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Simulation of conditional master equations is important to describe systems under continuous measurement
and for the design of control strategies in quantum systems. For large bosonic systems, such as Bose-Einstein
condensates and atom lasers, full quantum-field simulations must rely on scalable stochastic methods. Currently,
these methods have a convergence time that is restricted by the use of representations based on coherent states.
Here, we show that typical measurements on atom-optical systems have a common form that allows for an
efficient simulation using the number-phase Wigner (NPW) phase-space representation. We demonstrate that
a stochastic method based on the NPW can converge orders of magnitude longer and more precisely than its
coherent equivalent. We then examine how these methods can be used in multimode simulations, demonstrated
by a simulation of a two-mode Bose-Hubbard model. Finally, we combine these techniques to demonstrate a
full-field simulation of a realistic multimode quantum system controlled by active feedback.
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I. INTRODUCTION

Exciting advances in physics have led to a boom of research
into technologies that exploit fundamental quantum proper-
ties. Such quantum technologies now encompass more than
lasers and superconductors. Indeed, there are applications for
precision metrology [1,2], quantum-information processing,
and quantum cryptography [3,4]. A key feature of quantum
technologies is that they require the precise creation, measure-
ment, and control of individual quantum systems. In particular,
measurement-based feedback control has shown promise as
an effective and robust technique for controlling quantum
systems. The first experiments [5–8] and many theoretical
papers [9–16] on feedback control of quantum systems have
been applied to relatively low-dimensional systems. This paper
describes a technique for efficient simulation of large bosonic
conditional quantum systems that is orders of magnitude more
precise and converges for significantly longer time scales than
previous methods and that scales logarithmically with the size
of the Hilbert space.

A large bosonic system of particular interest to quantum
science is the Bose-Einstein condensate (BEC). Measurement-
based feedback control of BECs and atom lasers was first in-
vestigated in a single-mode model where a continuous number
measurement was used to reduce the interaction-induced phase
diffusion that limits the single-mode atom laser linewidth
[17]. Then, it was shown that position measurement and
feedback on a single trapped atom could bring it to the ground
state [12,13], but the proposed measurement scheme was not
suitable for large atomic clouds, such as a condensate. A
multimode quantum-field model of a condensate measured by
an existing experimental technique (phase-contrast imaging)
then was produced, but it could only be solved using a
semiclassical approximation [14,15]. Analysis of the linewidth
of a multimode atom laser undergoing feedback requires
a viable stochastic method for conditional quantum states
that can deal with both high nonlinearities and numberlike

measurements. This paper develops a method that fulfills both
of these requirements.

The most effective methods for dynamic simulation of
high-dimensional bosonic quantum systems are stochastic
techniques based on phase-space representations [18,19]. Each
stochastic method is derived from a specific phase-space
representation, which is akin to the choice of a basis for the
Hilbert space. Naively, these techniques require memory and
computational resources that scale logarithmically with the
size of the Hilbert space. Practically, the overall computational
efficiency is system dependent and strongly depends on how
well the underlying phase-space representation matches the
natural basis for the state of the quantum system under
consideration. The most commonly used stochastic simulation
methods are based on phase-space representations that use
Gaussian states. These methods have enabled the simulation
of quantum-optical [19,20], atomic [17,21,22], and fermionic
quantum fields [23]. In particular, stochastic methods have
been used extensively in the field of quantum-atom optics
where dilute atomic gases can be cooled to produce BECs
and atom lasers [24–26]. The two most successful varieties
are based on the positive-P and the truncated Wigner (TW)
representations. The positive-P representation is an exact
technique but requires a doubling of the phase space that often
leads to instabilities [27]. The TW is an approximate technique
that typically has significantly longer convergence times than
the positive-P representation. However, it makes an uncon-
trolled approximation [28] and, therefore, may converge to
incorrect solutions. Both of these methods, along with all other
coherent-state-based representations, experience difficulties
dealing with large number-conserving nonlinearities as the
underlying Gaussian basis becomes inappropriate. Such large
number-conserving nonlinearities typically are the dominant
energies in confined cold-atomic systems by a couple of orders
of magnitude. Recently, we introduced a stochastic method
based on a number-phase Wigner (NPW) representation [29],
which provides a nonapproximate method for simulating large
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number-conserving nonlinearities with dramatically improved
convergence.

Modeling highly nonlinear systems undergoing continuous
monitoring and feedback requires the simulation of a condi-
tional quantum state. Continuous measurement of a quantum
system can have a dramatic effect on its dynamics. In fact,
the choice of measurement can even be used as a controlling
mechanism by itself [30,31]. Therefore, it is unsurprising
that the appropriate choice of phase-space representation is
heavily influenced by the choice of measurement as it may
drive the conditioned system toward a state that is simpler to
describe in a particular representation. In a recent paper, we
demonstrated how to unravel a particular form of stochastic
Fokker-Planck equation (SFPE), which allows stochastic
simulation techniques to apply to a class of conditional
quantum systems [32]. It is only possible to generate SFPEs
of this form with particular combinations of measurement
schemes and phase-space representations. In particular, meth-
ods based on coherent-state representations are badly suited
to measurements involving numberlike observables, which are
prevalent in atom optics. In this paper, we show that the NPW
representation produces dramatically superior results than
coherent-state-based representations for these calculations.

A common quantum-atom-optical system under monitoring
is governed by the conditional master equation,

dρ̂ = −i[ ˆH (u),ρ̂]dt +
∑

i

D[L̂i]ρ̂ dt +
∑

i

H[L̂i]ρ̂ dWi,

(1)

where D[ĉ]ρ̂ = ĉρ̂ĉ† − 1
2 (ĉ†ĉρ̂ + ρĉ†ĉ), dW is an Ito-Wiener

increment, H[ĉ]ρ̂ = ĉρ̂ + ρĉ† − 〈ĉ + ĉ†〉ρ̂, 〈ĉ〉 = Tr[ĉρ̂] is
our notation for a quantum expectation, Ĥ is the Hamiltonian
and contains the contributions from kinetic energy, potential
energy, many-body interactions and the controls, which are
dependent on the set of feedback signals u, and L̂i =∫

dx ψ̂†(x)Li(x)ψ̂(x) is the measurement operator where the
functions Li(x) define measured density modes of the multi-
mode field. We have restricted the measurement operators L̂i

such that they are algebraically numberlike in terms of the field
operators. This form is the lowest-order number-conserving
interaction possible for a multimode system. Measurements
that are lower order with respect to the field operators do not
conserve the number and may be suited to traditional coherent-
state representations, but in many cases, these systems may
be treated using analytic techniques, such as the Kalman
filter, making simulation less important. Number-conserving
measurements are quite common in engineered monitoring of
BECs [14,15,33–38]. Typically, off-resonant light is used to
image the density moments of a BEC. Dynamically gaining
information from a BEC using this method is likely to be
common as a further phase-sensitive measurement requires
the existence of an atomic local oscillator to use as a phase
standard, which is technically challenging. Thus, the efficient
simulation of Eq. (1) will be relevant for a wide variety of
atom-optical systems in the present and in the future.

