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Half-quantum vortex state in a spin-orbit-coupled Bose-Einstein condensate
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We theoretically investigate the condensate state and collective excitations of a two-component Bose gas in a
two-dimensional harmonic trap subject to isotropic Rashba spin-orbit coupling. In the weakly interacting regime
when the interspecies interaction is larger than the intraspecies interaction (g↑↓ > g), we find that the condensate
ground state has a half-quantum angular momentum vortex configuration with spatial rotational symmetry and
skyrmion-type spin texture. Upon increasing the interatomic interaction beyond a threshold gc, the ground state
starts to involve higher-order angular momentum components and thus breaks rotational symmetry. In the case of
g↑↓ < g, the condensate becomes unstable toward the superposition of two degenerate half-quantum vortex states.
Both instabilities (at g > gc and g↑↓ < g) can be determined by solving the Bogoliubov equations for collective
density oscillations of the half-quantum vortex state and by analyzing the softening of mode frequencies. We
obtain the phase diagram as a function of the interatomic interactions and the spin-orbit coupling. In addition,
we directly simulate the time-dependent Gross-Pitaevskii equation to examine the dynamical properties of the
system. Finally, we investigate the stability of the half-quantum vortex state against both trap anisotropy and
anisotropy in the spin-orbit coupling.
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I. INTRODUCTION

Owing to unprecedented control of interatomic interaction,
geometry, and purity, atomic quantum gases have proven to
be an ideal platform for exploring fundamental many-body
quantum states, such as Bose-Einstein condensates (BECs) [1],
strongly interacting unitary Fermi superfluids [2,3], and Mott-
insulating states [4]. One of the latest achievements concerns
spin-orbit (SO) coupling in an ultracold spinor Bose gas of
87Rb atoms [5], induced by so-called “synthetic non-Abelian
gauge fields.” Novel quantum states may be anticipated in the
presence of SO coupling [6–19]. Indeed, for a homogeneous
SO-coupled spin-1/2 Bose gas with intra- and interspecies
interactions (g and g↑↓), a single plane-wave or a density-stripe
condensate state has been predicted [8], depending on whether
g is larger or smaller than g↑↓ . Interesting density patterns have
been observed in the theoretical simulations for an SO-coupled
spinor condensate, in the absence [8,12,13,18,19] or presence
[15–17] of rotation. The phenomenon of self-trapped BECs has
been proposed in one-dimensional (1D) geometries [7]. The
critical temperature of SO coupled Bose gases in harmonic
traps has also been studied [20].

In this work, we show that, in a Rashba SO-coupled, weakly
interacting spin-1/2 Bose gas in a two-dimensional (2D)
harmonic trap, all bosons may condense into a nontrivial half-
integer angular momentum state (or a half-quantum vortex
state) with a skyrmion-type spin texture. Our study is motivated
by the real experiment, where a harmonic trap is necessary to
prevent the atoms from escaping. We solve the mean-field
Gross-Pitaevskii equation (GPE) for the density distributions
and spin textures and obtain the collective excitation spectrum
by solving the Bogoliubov equation and also by directly
simulating the real-time propagation of the GPE ground state
under perturbations. The condensation of an SO-coupled spin-
1/2 Bose gas into a half-quantum vortex configuration was
first suggested by Congjun Wu and coworkers in 2008, and its

existence was discussed under the condition that the interaction
is SU(2) symmetric (i.e., g = g↑↓ [14]). Here, we explore
systematically the parameter space for the half-quantum vortex
state and analyze its stability. We present a phase diagram for
the half-quantum vortex state as a function of the SO coupling
and the interatomic interaction strengths. We also investigate
the dynamical properties of the half-quantum vortex state by
directly simulating the corresponding time-dependent GPE.
Finally, the stability of the half-quantum vortex state against
both trap anisotropy and anisotropy in the spin-orbit-coupling
term is examined.

Our main results are summarized in Fig. 1. The half-
quantum vortex state (the phase I) is the ground state if
the intraspecies interaction is smaller than the interspecies
interaction (g < g↑↓) and if the interaction strength is below
a threshold (g < g

c
), where gc depends on the ratio of

g↑↓/g. Otherwise, it becomes energetically unstable toward
a superposition state of two degenerate half-quantum vortex
states (phase II A), or a state involving higher-order angular
momentum components (phase II B). With decreasing dimen-
sionless SO-coupling strength λSO, the threshold g

c
becomes

exponentially large, leading to a large parameter space for
the half-quantum vortex state (see Fig. 14). It is therefore
feasible to observe this in current experiments with ultracold
SO-coupled spinor Bose gases of 87Rb atoms.

The rest of the paper is organized as follows: In the
next section, we outline the model Hamiltonian and discuss
briefly the existence of a half-quantum vortex state in the
noninteracting limit. In Sec. III, we present the numerical
procedure of solving the GPE and Bogoliubov equations and
discuss the typical density distributions and collective mode
behavior of the half-quantum vortex state. The collective
excitation spectrum obtained from the Bogoliubov equation
is compared to a direct simulation of the time-dependent
GPE. In Sec. IV, we analyze the stability of the half-quantum
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(a) 
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FIG. 1. (Color online) Phase diagram at two dimensionless SO
coupling strengths, λSO = 1 (a) and λSO = 4 (b). The half-quantum
vortex state (phase I) becomes unstable when the intraspecies
interaction is larger than the interspecies interaction (g > g↑↓ , phase
II A) or when the interatomic interactions are sufficiently strong
(g > gc, phase II B). The insets show the density patterns of spin-up
and spin-down bosons in phases I and II A. We note that the critical
interaction strength gc increases rapidly with decreasing SO-coupling
strength λSO.

vortex state by monitoring the softening of collective mode
frequencies and by comparing the energy with that of some
competing states. The phase diagram is then constructed as
a function of interatomic interactions and SO coupling. The
stability against anisotropy in the trapping potential and in the
spin-orbit coupling term is also carefully examined. Finally, in
Sec. V we summarize and give concluding remarks.

