherent photon field with the polarization of
excitons strongly modified by the presence of such a coherent
field. Physically, it means that the coherent field is sustained
by a coherent polarization in the exciton system, which in
turn is generated by the presence of the coherent field. In this
respect the field ψ0 has the status of the order parameter of
condensation. Analogous to the BCS gap equation, we identify
E =

√
ε̃2 + g2|ψ0|2 as the quasiparticle excitation energy.

These excitations are the coupled mode of excitons with
photons. In the means of the Hopfield they are polaritons [37].
In spite of its innocent appearance, Eq. (10) reveals certain new
features of our extension. In the original Dicke model where
Ũ = 0 the condensed solution exists provided that μ < ωc [5].
A glimpse over Eq. (10) tells us that in our model the condition
for being a condensate is related to the order parameter as
ω̃c + 2Ũ |ψ0|2 > 0, and the condensed state can be found even
for the case of μ > ωc. It seems that the quasiparticle excitation
energy will be gapless in a certain parameter regime. We leave
this important issue momentarily, and discuss it later with the
numerical solution of Eq. (10).

Besides the mean-field Eq. (10), an additional equation
relating the excitation density ρex to the chemical potential μ
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is required. Taking the derivative of free energy with respect
to the chemical potential gives that

ρex = |ψ0|2 − ε̃

2E
tanh

(
1

2
βE

)

=
(

1 − 2ε̃Ũ

g2

)
|ψ0|2 − ε̃ω̃c

g2
. (11)

Here the last equality follows with the help of Eq. (10).
Recalling the definition of the excitation density in Sec. II,
it is straightforward to obtain the exciton density as

〈σz〉
N

= − ε̃

g2
(ω̃c + 2Ũ |ψ0|2). (12)

Equations (10)–(12) are the main results of our mean-field
description. Below we numerically solve these equations at
zero temperature and the solution is shown in Fig. 2 for various
system parameters.

At zero temperature there are only three parameters
remaining: the dimensionless detuning � = (ωc − Eg)/g, the
excitation density ρex, and the nonlinear coefficient Ũ . In Fig. 2
we plot the coherent field density |ψ0|2, the exciton density
〈σz〉/N , and the dimensionless chemical potential (μ − ωc)/g
as a function of the excitation density ρex at zero temperature
limit βE → ∞. In the upper part of Fig. 2, excitons are tuned
on resonance with photons � = 0, while the nonresonance
case is illustrated in the lower part for � = 1. In units of
g we take the values of Ũ as Ũ = 0.1g (small), Ũ = g

(moderate), and Ũ = 10g (large) cases. The aim is to see how
the photon nonlinearity affects the polariton condensate. The
value of Ũ/g chosen above is in agreement with the physical

realization of our model. For example, to generate the Kerr
nonlinearity, the Rabi frequency of the external laser can be
taken as 1011 s−1 with the detuning of 1010 s−1. Subjecting
these parameters into Eq. (22) of Ref. [35], the strength of the
Kerr effect is estimated as U ≈ 107 s−1. For a QD containing
N = 103 localized excitons and a strong dipolar coupling rate
g = 1010 s−1, the relative nonlinear coefficient Ũ/g = 1 is
satisfied.

In Fig. 2 it is manifested that when Ũ is much smaller
than g a coherent photon field exists and its magnitude is
greater than the exciton density. In this case the emergence of
coherence is the photon-like polariton condensate. In fact the
result we obtained for the small Ũ case is similar with those
presented by the authors of Ref. [6]. For the case where Ũ and
g are comparable, the coherent field density is smaller than
the previous case and is accompanied by a larger magnitude of
the exciton density. The tendency indicates that the repulsive
interaction among photons tends to reduce the photonic
component of the condensate, and in turn it will enhance
the number of excitons for a given total excitation density.
We further observe that when Ũ = 10g and ρex > 0.5, a total
inversion arises in the exciton system and the order parameter
shows a threshold behavior around ρex = 0.5. In such a case,
the condensate is exciton-like rather than photon-like and we
infer the underlying physics as follows. As the excitation
density increases, the strong photon nonlinearity significantly
prevents the external excitations entering the coherent photonic
mode. As a consequence, the population of the exciton modes
has been saturated before the photonic mode being populated.
Such an exciton-like polariton condensate cannot be obtained
with linear photons. For real experimental settings, polaritons

FIG. 2. The coherent field density |ψ0|2 (i.e., order parameter, solid line), the exciton density 〈σz〉/N (dotted line), and the chemical
potential (μ − ωc)/g (dashed line) as a function of the excitation density ρex at zero temperature limit. The resonant case is presented in the
top row for � = 0, while the nonresonant case is in the bottom row for � = 1. For each of the rows the nonlinear coefficient is set to be
NU = 0.1g, g, and 10g, increasing from left to right.
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FIG. 3. The evolution of quasiparticle excitation energy E = √
ε̃2 + g2|ψ0|2 (in units of g) with increasing excitation density ρex. Parameters

are as same as those in Fig. 2.

have a very short lifetime due to fast photon decay [4]. Thus
the lifetime of an exciton-like condensate is apparently longer
than a photon-like condensate. With this respect the inclusion
of photon nonlinearity has the experimental significance to
reach equilibrium polariton condensate.