In Sec. II, we apply the NPW method to a single-mode
atom-optical system under a continuous number measurement,
showing that it converges correctly over a long time scale. In
Sec. III, we apply it to a two-mode Bose-Hubbard model,

describing how the kinetic-energy terms can be approximated
in the NPW method. In Sec. IV, we combine these two
techniques to demonstrate the simulation of a multimode
conditional atom-optical system, which has only been possible
in the past by performing a semiclassical approximation [15].

II. CONDITIONAL EVOLUTION FOR A SINGLE-MODE
SYSTEM

To analyze the simulation of Eq. (1) using NPW-based
methods, we require a verifiable solution for comparison. As
the measurement operator L̂i is second order with respect to
the field operators, Gaussian analytic techniques, such as the
Kalman filter are not guaranteed to be exact [16], and we are
forced to integrate the master equation directly to generate a
benchmark for comparison. This restricts us to look at single-
mode systems as direct integration is not scalable to multimode
systems. A simple single-mode problem that is of the form of
Eq. (1) is

dρ̂ = γD[â†â]ρ̂ dt + γ C[â†â]ρ̂ dt + √
γH[â†â]ρ̂ ◦ dW,

(2)

where ◦dW is a Stratonovich-Wiener increment and we define
the Stratonovich correction superoperator as C[ĉ]ρ̂ = 〈ĉ +
ĉ†〉H[ĉ]ρ̂ − 1

2H[ĉ2]ρ̂ + 〈ĉ†ĉ〉ρ̂ − ĉρ̂ĉ†. This master equation
describes a system undergoing continuous monitoring under a
number measurement.

The scalability of stochastic techniques for solving condi-
tional quantum dynamics has already been demonstrated in
Ref. [32], but we aim to investigate the effect of choosing dif-
ferent representations. We use master equation (2) to compare
the performance of leading coherent-based scalable stochastic
methods to the NPW representation. The convergence of these
techniques is compared to a direct integration of the master
equation.

Coherent-state-based representations, positive-P and TW
have been successful at describing the evolution of BEC
and quantum-optical systems. Starting with the positive-P
representation, we now investigate the applicability of these
techniques on a conditional master equation. Using the
correspondences in Ref. [19], we can convert master equation
(2) to

dP(α) = {γ [∂αα(1 + 2|α|2 − 2EP [|α|2]) − ∂2
αα2

+ ∂α∗α∗(1 + 2|α|2 − 2EP [|α|2]) − ∂2
α∗ (α∗)2

− 2(|α|2 + |α|4 − EP [|α|2] − EP [|α|4])

+ 4EP [|α|2](|α|2 − EP [|α|2])]dt

+√
γ [−∂αα − ∂α∗α∗

+ 2(|α|2 − EP [|α|2])] ◦ dW }P(α), (3)

where P(α) is the P -representation quasiprobability distri-
bution that reproduces normally ordered moments of master
equation (2) and EQ[f (x)] ≡ ∫

dx f (x)Q(x) is our notation
for taking the expectation values of a function f (x) with
respect to the quasiprobability distribution Q(x). We note
that this equation contains nonpositive definite diffusion
that must be simulated by doubling the phase space. Thus,
positive-P techniques are required. This representation can
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then be unravelled into the following set of stochastic
equations [32]:

dαp = −2γαp(α+
p αp − Ef [α+

p αp])dt

+√
γαP ◦ (i dV1 + i dV2 + dW ),

dα+
p = −2γα+

p (α+
p αp − Ef [α+

p αp])dt

+√
γα+

p ◦ (−i dV1 + i dV2 + dW ), (4)

dωp = −2γωp{α+
p αp + (α+

p )2α2
p − 2α+

p αpEf [α+
p αp]}dt

+ 2
√

γωpα+
p αp ◦ dW,

where dV1 and dV2 are a set of fictitious noises that are
averaged over to obtain the weighted averages Ef [f (x)] ≡∑

i ωif (xi)/
∑

i ωi [32]. Equations (4) will be used to bench-
mark the unravelling of Eq. (2) using coherent-state-based
methods.

Now, consider the TW representation. Using the opera-
tor correspondences given in Ref. [19], we can write the
master equation for the Wigner quasiprobability distribution
W(α) as

dW(α) = [
γ
(− 1

2∂2
αα2 − 1

2∂2
α∗ (α∗)2 + ∂α∗∂α|α|2

+ (∂α∗∂α + 4EW [|α|2])(|α|2 − EW [|α|2])

− 2(|α|4 − EW [|α|4]) − 1
8∂2

α∗∂
2
α

)
dt

+ (− 1
2∂α∗∂α + 2(|α|2 − EW [|α|2])

) ◦ dW
]

×W(α). (5)

Note that the first term contains higher-order derivatives, and a
truncation is required in order to obtain a stochastic unravelling
of Eq. (5). Note also that a positive-P -representation-style
extension of the phase space would be required to simulate the
diffusion in the conditioning term. Traditionally, the Wigner
representation is guaranteed to produce strictly positive-
definite diffusion [19], but this is under the assumption that the
calculus increment is positive as is the case with dt . Unfortu-
nately, this assumption does not hold with the dW increment.
A new positive Wigner representation could be derived by
analogy to the positive-P representation, but the higher-order
terms would still need to be truncated. This would make this
hypothetical representation both approximate and doubled in
phase space, which would make it unlikely to compete with
the positive-P representation. Thus, it is not worthy of further
investigation.

Finally, we consider the NPW representation. The NPW
was first derived in Ref. [29] and was used in the simulation
of large nonlinear quantum systems. We now consider its
applicability for use on conditioned atom-optical systems.
Using the operator correspondences given in Ref. [29], we
get the following equation:

dN (n,φ) = [
γ
(

1
2∂2

φ − 2(n2 − EN [n2])

+ 4EN [n](n − EN [n]))dt

+ 2
√

γ
(
n − EN [n]

) ◦ dW
]
N (n,φ), (6)

where N (n,φ) is the NPW representation that produces a
complete set of moments of the master equation as outlined in
Ref. [29]. We next unravel Eq. (6) using Ref. [32] to

dn = 0, dφ = √
γ ◦ dV1,

(7)
dωn = γω(−2n2 + 4Ef [n]n)dt + 2

√
γωn ◦ dW.