II. THEORETICAL FRAMEWORK

We consider a two-component Bose gas confined by a 2D
isotropic harmonic trap potential V (ρ) = Mω2

⊥(x2 + y2)/2 =
Mω2

⊥ρ2/2 with a Rashba SO coupling VSO = −iλR(σ̂x∂y −
σ̂y∂x), where λR is the Rashba SO coupling strength and σ̂x ,

σ̂y , and σ̂z are the 2 × 2 Pauli matrices. The model Hamiltonian
H = ∫

dr[H0 + Hint] is given by

H0 = �†
[
−h̄2∇2

2M
+ V (ρ) + VSO − μ

]
�, (1)

Hint = (g/2)
∑

σ=↑,↓
�†

σ�†
σ�σ�σ+g↑↓�

†
↑�↑�

†
↓�↓, (2)

where r = (x,y) and � = [�↑(r),�↓(r)]T denotes the spinor
Bose field operators. The chemical potential μ is to be
determined by the total number of bosons N (i.e.,

∫
dr�†� =

N ). For simplicity, we have assumed equal intraspecies
interaction strength, so that g↑↑ = g↓↓ = g. In experiments,
the two-dimensional geometry can be realized by imposing a
strong harmonic potential V (z) = Mω2

zz
2/2 along the axial

direction in such a way so that μ, kBT � h̄ωz [21]. For
the realistic case of 87Rb atoms, the interaction strengths
can be calculated from the two s-wave scattering lengths
a � 100aB and a↑↓, using g = √

8π (h̄2/M)(a/az) and g↑↓ =√
8π (h̄2/M)(a↑↓/az), respectively. Here az = √

h̄/(Mωz) is
the characteristic oscillator length in the z direction. Note
that here we consider a weakly interacting regime with az 	
a, a↑↓. In the strongly interacting regime where az ∼ a, a↑↓,
one needs to include the confinement-induced resonance in the
calculation of 2D interaction parameters g and g↑↓ [22]. Note
also that, in the recent experiment reported by the Spielman
group, a spinor (spin-1) Bose gas of 87Rb atoms with F = 1
ground electronic manifold is used. However, to create SO
coupling, two internal “spin” states have been selected from
the F = 1 manifold and have been labeled as pseudo-spin-up
and pseudo-spin-down [5]. This gives an effective spin-1/2
Bose gas.

A. Gross-Pitaevskii equation and Bogoliubov equations

For a weakly interacting Bose gas at zero temperature, we
assume that all the bosons condense into a single quantum
state 	(r) =[	↑(r),	↓(r)]T . Following the standard mean–
field theory approach [23], we separate the field operator into
a condensate and a fluctuation part, �σ (r) =	σ (r)+�̃σ (r).
Keeping up to quadratic terms in �̃σ (r), this separation leads
to an approximate Hamiltonian H = ∫

dr[HGP + HT ], where
the condensate part is given by

HGP = 	†[Hosc + VSO − μ]	

+ g

2
(|	↑|4 + |	↓|4) + g↑↓|	↑	↓|2, (3)

and the fluctuation part is HT = �̃†HBog�̃, where

HBog =

⎡
⎢⎢⎢⎢⎢⎣

Hs↑ + g|	↑|2 Vso + g↑↓	↑	∗
↓ g	2

↑ g↑↓	↑	↓

V
†

so + g↑↓	∗
↑	↓ Hs↓ + g|	↓|2 g↑↓	↑	↓ g	2

↓

g(	∗
↑)2 g↑↓	∗

↑	∗
↓ Hs↑ + g|	↑|2 −V

†
so + g↑↓	∗

↑	↓
g↑↓	∗

↑	∗
↓ g(	∗

↓)2 −Vso + g↑↓	↑	∗
↓ Hs↓ + g|	↓|2

⎤
⎥⎥⎥⎥⎥⎦ . (4)
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Here, Hosc≡ − h̄2∇2/(2M) + V (ρ), Hs↑≡Hosc + g‖	↑‖2 +
g↑↓‖	↓‖2 − μ, Hs↓ ≡ Hosc + g↑↓‖	↑‖2 + g‖	↓‖2 − μ,

Vso ≡ −iλR(∂y + i∂x), and V
†

so ≡ −iλR(∂y − i∂x), and we
have introduced a 4 × 4 Nambu spinor �̃ =
[�̃↑(r),�̃↓(r),�̃†

↑(r),�̃†
↓(r)]T .