We also note that when the inversion of two-level oscillators
comes up, the dimensionless chemical potential (μ − ωc)/g
grows fast and changes its sign from negative to positive. As
we already mentioned this is a new feature brought by the
photon nonlinearity. For a large Ũ , the term 2Ũ |ψ0|2 in the
left-hand side of Eq. (10) grows fast with the increase of |ψ0|.
Thus it needs a negative value of ω̃c to balance the equation.
As a result, the chemical potential will be evolved into values
greater than the photon energy. Comparing the upper part of
Fig. 2 to the lower part, we learn that the photonic component
in the detuning case is less than the resonance case. In a
coupled matter-light system, a nonvanishing detuning amounts
to weaken the dipolar interaction [38]. This will enhance
the relative strength of the photon nonlinearity versus the
photon-exciton coupling. As a result, increasing the detuning
has the same effect as increasing the nonlinear coefficient Ũ .

The physics read from Fig. 2 is in accordance with
the qualitative energetics analysis toward the free energy
(9). Figure 2 clearly demonstrates that at zero temperature
the polariton condensation can occur with the presence of
the photon nonlinearity, which plays a role of determining the
components of the condensate. To explore the consequences of
photon nonlinearity on quasiparticle excitations, we calculate
the quasiparticle excitation energy E =

√
ε̃2 + g2|ψ0|2 as

a function of the excitation density ρex and illustrate the

results in Fig. 3 (in units of g). Here the parameters are as
same as those in Fig. 2. In Fig. 3 a fully gapped energy
spectrum shows up. The quasiparticle excitation energy is
gapless at the parameter regime where the condition |ψ0| = 0
and μ = Eg are both satisfied. To meet with the second
condition a positive chemical potential is required. Although
this is allowed in our model, from Fig. 2 we note that
the two conditions cannot satisfy simultaneously. A positive
(μ − ωc)/g is always accompanied by a nonzero coherent
field |ψ0| �= 0. Therefore the quasiparticle energy is still
fully gapped. For the nonlinear coefficient smaller than or
comparable with the dipolar coupling, the quasiparticle energy
is a monotonous increasing function of the excitation density.
However, in the strong nonlinear region, the quasiparticle
energy first decreases and then increases with the density. A
minimal width of the energy gap can be found at round ρex = 0.
When ρex > 0.5, the width grows fast. This tells us that in a
certain parameter regime exciting a quasiparticle needs a lot of
energy. Although increasing the detuning has an effect to make
the gap narrower, the general characters of curves still remain.
In the next section we make use of the mean-field description
as a platform on which to construct a picture of low-energy
collective excitations.

IV. COLLECTIVE EXCITATIONS

In this section we proceed to consider the picture of low-
energy collective modes. To appreciate this point, we include
a small incoherent fluctuation about the saddle point ψ =
ψ0 + δψ and expand the logarithm in Eq. (6) to quadratic
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order with respect to δψ . The contribution from logarithm
term − 1

2 Tr(M−1
0 δMM−1

0 δM), together with the bare photon
action yields an effective action for fluctuations

Sfluct = β

2

∑
ω

(δψ̄(ω), δψ(−ω))G−1(ω)

(
δψ(ω)

δψ̄(−ω)

)
. (13)

Here

G−1(ω) =
(

K∗
1 K∗

2
K2 K1

)
(14)

is the inverse thermal Green’s function for fluctuations, where

K1 = iω + ω̃c + 2Ũ |ψ0|2 + g2

E
tanh

(
1

2
βE

)

× iε̃ω − 2ε̃2 − g2|ψ0|2
ω2 + 4E2

+ δ(ω)αg2|ψ0|2,

K2 = 2Ũ ψ̄2
0 + g4|ψ0|2

E(ω2 + 4E2)
tanh

(
1

2
βE

)
+ δ(ω)αg4|ψ0|2,

(15)

with α = −(β/4E2)sech2(βE/2). By action (13) the stability
of our mean-field theory can be examined. It is provided that
the mean-field condensed solution is stable against thermal
fluctuations, and the unstable solution shows up when the
phase transition takes place. The derivation of the above
statements is similar to the one in Ref. [6] since only coherent
photons participate in the condensation and the order parame-
ter vanishes at the transition. In Eq. (15) the terms proportional
to the Kronecker δ function stem from the summation over
Fermionic Matsubara frequencies when we take the trace.
These terms do not survive the analytic continuation, and so
they do not appear in the retarded Green’s function as well
as in the collective excitation spectrum [9]. The calculation
of the retarded Green’s function GR(ω) is straightforward by
an analytic continuation GR(ω) = G(iωn = −ω + μ − i0+).
The poles of the retarded Green’s function determine the
collective modes which are experimentally appreciable [4,39].
In the normal state the thermal Green’s function is exactly the
same as in Ref. [6], and we do not intend to reproduce it here.
However, in the condensed state we deduce that