Note we did not need to apply any truncations or double the
phase space. The simplicity of Eqs. (7) compared to Eq. (4)
show how an appropriate choice of representation, the NPW in
this case, can greatly reduce the complexity of the evolution,
just as an appropriate choice of basis can simplify analysis of
other quantum problems.

We emphasize the simplicity of Eq. (6) compared to Eq. (5)
is not simply due to a coordinate transformation, but rather, it
originates from a fundamental difference in the construction
of the representations. Evolution of transformed quasidistri-
butions has been considered in the Q representation [34], and
for the tomographic Wigner distribution [39], however, these
approaches would not help in this situation as they cannot fix
the non-semi-positive-definite diffusion in Eq. (5).

We can now compare the performances of the NPW and
the positive-P representations by integrating Eqs. (4) and
(7), respectively. The results of these simulations, together
with a direct integration of the master equation, are shown in
Fig. 1. The NPW representation converges until a complete
collapse into the correct number state. As this is the steady
state of the equation, we expect the NP representation to
converge indefinitely [see Fig. 1(a)]. The NPW also produces
significantly smaller errors and uncertainty as compared to
the positive-P representation [Figs. 1(a,ii) and 1(b,ii)]. The
decrease in the uncertainty reduces the error of the evolution
as the simulation of the conditional master equation uses
an estimate of the observable 〈ĉ + ĉ†〉, thus, the increased
uncertainty in the results increases the error in the long term.
This dynamic instability is not seen in unconditioned master
equation evolution and makes the uncertainty of stochastic
techniques considerably more important in these problems.

We have demonstrated the accuracy and advantage of the
NPW representation for conditional simulations using the
single-mode model, Eq. (2), as a benchmark. However, to
simulate realistic BEC models, we also would need to include
both the kinetic-energy and the nonlinear interaction terms
in the Hamiltonian. Just like the measurement considered
in this section, the nonlinear term has a numberlike form,
which, therefore, is well suited to being solved using the
NPW representation. However, the kinetic-energy term, which
is normally trivial for coherent-state-based representations,
requires approximations to be solved via the NPW method.
In the next section, we examine these approximations in the
context of the simplest multimode model with both coupling
and nonlinear terms.

III. TWO-MODE BOSE-HUBBARD MODEL

We describe how to deal with coupling terms within the
NPW method by examining the simplest nontrivial model. We
consider two coupled anharmonic oscillators corresponding to
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FIG. 1. (Color online) Average number of quanta as a function of time for the stochastic simulations using the NPW [red circles in (a,i)]
and the positive-P representation [blue squares in (b,i)] for an initial coherent state with amplitude 10, both have a 2σ confidence interval
plotted with dashed lines. The results for the direct integration of the master equation (7) are shown in both plots for comparison (black
crosses). The positive-P representation results diverge after t ≈ 0.15/ω and are not plotted beyond this point. Plots (a,ii) and (b,ii) show,
on a logarithmic scale, the errors (solid black lines) defined as the difference between each stochastic result and the exact solution and the
uncertainty (dashed black line) defined as the standard deviation in the averages, corresponding to plots (a,i) and (b,i), respectively. The NPW
simulation is considerably more precise and is convergent for at least an order of magnitude longer than the positive-P representation.

the Hamiltonian of the Bose-Hubbard model truncated to two
sites,

Ĥ = κ(â†b̂ + b̂†â) + χ

2
[(â†â)2 + (b̂†b̂)2], (8)

where â and b̂ are the annihilation operators for the two
modes. The first term represents the coupling between the
two sites, whereas, the second one contains the nonlinearity.
This Hamiltonian describes the dynamics of a condensate
in a double-well potential and has been studied thoroughly
with a variety of methods both experimentally [40,41] and
theoretically [42–44]. Although, in general, the system is not
solvable analytically, it can be integrated directly, and we
use this solution as a benchmark for comparison between
coherent-state- and NP-based methods.

The various phase-space representations will deal differ-
ently with the nonlinear and coupling terms of the Hamiltonian
(8). The NPW treats the nonlinearity exactly, whereas, the
coherent methods treat the coupling term in an exact way.
The methods by which the positive-P representation and the

TW simulate the nonlinear term are known: The positive-P
representation requires a doubling of the phase space, and the
TW requires a truncation of higher-order differential terms.
We now present the analysis of the approximations needed to
simulate the kinetic term with the NPW representation.

A. The kinetic term in the NPW representation

We start our investigation by considering the equation of
motion for the NPW representation [29] generated from the
Hamiltonian in Eq. (8),

∂tN (n,φ) = κ

(√
na + i

2
∂φa

e−iφa

√
nb + 1 + i

2
∂φb

eiφb

×
{
N
(

na − 1

2
,nb + 1

2
,φa,φb

)

−
∫ 2π

0
dφ′

b exp

[
2i(φb − φ′

b)

(
nb + 1

2

)]
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×N
(

na − 1

2
,nb + 1

2
,φa,φ

′
b

)}

×
√

nb + i

2
∂φb

e−iφb

√
na + 1 + i

2
∂φa

eiφa

×
{
N
(

na + 1

2
,nb − 1

2
,φa,φb

)

−
∫ 2π

0
dφ′

a exp

[
2i(φa − φ′

a)

(
na + 1

2

)]

×N
(

na + 1

2
,nb − 1

2
,φ′

a,φb

)})

+χ
(
∂φa

na + ∂φb
nb

)
N (n,φ). (9)

As it stands, this equation is not of a Fokker-Planck type; it is
not classically Markovian and cannot be unravelled into a set of
stochastic differential equations (SDEs). To fix this situation,
we apply a set of approximations that sets the evolution in the
form of an FPE, which can then be unravelled into SDEs in a
scalable manner.