The condensate wave function can be obtained from the GP
equations δHGP/δ	(r) = 0 [23] or, explicitly,

[
Hs↑ −iλR(∂y + i∂x)

−iλR(∂y − i∂x) Hs↓

] [
	↑ (r)
	↓ (r)

]
= 0. (5)

At zero temperature, we assume a single condensate state with
zero quantum depletion, so that the condensate wave function
is normalized by

∫
dr[‖	↑‖2 + ‖	↓‖2] = N , where N is the

total number of bosons. The equation is simplified if we write
	↑ = N1/2φ↑ and 	↓ = N1/2φ↓ and use corresponding inter-
action strengths g(N − 1) and g↑↓(N − 1). The normalization
condition becomes

∫
dr [‖φ↑‖2 + ‖φ↓‖2] = 1.

The quasiparticle wave functions with energy h̄ω satisfy
the Bogoliubov equations [23],

HBog

⎡
⎢⎢⎣

u↑ (r)
u↓ (r)
v↑ (r)
v↓ (r)

⎤
⎥⎥⎦ = h̄ω

⎡
⎢⎢⎣

+u↑ (r)
+u↓ (r)
−v↑ (r)
−v↓ (r)

⎤
⎥⎥⎦ , (6)

and are normalized by
∫

dr[‖u↑‖2 + ‖u↓‖2 − ‖v↑‖2 −
‖v↓‖2] = 1. These Bogoliubov quasiparticles correspond to
collective density oscillation modes around the condensate
with frequency ω [24]. It is easy to see that the wave function
[v∗

↑(r),v∗
↓(r),u∗

↑(r),u∗
↓(r)]T is also a solution of Eq. (6), but

with energy −h̄ω. This is an unphysical solution, due to
the Bogoliubov transformation which enlarges the Hilbert
space for quasiparticles. Physically, we should restrict it to a
nonnegative mode frequency, ω � 0. For the fermionic Bogoli-
ubov transformation, we have exactly the same situation. The
fermionic Bogoliubov equation has the same “particle-hole”
symmetry or duality [25]. In that case, one needs to remove
the particle-hole redundancy by multiplying a factor of 1/2 in
the calculation of the physical quantities such as density and
order parameter [25].

In harmonic traps, it is natural to use trap units; that
is, to take h̄ω⊥ as the unit for energy and the harmonic
oscillator length a⊥ = √

h̄/(Mω⊥) as the unit for length. This
is equivalent to setting h̄ = kB = M = ω⊥ = 1. The unit of
interaction strength g(N − 1) or g↑↓(N − 1) is then h̄ω⊥a2

⊥ =
h̄2/M . For SO coupling, we introduce an SO coupling length
aλ = h̄2/(MλR) and consequently define a dimensionless SO
coupling strength λSO = a⊥/aλ =

√
(M/h̄3)λR/

√
ω⊥. In an

SO-coupled spin-1/2 BEC of 87Rb atoms as realized recently
by the NIST group [5], λSO is about 10. In the typical
experiment for 2D spin-1/2 87Rb BECs [21], the interatomic
interaction strengths are about g(N − 1) ≈ g↑↓(N − 1) =
102 ∼ 103(h̄ω⊥a2

⊥). These coupling strengths, however, can
be tuned by changing the number of trapped atoms or by
properly choosing the parameters of the laser fields that lead
to the harmonic confinement and the SO coupling.

B. Single-particle solutions

The appearance of the half-quantum vortex state may be
easily understood in the noninteracting limit [14]. In the
absence of interatomic interactions, the single-particle wave
function [φ↑(r),φ↓(r)]T with energy ε is given by[

Hosc −iλR(∂y + i∂x)

−iλR(∂y − i∂x) Hosc

] [
φ↑
φ↓

]
= ε

[
φ↑
φ↓

]
.

(7)

In polar coordinates (ρ,ϕ), we have −i(∂y ± i∂x) =
e∓iϕ[±∂/∂ρ − (i/ρ)∂/∂ϕ]. Because of the isotropic harmonic
potential V (ρ), the single-particle wave function has a well-
defined azimuthal angular momentum lz = m and takes the
form

φm(r) =
[

φ↑(ρ)

φ↓(ρ)eiϕ

]
eimϕ

√
2π

. (8)

This state also has a well-defined total angular momentum
jz = lz + sz = m + 1/2. In general, we may denote the energy
spectrum as εnm, where n = (0,1,2, . . .) is the quantum num-
ber for the transverse (radial) direction. There is an interesting
twofold degeneracy of the energy spectrum: any eigenstate
φ(r) = [φ↑(r),φ↓(r)]T is degenerate with its time-reversal
partner T φ(r) ≡ (iσyC)φ(r) = [φ∗

↓(r), − φ∗
↑(r)]T . Here C is

the complex conjugate operation. This Kramer doublet is the
direct consequence of the time-reversal symmetry satisfied
by the model Hamiltonian. This symmetry is preserved in
the presence of interatomic interactions. As a result, we may
restrict the quantum numbers m to be non-negative integers,
since a negative m can always be regarded as the time-reversal
partner for a state with m � 0.

To numerically solve the single-particle spectrum, we adopt
a basis-expansion method. To this end, we first expand,

φ↑(ρ) =
∑

k

AkRkm(ρ), (9)

φ↓(ρ) =
∑

k

BkRkm+1(ρ), (10)

where

Rkm = 1

a⊥

√
2k!