G11(iω) = (ω̃c + 2Ũ |ψ0|2)(ω2 + 2g2|ψ0|2) − iω[ω2 + 4E2 + 2ε̃(ω̃c + 2Ũ |ψ0|2)]

(ω2 + 4E2)2 + A(ω2 + 4E2) + B
, (16)

where

A = 4[ε̃(ω̃c + 2Ũ |ψ0|2) − E2] + ω̃c(ω̃c + 4Ũ |ψ0|2),

B = −4(ω̃c + 2Ũ |ψ0|2)[(4ε̃ + ω̃c

+ 2Ũ |ψ0|2)E2 + 2Ũg2|ψ0|4]. (17)
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FIG. 4. The frequencies of collective modes as a function of the
nonlinear coefficient (in units of g) superimposed on the phase bound-
ary of critical chemical potential μc versus the transition temperature
βc for � = 2, (μ − Eg)/g = 1.5 (point A), (μ − Eg)/g = 0.5 (point
B), and along a constant temperature gβ = 15, represented by a
dashed line.

The poles of Eq. (16) are given as

(Eex − μ)2 = 4E2 + A

2
± 1

2

√
A2 − 4B, (18)

from which a symmetric excitation spectrum around the
chemical potential is predicted. These modes are formed by
the collective excitations of quasiparticles. Notice that the
quasiparticle energies are always gapped from weak to strong
nonlinearity, and thus the collective modes is not damped at
the low temperature regime.

For Ũ = 0, the denominator of Eq. (16) reduces to
(iω)2(iω + ξ )(iω − ξ ) with ξ =

√
(ω̃c + 2ε̃)2 + 4g2|ψ0|2. In

this case, the (iω)2 is associated with phase modes (Goldstone
modes) and two poles at iω = ±ξ determine two collective
modes, E± − μ = ±ξ . For Ũ �= 0, the structure of the
collective modes changes dramatically. There are four poles
indicating four non-zero-frequency modes. In Fig. 4 we plot
the excitation energies of these modes as a function of the
nonlinear coefficient superimposed on the mean-field phase
boundary [i.e., the curve of critical chemical potential μc

versus the transition temperature βc, which is obtained by
requiring ψ0 = 0 in Eq. (10)]. For the detuning case � = 2,
the corresponding chemical potential relates to the two markers
labeled as A at (μ − Eg)/g = 1.5 and B at (μ − Eg)/g = 0.5,
along a constant temperature gβ = 15, represented by a dashed
line. It is demonstrated that the inclusion of photon nonlinearity
leads to mixed excitations of amplitude and phase modes. The
zero-frequency modes no longer exist and it is bifurcated into
a pair of non-zero-frequency modes. This means that the phase
fluctuations of the condensate are now related to the amplitude
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fluctuations and they will occur simultaneously. For point
A, the excitation energies are a monotonous function with
increasing nonlinear coefficient. When the chemical potential
takes a smaller value at point B, the frequency of the collective
modes bifurcated from phase modes first increase and then
decrease with the nonlinear coefficient. The experimental
observation of the excitation spectrum may be done as one may
probe the response to inserting a real photon, and detecting its
emission at a later time.

V. CONCLUSION

In summary, we have addressed the Bose condensation
of polaritons with the Kerr-type nonlinear photons. We have
introduced a generalized Dicke Hamiltonian with the pairwise
repulsion of photons to model our system. By the path integral
representation of the partition function, the thermodynamics
of our model has been investigated and the consequences
of the additional photon nonlinearity are examined. On the
mean-field level, it is shown that the polariton condensation
can occur and the strength of the Kerr nonlinearity affects
the character of the condensate. When the nonlinearity is
weaker than or comparable with the dipolar coupling, the
emergence of spontaneous coherence is the condensate of
photon-like polaritons. The photonic component is decreased
with the increase of the nonlinear coefficient. However, when
the nonlinearity is much stronger than the dipolar coupling,
the coherent photon field exhibits a threshold behavior which
is accompanied by a large excitons density. In this case the
condensate is more exciton-like. Thus we point out that the
Kerr nonlinearity has an effect of suppressing the photonic

component in the condensate. Moreover, in our system the
quasiparticle excitation energy is fully gapped, even though the
strict condition that the chemical potential has to be less than
the photon energy no longer exists. By going beyond the mean-
field description, an effective action for thermal fluctuations
is derived. We extract properties of the condensate collective
modes from the thermal Green’s function. With the presence
of photon nonlinearity, a mixture of the phase modes with
the amplitude modes forms two pairs of non-zero-frequency
modes. The phase and amplitude fluctuations of the condensate
are related by the photon nonlinearity.

The present paper is an extension of previous work in
Ref. [6]. It would be of considerable interest to further extend
our model including pumping and dissipation. Actually the
dissipations will lead to nonequilibrium condensation. This
could be done by the real-time Keldysh field theory [40], and
it will be studied in a forthcoming publication.
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