First note that the integral terms can be seen as the overlap
between the state and the vacuum,∫ 2π

0
dφ′ exp

[
−2iφ′

(
n + 1

2

)]
N
(

n + 1

2
,φ′
)

= 〈0|ρ̂|2n + 1〉. (10)

Now, assume that the states generated by the dynamics are
highly exited states, such as large coherent or number states.
These states have little overlap with the vacuum, and we,
thus, can neglect the integrals. This approximation is valid
for states with large n and can be thought of as approaching
the semiclassical limit. This is akin to the truncation performed
in the coherent Wigner representation, which also is valid in
the large n limit. The evolution then reduces to

∂tN (n,φ) = κ

(√
na + i

2
∂φa

e−iφa

√
nb + 1 + i

2
∂φb

eiφb

)

×N
(

na − 1

2
,nb + 1

2
,φa,φb

)

×
(√

nb + i

2
∂φb

e−iφb

√
na + 1 + i

2
∂φa

eiφa

)

×N
(

na + 1

2
,nb − 1

2
,φa,φb

)
+χ

(
∂φa

na + ∂φb
nb

)
N (n,φ). (11)

Next, we must expand the square roots present in Eq. (11)
using a Taylor-series expansion. For example,√

n + i

2
∂φ ≈ √

n + i
1

4
√

n
∂φ + 1

32
√

n3
∂2
φ + · · · . (12)

Expanding the square roots will generate terms with different
orders of partial derivatives with respect to φ. Since we are
assuming that n is large, we also neglect all the terms with
prefactors of order at least 1/n2. Now, we can group the terms

of the same order and can analyze them individually. First, we
consider the zeroth-order term,

∂tN (n,φ) = 2κ sin(φb − φa)

×
[√

na(nb + 1)N
(

na − 1

2
,nb + 1

2
,φa,φb

)

−
√

nb(na + 1)N
(

na + 1

2
,nb − 1

2
,φa,φb

)]
+ · · · . (13)

As the number variable is quantized, we would anticipate
the evolution of this variable to involve jumps of some kind.
However, interpreting the expression above in terms of jump
processes would necessarily lead to jumps occurring with
negative probabilities. To avoid this problem, we take n to
the continuum limit [45] and set N (na ± 1

2 ,nb ∓ 1
2 ,φa,φb) ≈

N (n,φ). Using this and the finite-difference approximation,

f

(
x + 1

2
h

)
− f

(
x − 1

2
h

)
= hf ′(x) + O(h3), (14)

we find that the zeroth-order term simplifies to

∂tN (n,φ) ≈ 2κ
(
∂nb

− ∂na

)
sin(φb − φa)

×
√(

na + 1
2

)(
nb + 1

2

)
N (n,φ) + · · · . (15)

For the first-order terms,

∂tN (n,φ) = · · · + 2κ∂φa
cos(φb − φa)

×
[√

nb + 1

4
√

na

N
(

na − 1

2
,nb + 1

2
,φa,φb

)

+
√

nb

4
√

na + 1
N
(

na + 1

2
,nb − 1

2
,φa,φb

)]
+ 2κ∂φb

cos(φb − φa)

×
[√

na + 1

4
√

nb

N
(

na + 1

2
,nb − 1

2
,φa,φb

)

+
√

na

4
√

nb + 1
N
(

na − 1

2
,nb + 1

2
,φa,φb

)]
+ · · · , (16)

we will also take the continuum n limit. Note that we do not
have to use the finite-difference approximation since only finite
sums appear in this term. The result is

∂tN (n,φ) ≈ · · · + κ

⎛
⎝∂φa

√
nb + 1

2√
na + 1

2

+ ∂φb

√
na + 1

2√
nb + 1

2

⎞
⎠

× cos(φb − φa)N (n,φ) + · · · . (17)

Finally, the same continuum approximation cancels out all the
diffusion terms in the second-order term. These approxima-
tions give us the following Markovian evolution for our NPW
representation:

∂tN (n,φ) =
⎧⎨
⎩κ

⎡
⎣2
(
∂nb

− ∂na

)√(
na + 1

2

)(
nb + 1

2

)

× sin(φb − φa)
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+
⎛
⎝∂φa

√
nb + 1

2√
na + 1

2

+ ∂φb

√
na + 1

2√
nb + 1

2

⎞
⎠

× cos(φb − φa)

⎤
⎦

+χ
(
∂φa

na + ∂φb
nb

)⎫⎬⎭N (n,φ). (18)

Equation (18) is in Fokker-Planck form and can now be unrav-
elled into the following set of SDEs for scalable simulation:

dna = 2κ sin(φb − φa)

√(
na + 1

2

)(
nb + 1

2

)
dt,

dnb = −2κ sin(φb − φa)

√(
na + 1

2

)(
nb + 1

2

)
dt,

(19)

dφa =
⎛
⎝− cos(φb − φa)

√
nb + 1

2√
na + 1

2

+ χna

⎞
⎠ dt,

dφb =
⎛
⎝− cos(φb − φa)

√
na + 1

2√
nb + 1

2

+ χnb

⎞
⎠ dt.

If we consider the transformation where we set αn =√
na + 1

2eiφa and βn =
√

nb + 1
2eiφb , which corresponds to

the operator expectations 〈â〉 and 〈b̂〉, respectively, we get
the following set of equations:

dαn = −i
[
κβn + χ

(|αn|2 − 1
2

)
αn

]
dt,

(20)
dβn = −i

[
καn + χ

(|βn|2 − 1
2

)
βn

]
dt.

Note that, as mentioned before, in the limit where there is no
coupling (κ = 0), the equations are exact. What is curious here
is that, in the opposite limit, i.e., when there is no nonlinearity
and only coupling (χ = 0), Eqs. (20) perfectly match the
mean-field evolution and are exact. Therefore, Eqs. (20) are
correct in both extreme limits.

Note also that Eqs. (20) are equivalent to the equations
of motion for the mean-field evolution of Eq. (8) up to an
absolute phase rotation. Thus, in a similar sense to the TW
representation, by taking the large n limit, we have entered the
semiclassical regime. We find that the difference in evolution
between TW, mean field, and NPW is entirely due to the effects
of the random sampling of the initial condition.

B. Initial sampling

In a previous paper, we showed that number states can be
sampled in a scalable and exact way [29] as a number state
|n0〉 is given by the strictly positive distribution,

Nn0 (n,φ) = 1

2π
δn,n0 . (21)

Coherent states, on the other hand, have distributions that are
not strictly positive [29]. Fortunately, this can be fixed in the

large n limit as shown in Appendix A. A coherent state |α0〉,
where α0 = r0e

iφ0 , is given by

Nα0 (n,φ) =
rn

0 exp
[−n0 + −2(φ−φ0)2

ψ (1)(n+1)

]√
2

n!
√

πψ (1)(n + 1)
, (22)

where ψ (1)(n + 1) is the trigamma function and n is an
integer n = 0,1,2, . . . , as we have eliminated the half-integer
contribution as a weaker approximation on the way toward
the continuum limit. This expression allows us to sample
coherent states in a scalable and efficient way as it is strictly
positive, and it is the product of a Poissonian and Gaussian
distribution. Combining these sampling techniques and the
dynamic equations (19), we can simulate the Hamiltonian (8).