(k + |m|)!
(

ρ

a⊥

)|m|
e
− ρ2

2a2⊥ L|m|
k

(
ρ2

a2
⊥

)
(11)

is the radial wave function of a 2D harmonic oscillator Hosc

with energy (2k + ‖m‖ + 1)h̄ω⊥, and L‖m‖
k is the associated

Legendre polynomial. Then we have the following secular
matrix: [Hosc↑ MT

M Hosc↓

] [
Ak

Bk

]
= ε

[
Ak

Bk

]
, (12)

where the matrix elements are given by (for m � 0)

Hosc↑,kk′ = h̄ω⊥[2k + m + 1]δkk′,

Hosc↓,kk′ = h̄ω⊥[2k + (m + 1) + 1]δkk′,

Mkk′ = h̄ω⊥λSO[
√

k′ + m + 1δkk′ +
√

k′δkk′−1].

Diagonalization of the secular matrix Eq. (12) leads to the
single-particle spectrum and single-particle wave functions.
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(a) 

(b) (c) 

FIG. 2. (Color online) (a) Single-particle energy spectrum at
λSO = 1. (b) Density profiles for the single-particle state with m = 0
at λSO = 1. (c) W -function for the m = 0 single-particle state as a
function of SO-coupling strength. It is always positive at arbitrary
SO-coupling strength.

In numerical calculations, it is necessary to impose a cutoff
kmax for the radial quantum number k of the 2D harmonic
oscillator. For λSO � 20, we find that kmax = 256 is sufficiently
large to have an accurate energy spectrum. With this cutoff,
the dimension of the secular matrix in Eq. (12) is 2kmax = 512.

In Fig. 2(a), we show the single-particle energy spectrum
at λSO = 1. For arbitrary SO-interaction strength, we find
numerically that the doublet single-particle ground state
always occurs at m = 0 (or m = −1 for its time-reversal
partner state).

C. Appearance of half-quantum vortex state

The single-particle state with m = 0, φ0(r) =
[φ↑(ρ),φ↓(ρ)eiϕ]T /

√
2π has a half-quantum vortex

configuration [14,26], because the spin-up component
stays in the s state while the spin-down component is
in the p state. The resulting spin texture is of skyrmion
type [see Fig. 2(b) for density distributions and Sec. III B
for more discussions on spin texture]. In the absence of
interactions, however, there is a degenerate time-reversed
state, T φ0(r) = [φ↓(ρ)e−iϕ,−φ↑(ρ)]T /

√
2π , which is also a

half-quantum vortex state. Therefore, in general, the ground
single-particle state is a superposition of two degenerate
half-quantum vortex states, φ0(r) and T φ0(r), which takes the
form φs(r) = αφ0(r) + βT φ0(r) or, explicitly,

φs(r) = 1√
2π

[
αφ↑(ρ) + βφ↓(ρ)e−iϕ

αφ↓(ρ)eiϕ − βφ↑(ρ)

]
. (13)

Here α and β are two arbitrary complex numbers satisfying
‖α‖2 + ‖β‖2 = 1.

In the presence of very weak interatomic interactions
such that g(N − 1),g↑↓(N − 1) � �εa2

⊥, where �ε is the
energy difference between the single-particle ground state
φ0(r) and the first-excited state φ1(r), we may determine the

superposition coefficients α and β by minimizing the GP
energy, EGP[φs(r)] = ∫

drHGP[φs(r)]. After simple algebra,
we find that

�E = EGP[φs(r)] − EGP[φ0(r)], (14)

= (g↑↓ − g)(N − 1)|αβ|2W [φ0(r)], (15)

where the W function is given by

W [φ(r)] =
∫

dr[(|φ↑|2 − |φ↓|2)2 − 2φ2
↑φ2

↓]. (16)

Therefore, a half-quantum vortex state is preferable if (g↑↓ −
g)W > 0. Otherwise, an equal-weight superposition of two
degenerate half-quantum vortex states with ‖α‖ = ‖β‖ =
1/

√
2 will be the ground state. As shown in Fig. 2(c), the

W function for φ0(r) is positive for arbitrary SO coupling.
We thus conclude that a half-quantum vortex state should
appear for weak interatomic interactions provided that the in-
terspecies interaction is larger than the intraspecies interaction
(g↑↓ > g).

III. DENSITY DISTRIBUTIONS
AND COLLECTIVE EXCITATIONS

Let us now consider finite interatomic interactions by
solving the GPE for density distributions and spin textures and
the Bogoliubov equation for the collective density excitations.

A. GPE solutions of half-quantum vortex state

For the half-quantum vortex condensate state with m = 0,
the GP equation becomes LGP[φ↑(ρ),φ↓(ρ)] = 0, where

LGP =
[
Hs,0 + ḡφ2

↑ + ḡ↑↓φ2
↓ λR(∂ρ + 1/ρ)

λR(−∂ρ) Hs,1 + ḡ↑↓φ2
↑ + ḡφ2

↓

]
.