C. Evolution and sampling of the TW method

For the TW, the dynamical equation obtained from standard
techniques [18,19] is given by

∂tW(α,β) =
[
i∂α

(
χ

2
(2 |α|2 − 1)α + κβ

)

− i∂α∗

(
χ

2
(2 |α|2 − 1)α∗ + κβ∗

)

+ i∂β

(
χ

2
(2 |β|2 − 1)β + κα

)

− i∂β∗

(
χ

2
(2 |β|2 − 1)β∗ + κα∗

)

−i
χ

4

(
∂α∗∂α∂αα − ∂α∗∂α∗∂αα∗

)

− i
χ

4
(∂β∗∂β∂ββ − ∂β∗∂β∗∂ββ∗)

]
×W(α,β), (23)

and generates the following SDEs:

dαw = −i

(
χ

2
(2 |αw|2 − 1)αw + κβw

)
dt,

(24)

dβw = −i

(
χ

2
(2 |βw|2 − 1)βw + καw

)
dt.

As noted before, the equations are the same as the mean
field and the NPW representation as shown in Eq. (20),
and the difference lies in the initial sampling. For the TW
representation, coherent states |α0〉 are straightforward to
sample, and we sample them using the distribution [18],

Wα0 (α) = 2

π
e−|α−α0|2 . (25)

On the other hand, when a number state is treated exactly,
there is negativity in the distribution and cannot be sampled
efficiently. Number states, however, can be treated in an
approximate way using the result from [46,47]

Wn0 =
√

2

π
exp

[
−2

(
|α|2 − n0 − 1

2

)2 ]
. (26)

With this, we can sample, then we can simulate, the Hamilto-
nian (8) using the TW representation.
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D. Evolution and sampling of the positive-P representation
method

For the positive-P representation, the evolution is [18,19]

∂tP(α,β) = i

[
∂α

(
κβ − χ

2
(1 + 2|α|2)α

)

− ∂α∗

(
κβ∗ − χ

2
(1 + 2|α|2)α∗

)

+ ∂β

(
κα − χ

2
(1 + 2|β|2)β

)

− ∂β∗

(
κα∗ − χ

2
(1 + 2|β|2)β∗

)

+ ∂2
αα2 − ∂2

α∗ (α∗)2 + ∂2
ββ2 − ∂β∗ (β∗)2

]
×P(α,β). (27)

The diffusion terms are not positive semidefinite, thus, we
must double the phase space to get the following SDEs:

dαp = −i
(
κβp + χα2

pα+
p

)
dt +

√
−iχ ◦ dW1,

dα+
p = i[κβ+

p + χαp(α+
p )2]dt +

√
iχ ◦ dW2,

(28)
dβp = −i

(
καp + χβ2

pβ+
p

)
dt +

√
−iχ ◦ dW3,

dβ+
p = i[α+

p + χβp(β+
p )2]dt +

√
iχ ◦ dW4,

where α+
p and β+

p are the doubled variables for the positive-P
representation. We note that α+

p and β+
p initially are set to be

complex conjugates of α+
p and β+

p , respectively, when sam-
pling coherent states. Explicitly, the positive-P representation
of a coherent state |α0〉 is,

Pα0 (α,α+) = δ(α0 − α)δ(α∗
0 − α+). (29)

Much like the TW representation sampling, a number state
requires special treatment. The P distribution of a number
state is the derivative of a δ function, which cannot be sampled
in a scalable way. Instead, we take advantage of the freedom
provided by doubling the phase space and use a technique
detailed in Refs. [46,48], which uses the distribution,

Pα0 (α,α+) = |α − α+|2n exp
(− |α+α+|2+|α−α+|2

4

)
4nπ2n!

. (30)

We note that even the initial sampling of α+
p will not necessarily

be the complex conjugate of αp using Eq. (30). With these
equations, we can simulate the Hamiltonian (8) using the
positive-P representation.

E. Numerical comparison of stochastic methods

With the techniques described earlier in this section, we now
are able to simulate the Bose-Hubbard Hamiltonian (8) and
to compare the NPW, the TW, the positive-P representation,
and the direct integration of the master equation. Since the
NPW is exact for both the κ = 0 and the χ = 0 regimes, we
concentrate here on the intermediate regime where χ = κ to
investigate the performance of the methods. Figure 2(a) shows
the dynamics of an initial coherent state, whereas, Fig. 2(b)
shows an initial number state. In both cases, the positive-P
representation diverges early in the evolution due to instability
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FIG. 2. (Color online) Comparison of the NPW (red, circles), the
positive-P representation (blue, dashed lines), and the TW (green,
triangles) methods for simulating the system given by the Hamiltonian
(8). The result of a direct simulation of the master equation is shown
in black with crosses. Plot (a) shows the evolution of the population
difference for an initial coherent state with 〈a†a〉 = 90 and 〈b†b〉 =
110. Plot (b) shows the evolution of the observable 〈a†b + b†a〉 for an
initial number state of 100 particles in each mode. In both cases, the
positive-P representation solution diverges quickly, and the TW and
the NPW methods have essentially identical convergence properties,
following one or more oscillations before diverging from the exact
evolution.

created by doubling the phase space, whereas, the NPW and
the TW perform equally well, reproducing the correct behavior
for some time. At this intermediate regime, it is not surprising
that the NPW performs on par with the TW since the stochastic
equations are the same with the methods differing only at the
initial sampling stage.

However, it is interesting to see that this similarity between
the NPW and the TW performances remains true for the
whole range of χ/κ . Even in the Mott-insulator regime, where
nonlinearity dominates and one would expect the NPW to
perform better, both methods perform on par. As we move
from κ = 0 to a finite value of κ , it seems that the number
states cease to be the adequate basis of the problem, and the
advantage of the NPW disappears. This is probably due to the
strong approximations used to deal with the kinetic term that
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FIG. 3. (Color online) Investigation of the rephasing in the Bose-
Hubbard model for an initial coherent state with 〈a†a〉 = 〈b†b〉 =
100. The NPW is plotted with (red) circles, the TW is plotted with
(green) triangles, the positive-P representation is plotted with (blue)
squares, and a direct integration of the master equation is plotted with
(black) crosses. All plots have dashed lines indicating a 2σ confidence
interval. In the absence of coupling [(a) with χ = 1 and κ = 0], the
NPW is exact and reproduces the revivals, whereas, the other methods
completely miss them. When even a small coupling is introduced [(b)
with χ/κ = 103], the NPW loses its ability to reproduce the revivals
in a quantitative manner.

set the NPW far into the semiclassical regime and close to the
TW method.

This behavior is illustrated in Fig. 3 where we consider the
rephasing of the Bose-Hubbard model. Even with the approx-
imations applied to sample the initial coherent state, the NPW
representation still successfully shows the rephasing in the
absence of coupling (κ = 0). This is consistent with the result
in Ref. [29] where we demonstrated that the NPW was superior
to the TW and the positive-P representation to reproduce the
revivals of a damped anharmonic oscillator. However, we see
that the addition of even a very small coupling decreases
the quality of the rephasing to a qualitative rather than a
quantitative fit. The advantage of the NPW representation as a
simulation tool for large coherent nonlinearities appears to be
lost almost immediately.