(17)

Here, ḡ ≡ g(N − 1)/(2π ) and ḡ↑↓ ≡ g↑↓(N − 1)/(2π ), while
the single-particle Hamiltonian operator is

Hs,m ≡ − h̄2

2M

[
∂2

∂ρ2
+ 1

ρ

∂2

∂ρ2
∂ρ − m2

ρ2

]
+ V (ρ) − μ. (18)

The numerical procedure for solving the GPE is very similar
to that for single-particle states in Eq. (12). We expand
φ↑(ρ) = ∑

k AkRk0(ρ) and φ↓(ρ) = ∑
k BkRk1(ρ) and obtain

the secular matrix (with m = 0),[Hosc↑ + I↑ MT

M Hosc↓ + I↓

] [
Ak

Bk

]
= μ

[
Ak

Bk

]
, (19)

where

I↑,kk′ =
∫ ∞

0
ρdρRk0(ρ)(ḡφ2

↑ + ḡ↑↓φ2
↓)Rk′0(ρ), (20)

I↓,kk′ =
∫ ∞

0
ρdρRk1(ρ)(ḡ↑↓φ2

↑ + ḡφ2
↓)Rk′1(ρ). (21)

The chemical potential is given by the lowest eigenvalue of
the secular matrix. Due to the nonlinear terms I↑,kk′ and I↑,kk′ ,
we have to update the condensate wave functions and densities
iteratively. To overcome the large nonlinearity, we use a simple
mixing scheme by setting a small parameter 0 < γ < 1 and
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(a) (b) 

FIG. 3. (Color online) Density distributions at λSO = 1 and
g(N − 1) = 40(h̄ω⊥a2

⊥) (a) and at λSO = 4 and g(N − 1) = h̄ω⊥a2
⊥

(b). Here, the ratio g↑↓/g = 1.1.

replacing the previous density φ2
σ,old by (1 − γ )φ2

σ,old + γφ2
σ ,

where φ2
σ is the density calculated in the current step [27].

The choice of γ depends on the interaction strength. It
becomes smaller for larger ḡ and ḡ↑↓. We run this iteration
until convergence is achieved within a set tolerance. We
have checked that this procedure of solving the GPE is
stable for interaction strengths up to g(N − 1), g↑↓(N − 1) <

103(h̄ω⊥a2
⊥). For even larger nonlinearity, it seems to be

impractical to expand the condensate wave function using the
2D harmonic oscillator basis. Therefore, for large interaction
strengths, we use a time-splitting spectral method (TSSP) to
solve the coupled GP equations and obtain the ground state
by imaginary-time propagation [28,29]. For small interaction
strengths, results obtained from TSSP are identical to those
obtained from the basis-expansion method.

B. Density distributions and spin textures

In Fig. 3, we present the radial density distributions of
the half-quantum vortex condensate state at two SO-coupling
strengths: λSO = 1 and λSO = 4. The increased SO coupling
leads to more oscillations in the radial direction. By comparing
Fig. 3(a) with Fig. 2(b), one finds that the density distributions
are flattened significantly by interatomic interactions, as
anticipated. The 2D contour plot of the spin-up and spin-down
density patterns of the half-quantum vortex state is shown in
the inset of Fig. 1 (in phase I).

To gain more insight into the half-quantum vortex state, it
is useful to calculate the spin vector

S(r) = 1

2

	†σ	

|	|2 = 1

2
n(r) (22)

and the skyrmion density

nskyrmion(r) = 1

4π
n · [∂xn × ∂yn]. (23)

The skyrmion density is a measure of the winding of the spin
profile. If it integrates to 1 or −1, a topological knot exists in
the spin texture [30,31].

(a) (b) (c)〉 〉 〉〈 〈 〈

FIG. 4. (Color online) Contour plots of the three components
of the spin vector S(r) at λSO = 1, g(N − 1) = 40(h̄ω⊥a2

⊥), and
g↑↓/g = 1.1.

In Fig. 4, we graph the three components of the spin vector
at λSO = 1, g(N − 1) = 40(h̄ω⊥a2

⊥) and g↑↓/g = 1.1. The
transverse spin texture is shown in Figs. 5(a) and 5(b) by
arrows, with arrow length representing the magnitude of the
transverse spin vector (Sx,Sy) or (Sx,Sz). It is readily seen that
the spin vector spirals in space to form a skyrmion-type texture.
Quantitatively, this is most clearly illustrated in Figs. 5(c) and
5(d), where we plot the 2D contour and 1D radial distribution
of skyrmion density, respectively. The nonzero skyrmion
density oscillates between positive and negative. Moreover, the
skyrmion number 	 = ∫

nskyrmion(r)dr is quantized to +1. We
note that, for the time-reversal half-quantum vortex condensate
state with m = −1, the skyrmion number is −1.

C. Solutions of Bogoliubov equations

Given the wave function of the half-quantum vortex
state, [φ↑(ρ),φ↓(ρ)eiϕ]T /

√
2π , we now turn to consider its

collective excitations, as described by the coupled Bogoliubov
equations (6). As a result of rotational symmetry, it is easy
to see that the Bogoliubov wave functions have a good
azimuthal quantum number m and hence can be written as

(a) (c)

(d)
(b)

FIG. 5. (Color online) (a) and (b): Two-dimensional vector plot of
the transverse spin vector (Sx,Sy) and (Sx,Sz) at λSO = 1, g(N − 1) =
40(h̄ω⊥a2

⊥), and g↑↓/g = 1.1. The length of the arrows gives the
magnitude of (Sx,Sy) or (Sx,Sz). The corresponding skyrmion density
nskyrmion(r) is plotted in (c) and (d).
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[u↑(ρ),u↓(ρ)eiϕ,v↑(ρ),v↓(ρ)e−iϕ]T eimϕ/
√

2π . Therefore, we
have

HBog

⎡
⎢⎢⎣

u↑ (ρ)
u↓ (ρ)
v↑ (ρ)
v↓ (ρ)

⎤
⎥⎥⎦ = h̄ω

⎡
⎢⎢⎣

+u↑ (ρ)
+u↓ (ρ)
−v↑ (ρ)
−v↓ (ρ)

⎤
⎥⎥⎦ , (24)

where

HBog =
[Lm + U U
U L−m + U

]
, (25)

with

Lm =
[Hs,m + ḡφ2

↑ + ḡ↑↓φ2
↓ λR

[
∂ρ + (m + 1)/ρ

]
λR(−∂ρ + m/ρ) Hs,m+1 + ḡ↑↓φ2

↑ + ḡφ2
↓

]
,

(26)

and

U =
[

ḡφ2
↑ ḡ↑↓φ↑φ↓

ḡ↑↓φ↑φ↓ ḡφ2
↓

]
. (27)

To solve the Bogoliubov equation, as before we expand the
wave functions using a 2D harmonic oscillator basis,

u↑(ρ) =
∑

k

akRkm(ρ), (28)

u↓(ρ) =
∑

k

bkRkm+1(ρ), (29)

v↑(ρ) =
∑

k

ckRkm(ρ), (30)

v↓(ρ) =
∑

k

dkRkm−1(ρ). (31)

This leads to a secular matrix of HBog, whose elements can
be calculated directly using the 2D harmonic oscillator basis.
We note that, to obtain the Bogoliubov quasiparticles, we
cannot diagonalize the secular matrix directly, because of the
minus sign before v↑(ρ) and v↓(ρ) on the right-hand side
of Eq. (24). To remove the minus sign, we may multiply
a matrix Diag{+1,+1,−1,−1} on both sides of Eq. (24).
Therefore, we should diagonalize a nonsymmetric matrix
Diag{+1,+1,−1,−1}HBog and normalize the quasiparticle
wave functions according to∫ ∞

0
ρdρ[u2

↑ + u2
↓ − v2

↑ − v2
↓] = 1. (32)

The number of resulting eigenvalues is two times the
number that we want, since the Bogoliubov transformation
enlarges the Hilbert space for quasiparticles. As we mentioned
earlier, there are two branches of eigenvalues, one positive and
the other negative, as a result of the “particle-hole” duality
between the solution [u↑(r),u↓(r),v↑(r),v↓(r)]T (with energy
+h̄ω) and [v∗

↑(r),v∗
↓(r),u∗

↑(r),u∗
↓(r)]T (with energy −h̄ω).

We should take the positive branch, since the Bogoliubov
quasiparticle corresponds to the collective oscillation of the
cloud and should have the positive oscillation frequency. Note
that, because of the “particle-hole” duality, in our case with
rotational symmetry, the Bogoliubov quasiparticles at negative

azimuthal quantum number m may be obtained from the
negative energy branch of the solution with m > 0.

1. Breathing modes

In the case of the breathing mode (m = 0), where

HBog =
[LGP + U U
U LGP + U

]
, (33)

there is an alternative way to solve the Bogoliubov equa-
tion, following Hutchinson, Zaremba, and Griffin (HZG)
[32]. By denoting collectively u = [u↑(ρ),u↓(ρ)] and v =
[v↑(ρ),v↓(ρ)], we have

(LGP + 2U)(u + v) = h̄ω(u − v), (34)

LGP(u − v) = h̄ω(u + v). (35)

Let us now expand the wave functions u ± v in terms of
the eigenfunctions ψα of LGP with energy εα (i.e., LGPψα =
εαψα):

u − v =
∑
α �=0

cα

ε
1/2
α

ψα, (36)

u + v =
∑
α �=0

ε
1/2
α cα

h̄ω
ψα. (37)

Here, the lowest eigenstate of LGP with zero energy should
be removed, because it simply corresponds to the conden-
sate mode. It is easy to see that (LGP + 2U)LGP(u − v) =
(h̄ω)2(u − v) and LGP(LGP + 2U)(u + v) = (h̄ω)2(u + v). In-
serting the expansion of u − v or u + v, one finds the secular
equation∑

β

{
ε2
αδαβ + 2ε1/2

α Uαβε
1/2
β

}
cβ = (h̄ω)2cα, (38)

where

Uαβ =
∫ ∞

0
ρdρψ†

α(ρ)Uψβ(ρ). (39)

By diagonalizing the secular matrix, one obtains the mode
frequency ω and the coefficients cα . The latter should be
normalized as

∑
α c2

α = h̄ω, in accord with the normalization
condition for u and v.

We have numerically checked that the HZG solution leads
to exactly the same result as the direct diagonalization of
the nonsymmetric matrix Diag{+1,+1,−1,−1}HBog, if we
discard the zero-frequency condensate mode in the latter
method.

D. Collective excitations

In Fig. 6, we graph the breathing (m = 0) and the dipole
mode (m = ±1) frequencies as a function of the interaction
strength. With increasing interaction, the mode frequency de-
creases and appears to saturate at sufficiently large interactions.
This may be anticipated from the point of view of two-fluid
hydrodynamic behavior in the Thomas-Fermi regime. In Fig. 7,
we report the dependence of the mode frequencies on SO
coupling. In the absence of SO coupling, the breathing mode
with ω = 2ω⊥ and the dipole mode with ω = ω⊥ are the exact
solutions of quantum many-body systems in a harmonic trap.
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(a) (b) (c)

FIG. 6. (Color online) Mode frequency of breathing (m = 0) and
dipole (m = ±1) modes as a function of interaction strength at fixed
SO coupling λSO = 1 and at g↑↓ = 1.1g.