The approximations used to restore Markovian dynamics
to the NPW representation appear to be quite aggressive. This

brings the NPW representation in line with the TW representa-
tion for Bose-Hubbard-style systems in terms of performance.
However, as an additional advantage, the semiclassical nature
of the approximation makes the NPW representation work
significantly better in the superfluid regime than anticipated.
In fact, as shown before, the NPW is exact only when coupling
is present.

IV. MULTIMODE SYSTEM

In Sec. II, we demonstrated the accuracy and advantage
of the NPW representation for conditional quantum systems,
and in Sec. III, we devised a method of handling linear-
coupling terms in multimode quantum systems. We saw that
the NPW method produced simulations for the conditional
system that were stable for orders of magnitude longer than
any competing method but that convergence for the multimode
Bose-Hubbard model was only a minor improvement over a
carefully applied approximate TW method, except in extreme
parameter limits. This difference is very straightforward to
understand. For extremely large or small nonlinearities, the
dynamics of the Bose-Hubbard model are simple and easily are
expressed in terms of number and phase parameters (or indeed,
coherent states for the low-nonlinearity limit). For intermediate
parameter regimes, neither Gaussian nor NP states are an
appropriate basis for the system, and the stochastic methods
do not exhibit long-term convergence to the full-field result.

Continuous measurement of numberlike observables has a
strong effect on the conditional state of a quantum system,
however, and it might be hoped that the conditional dynamics
of a multimode quantum system might have different prop-
erties. Different modes undergoing number measurement do
not necessarily collapse to number states if they also are being
coupled through the Hamiltonian, so it is not clear a priori
whether simulations of continuously measured systems are
tractable. In this section, we demonstrate that the NPW method
can, in fact, produce highly stable simulations of a multimode
conditional quantum system. More specifically, we simulate a
BEC undergoing a position measurement while being cooled
as close to the ground state using active feedback to the
trapping potential. This system has been of theoretical interest
and has the potential for experimental demonstration [12–15].
It is governed by the following master equation:

dρ̂ = (−i[Ĥ ,ρ̂] + γD[X̂]ρ̂ + γ C[X̂]ρ̂)dt

+√
γH[X̂]ρ̂ ◦ dW. (31)

This is a special case of Eq. (1) in Stratonovich form,
where ◦dW is a Stratonovich-Wiener increment; X̂ =∫

dx ψ̂†(x)xψ̂(x) is the observable for a position measure-
ment on a many-body system; the Hamiltonian for the
trap is Ĥ = ∫

dx ψ̂†(x)H (x)ψ̂(x) with H (x) = ω
2 (−∇2

x +
x2 + ux〈P̂ 〉/〈N̂〉) where P̂ = ∫

dx ψ̂†(x)(−i∇x)ψ̂(x) is a
momentum for a many-body system, N̂ = ∫

dx ψ̂†(x)ψ̂(x)
is the total number, and u = 1 is the feedback parameter
that controls the dampening we use to cool the system. This
control was considered for a BEC without measurement in
Ref. [49] under a mean-field approximation; it also has been
solved optimally for a single-particle model in Ref. [12] with
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simulations performed later in Ref. [13]. We now demonstrate
a full-field simulation of this control.

An analytic solution or a direct integration of Eq. (31) is
not possible, so we can only compare the evolution using
the stochastic methods with approximate solutions. In the
absence of interparticle interactions, the Hamiltonian and
measurement are insensitive to the number statistics on the
BEC, so we may expect the Hartree-Fock approximation to be
appropriate [15]. The Hartree-Fock evolution can be integrated
for long times, so although it requires stronger approximations,
it can be used as a sanity check for simulations using the
stochastic techniques. Including the traditional nonlinear terms
in the Hamiltonian would be trivial for the NPW method,
adding purely deterministic terms. We do not do this for the
purposes of our demonstration because it would likely cause
difficulties for our comparison methods. The Hartree-Fock
approximation would be weaker in that regime and may
converge to an incorrect result, and strong nonlinearities can
prevent traditional stochastic methods from converging at all.

Therefore, this simulation is a worst-case scenario for testing
the NPW technique.

The Hartree-Fock approximation for the evolution (31) can
be applied to the master equation (33) using the techniques
analyzed in Ref. [15]. This gives the following stochastic
partial-differential equation (SPDE):

dαH (x) = {[−iH (x) − γ (x2 − 2xX1EH [X1])]dt

+√
γ x ◦ dW }αH (x), (32)

where N = ∫
dx|αH (x)|2 is the norm. This is the un-

normalized evolution of the Hartree-Fock wave equa-
tion. Observables are calculated using EH [f (x)] =∫

dx α∗
H (x)f (x)αH (x)/N . To improve efficiency of simula-

tions, it must be normalized at each time step.
The first full-field simulation method we consider uses

the TW representation. Using the techniques described in
Refs. [18,19], we find the master equation (31) gives the
following evolution for the functional Wigner distribution:

dW[α] =
[∫

dx{i ∂α(x)H (x) − i ∂α∗(x)H (x) + γ x ∂α∗(x)∂α(x) (X1 − EW [X1])} + γ

∫
dx

∫
dy xy

×
(

−1

2
∂α(x)∂α(y)α(x)α(y) + ∂α∗(x)∂α(y)α

∗(x)α(y) − 1

2
∂α∗(x)∂α∗(y)α

∗(x)α∗(y) − 1

8
∂α∗(x)∂α∗(y)∂α(x)∂α(y)

)

+ 2γ
{−X2

1 + EW
[
X2

1

]+ 2(X1 − EW [X1])EW [X1]
} ]

dt +
(

−1

2

∫
dx x ∂α∗(x)∂α(x) + 2 (X1 − EW [X1])

)
◦ dW,

(33)

where EQ[f [α]] = ∫
dμ(α)f [α]Q[α] is our notation for integrating functional quasiprobability distributions Q over the

functional measure dμ(α) [24] and X1 = ∫
dx x|α(x)|2 is the position moment. As in Sec. II, even after truncation, we are

left with non-positive-semi-definite diffusion, and so, proceeding further would require a doubling of the phase space in a similar
sense to the positive-P representation, and we will not pursue this approach.

Next, we consider the evolution of the positive-P representation. Once again, the master equation (31) can be unravelled using
techniques from Refs. [18,19] to give the following evolution for the functional P distribution:

dP[α] =
[(∫

dx ∂α(x){iH (x) + γ [x2 − 4x(X1 + EP [X1])]}α(x) + ∂α∗(x){−iH (x) + γ [x2 − 4x(X1 + EP [X1])]}α∗(x)

+ γ

∫
dx

∫
dy xy[∂α∗(x) ∂α(y)α

∗(x)α(y)] + 2γ
{
2(X1 − EP [X1])EP [X1] − (

X2 + X2
1 − EP

[
X2 + X2

1

])})
dt

+√
γ

(
−
∫

dx x[∂α(x)α(x) + ∂α∗(x)α
∗(x)] + 2(X1 − EP [X1])

)
◦ dW

]
P[α], (34)

where X2 = ∫
dx x2|α(x)|2. Equation (34) has non-positive-

semi-definite diffusion and, as such, requires a doubling of
the phase space. We, therefore, convert this evolution into the
following set of SPDEs:

dαp(x) = {−i[H (x) + √
γ x ◦ (dV1 + dV2)]

+ √
γ ◦ dW − 2γ x(X1 − Ef [X1])dt}αp(x),

dα+
p (x) = {i[H (x) + √

γ x ◦ (dV1 − dV2)]

+ √
γ ◦ dW − 2γ x(X1 − Ef [X1])dt}α+

p (x)

dωp = {−2γ
(
X2 + X2

1 − 2X1Ef [X1]
)
dt

+ 2
√

γX1 ◦ dW
}
ωp. (35)

The numerical solution of these equations is plotted in
parts (b,i) and (b,ii) of Fig. 4 for a value of γ /ω = 0.01. The
doubling of the phase space makes the solution unstable, and
they cannot be integrated past a thousandth of a trap period.
The integration is stable in the limit of weak measurement, as
demonstrated in Ref. [32] where the measurement strength was
6 orders of magnitude weaker. Realistic experiments typically
require information to be acquired at a much faster rate, but
these more realistic measurement strengths are not accessible
with the positive-P representation methods.

We finally consider the full-field technique based on the
NPW. All terms other than the kinetic-energy term can be
simulated exactly, and the kinetic-energy term is approximated
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FIG. 4. (Color online) Comparison of the NPW (upper plots) and the positive-P representation (lower plots) methods for simulating a
one-dimensional BEC undergoing continuous position measurement and feedback. All simulations use a value of γ /ω = 0.01, N = 104, and
an initial state of an offset Gaussian. The left-hand plots show the mean energy as a function of time for the stochastic simulations using the
NPW [red circle in (a,i)] and the positive-P representations [blue squares in (b,i)]; both have a 2σ confidence interval plotted with dashed lines.
The results for the numerical integration under the Hartree-Fock approximation are shown in both plots for comparison (purple stars, line). The
positive-P representation results diverge after t ≈ 10−3 and are not plotted beyond this point. Plots (a,ii) and (b,ii) show, on a logarithmic scale,
the difference between the stochastic result and the Hartree-Fock solution (solid black lines) and uncertainties in the stochastic result (dashed
black line), corresponding to plots (a,i) and (b,i), respectively. The NPW simulation converges for at least 4 orders of magnitude longer than
the positive-P representation.

as described in Sec. III A. The physical justification of the
approximation is essentially the same as we find that the
accuracy of the sampling increases with the total number N

of the BEC. Special considerations need to be taken when
sampling a BEC as opposed to a single mode, and these are
discussed at the end of Appendix A. Using the results from
Sec. III and the techniques in Ref. [29], we find the master
equation (33) gives the following functional NPW distribution
evolution:

dN [α] =
[(∫

dx i ∂α(x)H (x)α(x) − i ∂α∗(x)H (x)α∗(x)

− 2γ
{
X2

1 − EN
[
X2

1

]
− 2(X1 − EN [X1])EN [X1]

})
dt

+ 2
√

γ (X1 − EN [X1]) ◦ dW

]
N [α]. (36)

This is a valid FPE. Comparing to Eq. (33) or Eq. (34),
we note that the form is much simpler and does not require a
doubling of the phase space. We have performed a truncation
in a similar sense to a traditional Wigner representation, which
is valid in the large N limit. It is important to note this equation
is now in Kushner-Stratonovich form [50,51], which is key to
the comparative stability of the NPW method. We can unravel
Eq. (36) into the following set of SPDEs:

dαn(x) = −iH (x)αn(x),

dωn = {−2γ (X2
1 − 2X1Ef [X1])dt + 2

√
γX1 ◦ dW }ωn.

(37)

These equations were simulated and were plotted in parts
(a,i) and (a,ii) of Fig. 4, which showed the energy as a
function of time, and the difference between the Hartree-Fock
approximate solution and the NPW technique, respectively.
Part (a,ii) also shows the statistical uncertainty in the NPW
solution, which is a sign of the convergence of the method.
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Parameters used were N = 104 and γ = 0.01ω. We can see
that the NPW representation converges indefinitely and is
shown to be consistent with the Hartree-Fock solution over
a time scale at least 4 orders of magnitude larger than that of
the the positive-P representation solution.

V. CONCLUSIONS

The paper showed that the NPW-based simulations were
dramatically better than the simulations based on coherent-
state representations for the conditional master equation (2),
which described a system under a constant measurement of
the form allowed in atom-optical systems. It also described
approximations for simulating linear-coupling terms in multi-
mode systems and showed that the NPW method was better
than or equal to carefully adjusted TW methods for the
two-mode Bose-Hubbard model. It then was shown that the
NPW method can be applied successfully to produce a full
quantum-field simulation of a multimode atom-optical system
undergoing continuous measurement and feedback. The sim-
ulations were stable enough to consider long-term behavior
of systems and to model the effects of feedback strategies. In
particular, the method represented the only available option to
model multimode experiments where approximations, such as
Hartree-Fock or mean field fail. This high level of convergence
can be explained by the suitability of the basis underlying the
representation to the measurement eigenstates. Importantly,
due to practical difficulties in producing stable atomic local
oscillators, any current detection scheme used in quantum
gases was of a form that was suited to the NPW method.
The NPW method described in this paper was also the
only simulation tool that was deterministic for the strong
number-conserving nonlinearities that were present in such
systems and, therefore, was the only suitable candidate for
simulating conditional states of ultra-cold-atomic gases for
feedback or state estimation.
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APPENDIX A: SAMPLING OF A COHERENT STATE
IN THE NPW METHOD

We approximate the distribution for a coherent state in the
NPW representation to make it strictly positive by taking the
large n limit. This ensures that the sampling of coherent states
with the NPW method is scalable. To begin, we examine
the original distribution of a coherent state in the NPW
representation. By considering a coherent state with amplitude
α0 = √

n0e
iφ0 , using the correspondences given in Ref. [29],

we get the following:

Nα0 (n,φ) = 1

2π

n∑
k=−n

nn
0e

2ik(φ−φ0)−n0

√
(n − k)!(n + k)!