At a finite SO coupling we find that these two solutions are no
longer exact. The relative deviations of the breathing mode and
dipole mode at λSO = 1 are about 10% and 30%, respectively,
from the exact solution of ω = 2ω⊥ and ω = ω⊥ in the absence
of SO coupling.

In Fig. 8, we plot the Bogoliubov wave functions of
the lowest four breathing modes at λSO = 1, g(N − 1) =
40(h̄ω⊥a2

⊥), and g↑↓ = 1.1g. We find that the density response
is mainly carried by u↑(ρ) and u↓(ρ) components. With
increasing mode frequency, more nodes appear in u↑(ρ) and
u↓(ρ). In contrast, the response in v↑(ρ) and v↓(ρ) is relatively
weak, and the curve shape is nearly unchanged as the mode
frequency increases.

E. Dynamical Calculations

To investigate the dynamical properties of the system,
we have also performed direct numerical simulations of
the system by real-time propagation of the ground state
under perturbation. To do this, we first obtain the ground
state by solving the coupled GP equations in Eq. (3) using
the TSSP technique [33]. The half-quantum vortex ground
state is perturbed in various ways. We observe that the mode
frequencies obtained by dynamical simulation agree well with
those obtained by solving the Bogoliubov equations (shown in
Fig. 6).

Breathing mode analysis, m = 0. We excite the monopole
mode by weak relaxation of the trapping frequency at time

(a) (b) (c)

FIG. 7. (Color online) Mode frequency of breathing (m = 0)
and dipole (m = ±1) modes as a function of SO coupling at fixed
interaction strength g(N − 1) = 40(h̄ω⊥a2

⊥) and at g↑↓ = 1.1g.

(a)

(  )

(c)

(  )

)(

b d

FIG. 8. (Color online) Bogoliubov wave functions of the lowest
four breathing modes at λSO = 1, g(N − 1) = 40(h̄ω⊥a2

⊥), and
g↑↓ = 1.1g. The mode frequencies are indicated in Fig. 7(b) by solid
symbols.

t = 0 and by letting the system propagate in time. As the
breathing mode excitation is isotropic in x-y space, it is
sufficient to observe the dynamic response of the collective
coordinate along one axis, say, the x axis. Here, we pick the
mean square of the center-of-mass coordinate as the quantity
of interest:

〈x2〉σ =
∫ |φσ |2x2dxdy∫ |φσ |2dxdy

,

where σ = ↑ ,↓-spin components. In Figs. 9(a) and 9(b), we
plot the time response of 〈x2(t)〉σ for a typical parameter set.
In Figs. 9(c) and 9(d), we show the corresponding frequency
response by plotting the single-sided amplitude spectrum
|〈x2(ω)〉|σ , which is just the Fourier transforms of 〈x2(t)〉σ .

-0.03

0

0.03

0

.01

0 2 4

-0.05

0

0.05

0 1 2

.02

(a) 〈x2( )〉t ↑

(b) 〈x2( )〉t ↓

( ) |〈x2 ( )〉|↑c

( ) |〈x2( )〉|↓d

⊥ω t
⊥/ω ω

ω

ω

FIG. 9. (Color online) (a) and (b): Dynamic response of the
mean square of the center-of-mass coordinate in x direction of ↑-
and ↓-spin components, respectively. We have shifted the curves
by subtracting the time-averaged 〈x2(t)〉σ . Without this shift, the
Fourier spectrum as shown in (c) and (d) is dominated by a large
peak at ω = 0. (c) and (d): Corresponding single-sided amplitude
spectrum of the collective coordinate. Parameters used: λSO = 1.0,

g(N − 1) = 40(h̄ω⊥a2
⊥), g↑ ↓/g = 1.1.
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⊥ω t /
0 2 4

-0.08

0

0.08

0 1 2

.02

.04
(a) ( )Δn t (b) ( )Δn

ω ω⊥

ω

FIG. 10. (Color online) (a) Dynamic response and (b) single-
sided amplitude spectrum of population difference �n for the same
parameter set used in Fig. 9.

We observe frequency peaks at ω/ω⊥ � 0.46, 1.8, 2.18, and
3.40 (not shown). We note that these values exactly match the
mode frequencies obtained for this parameter set by solving
the Bogoliubov equations, shown in Fig. 6(b).

Dynamical calculations also reveal the coupling between
the center-of-mass motion and the internal spin degrees of
freedom, a trademark signature of spin-orbit coupled systems.
We shall now discuss the dynamic response of the population
difference �n = ∫

dr (|φ↑|2 − |φ↓|2). In Fig. 10(a), we plot
the time response of �n(t) for the same parameter set
mentioned in Fig. 9. In Fig. 10(b), we show the corresponding
frequency response by plotting the single-sided amplitude
spectrum |�n(ω)|. We observe frequency peaks at ω/ω⊥ �
0.46, 1.8, 2.18, and 3.40 (not shown), exactly matching the
mode frequencies obtained in Fig. 9. This analysis clearly
shows that the population transfer between the two spin
components shares a similar dynamic response with the
collective motional coordinate. In this aspect, the response of
�n in a spin-orbit-coupled spinor BEC (shown here) is similar
to the effects observed in multicomponent condensates, in the
presence of internal Josephson coupling [34].