, (A1)

where we should note n can take half-integer values n =
0, 1

2 ,1, 3
2 , . . . . This function not only turns negative for certain

values of n and φ, but also is in a form that is difficult to
sample efficiently. We want to both restore positivity and
convert it to a form that can be sampled efficiently. We begin
by approximating the square-root factorial expression using a
Taylor expansion about k = 0,

− ln[
√

(n − k)!(n + k)!] = − ln(n!) − 1

2
ψ (1)(n + 1)k2

+O(k4), (A2)

where ψ (1)(n + 1) is the trigamma function. Truncating the
k4 order and above, which is valid in the large n limit, we
find

Nα0 (n,φ) = nn
0e

−n0

n!

1

2π

∞∑
k=−∞

× exp

[
1

2
ψ (1)(n + 1)k2 + 2ik(φ − ψ)

]
, (A3)

where we also have taken the sum limits to infinity as the
Gaussian function is approximately zero for k large. This is a
Fourier series, which we can evaluate analytically and reduces
our expression to

Nα0 (n,φ) = nn
0e

−n0

n!

⎛
⎝ exp

[−2(φ−φ0)2

ψ (1)(n+1)

]
√

2πψ (1)(n + 1)
+

(−1)2n exp
{−2[φ−(φ0+π)]2

ψ (1)(n+1)

}
√

2πψ (1)(n + 1)

⎞
⎠ . (A4)

We now have a manageable analytic expression for the NPW distribution. But we still have negativity present. Specif-
ically, the negativity occurs when n is a half integer. As we performed in Sec. III A where we considered the large
n limit and approximated n + 1

2 ≈ n, we can sum the integer and half-integer terms together to get the following
expression:

Nα0 (n,φ) =
nn

0 exp
(− n0 + −2(φ−φ0)2

ψ (1)(n+1)

)√
2

n!
√

πψ (1)(n + 1)
, (A5)
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where n is now an integer. We could have taken n to the
continuum limit at an earlier stage, but by retaining the integer
aspect of n for the sampling stage, we are performing a weaker
approximation and can reproduce the results presented in
Ref. [29]. Now, the distribution strictly is positive, allowing
for scalable sampling. The coherent state appears in the
analysis of many quantum systems making this result crucial
for the success of the NPW representation. We also note the
distribution is in a convenient analytic form. Algorithmically,
in order to sample this distribution, first sample a Poisson
distribution with mean n0 to give a stochastic variable for n.
Then, sample a Gaussian variable with mean φ0 and variance
1
4ψ (1)(n + 1) to get the stochastic variable for φ.

This result is particularly useful when sampling BEC states,
which typically are expressible as a product of coherent states
that have an arbitrary total phase. The wave function of a BEC
is normally in a basis that has a small amplitude in some of the
modes. Initially, it may seem that this would break the large n

limit requirement. However, we found that this approximation
works well for most BEC distributions with a total number as
small as 1000. This was contingent on a minor modification
to the algorithm already proposed. To begin, sample a Poisson
distribution with mean n0 to give a stochastic variable for
n. If n = 0, a special case occurs where φ is sampled from a
uniform distribution over the interval [0,2π ). If n = 0, then the
algorithm continues per usual, and φ is sampled by a Gaussian
variable with mean φ0 and variance 1

4ψ (1)(n + 1).
The need for this special case can be understood as follows.

The approximations we use becomes less accurate for small
n; this only becomes a serious consideration for the n = 0
case. Physically, the n = 0 case is a sample of a vacuum state.
However, we note that Nα0 (0,φ) is not a uniform distribution.
This is a contradiction as the vacuum must not have any phase
information. Thus, when n = 0, a uniform distribution is used
instead. Also, sampling n = 1 would not necessarily be exact,
but in practice, it is sufficient to only treat n = 0 as a special
case.

APPENDIX B: DERIVATION OF THE MULTIMODE FPE

In this section, our aim is to complete the steps necessary
to find the conditional FPE for the NPW representation
derived from the master equation (31). The nonlinearity,
decoherence, and conditioning terms in the master equation
are all immediately in Fokker-Planck form when using the
NPW. Thus, we primarily are concerned with the Hamiltonian,
which produces terms that must be approximated. We have
commented on the physical validity of the approximations in
Sec. III. This extension to the multimode case is simply the
application of those approximations for arbitrary numbers of
modes, and we present it for completeness.

To begin, we consider the Hamiltonian term from the master
equation (31),

∂t ρ̂ = −i

[∫
dx ψ̂†(x)H (x)ψ̂(x),ρ̂

]
. (B1)

We convert it into a countably infinite basis such
that

∫
dx ψ̂†(x)H (x)ψ̂(x) = ∑

ij â
†
i Hij âj , where ψ̂(x) =∑

i ui(x)âi and ui(x) is a square-integrable orthonormal set
of basis functions and Hij are the coefficients of a Hermitian
matrix. The Hamiltonian evolution can now be written as

∂t ρ̂ = −i

[∑
i

Hii â
†
i âi +

∑
i<j

(Hij â
†
i âj + H ∗

ij â
†
j âi),ρ̂

]
.

(B2)

In this more illuminating form, we can see, from the work in
Sec. III A, that this produces the following conditional Fokker-
Planck evolution using the NPW representation:

∂tN [n,φ] =
[∑

i

∂φi
Hii +

∑
i<j

(
2i(∂nj

− ∂ni
)

×
√(

ni + 1

2

)(
nj + 1

2

)

× (H ∗
ij e

−i(φj −φi ) − Hije
i(φj −φi ))

+ 1

2

⎛
⎝∂φi

√
nj + 1

2√
ni + 1

2

+ ∂φj

√
ni + 1

2√
nj + 1

2

⎞
⎠

× (Hij e
i(φj −φi ) + H ∗

ij e
−i(φj −φi ))

)]
×N [n,φ]. (B3)

We can apply a similar transformation that was used to produce
Eq. (20), and we can let αk ≈√

nk + 1
2 eiφk . This changes the

conditional FPE to

∂tN [n,φ] =
⎛
⎝∑

i,j

i ∂αi
Hijαj − i ∂α∗

i
H ∗

ij α
∗
j

⎞
⎠N [n,φ].

(B4)

We can transform this back into the position basis to give

dN [n,φ] = [i ∂α(x)H (x)α(x) − i ∂α∗(x)H (x)α∗(x)]N [n,φ],

(B5)

where α(x) = ∑
i ui(x)αi . Equation (B5) is now in Fokker-

Planck form. The decoherence and conditioning terms are all
straightforward and do not require any approximation. Using
this result, we immediately can derive the result presented in
Eq. (33).
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