Dipole mode analysis, m = ±1. We excite the dipole modes
by displacing the trap in the x direction by a small amount at
time t = 0 and by letting the system propagate in time. We
observe the dynamic response of the center-of-mass coordinate
in the x direction:

〈x〉σ =
∫ |φσ |2xdxdy∫ |φσ |2dxdy

.

In Figs. 11(a) and 11(b), we plot the time response of this
collective coordinate in the x direction of ↑- and ↓-spin com-
ponents for a typical parameter set. In Figs. 11(c) and 11(d),
we show the corresponding frequency response by plotting
the single-sided amplitude spectrum |〈x(ω)〉|σ . We observe
frequency peaks at ω/ω⊥ � 0.05, 0.43, 0.70, 1.25, and 1.34
(shown), and at 2.5, 2.64, and 2.76 (not shown). We note that
these values also agree with the mode frequencies obtained for
this parameter set by solving the Bogoliubov equations, shown
in Figs. 6(a) and 6(c).

In the inset of Fig. 11(a), we show the dynamics of the
center-of-mass coordinate. It is important to note that, even
though the trap is displaced only in the x direction, we
also observe a similar dynamic response in the y direction
of both spin components (only ↑-spin component shown).
This behavior occurs due to the vorticity induced by the
spin-orbit coupling: the vortex state experiences a Magnus

( ) |〈x ( )〉| ↑c

⊥ t /

-0.05

0

0

.02

0 5 10

-0.15

0

0.5 1 1.5
0

.02

(a) 〈x ( )〉t ↑

(b) 〈x ( )〉t ↓

(d)|〈x( )〉|↓

-0.1 0
-0.05

0

0.05

<x ( )>t

<
y

>)
(t

ω ⊥ωω

ω

ω

FIG. 11. (Color online) Parameters used: λSO = 1.0, g(N − 1) =
40(h̄ω⊥a2

⊥), g↑ ↓ = 1.1 g. (a) and (b): Dynamic response of center-
of-mass coordinate in x direction of ↑- and ↓-spin components,
respectively. The inset in (a) shows the dynamics of the center-of-mass
coordinate over 12 trap periods. The filled (red) marker denotes the
initial position. (c) and (d): Corresponding single-sided amplitude
spectrum of the collective coordinate.

force that is perpendicular to its motion. Hence a displacement
in the x direction induces a motion along the y direction.
Furthermore, the trace of the center of mass and its magnitude
are affected by the strength of the interparticle interactions
and the spin-orbit-coupling–induced population transfer, as
observed in the case of the breathing mode excitation, between
the ↑- and ↓-spin components.

IV. INSTABILITY ANALYSIS AND PHASE DIAGRAM

We are now ready to analyze the parameter space for the
existence of a half-quantum vortex state. It becomes unstable
with respect to increasing interaction strength or decreasing
coupling ratio g↑↓/g. The instability can be explained either
by energy considerations and by the softening of collective
density modes.

A. Superposition instability

As mentioned earlier, for any half-quantum vortex state,
φ(r) = [φ↑(ρ),φ↓(ρ)eiϕ]T /

√
2π , there is a degenerate time-

reversal partner state, T φ(r) = [φ↓(ρ)e−iϕ,−φ↑(ρ)]T /
√

2π .
This leads to an instability for the half-quantum vortex state
with respect to a superposition state, which, with equal weight,
takes the form

φs(r) = 1√
4π

[
φ↑(ρ) + φ↓(ρ)e−i(ϕ−ϕ0)

φ↓(ρ)ei(ϕ−ϕ0) − φ↑(ρ)

]
. (40)

Here, ϕ0 is an arbitrary azimuthal angle. The energy difference
between the superposition state and the half-quantum vortex
state is given by

�EGP = (g↑↓ − g)(N − 1)

4
W [φ(r)]. (41)

Therefore, if W [φ(r)] > 0, the half-quantum vortex state is
stable only when g < g↑↓.

In Figs. 12(a) and 12(b), we check the W function of
the half-quantum vortex state in the presence of interatomic
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(a) (b)

(c)

FIG. 12. (Color online) (a) W function as a function of SO
coupling at g(N − 1) = h̄ω⊥a2

⊥ and g↑↓ = 1.1g. (b) W function
as a function of interaction strength at λSO = 1 and g↑↓ = 1.1g.
(c) Instability of the lowest dipole mode frequency ωm=−1 with
decreasing g↑↓/g at λSO = 1 and g(N − 1) = 20(h̄ω⊥a2

⊥).

interactions. It always appears to be positive, although the
interactions tend to decrease its absolute magnitude. Hence,
there must be a quantum phase transition occurring at the
isotropic point g = g↑↓. Once g > g↑↓, a superposition state
with density pattern

n↑,↓ = 1

2π

[
φ2

↑ + φ2
↓

2
± φ↑φ↓ cos(ϕ − ϕ0)

]
(42)

becomes preferable. The 2D contour plot of this density pattern
with ϕ0 = 0 is schematically shown in the inset of Fig. 1
(in the phase II A).

In general, in passing through the quantum phase transition
point, we observe the softening of a particular mode frequency.
As the superposition state involves a time-reversed state with
angular momentum m = −1, the lowest dipole mode with
m = −1 can become unstable. In Fig. 12(c), we plot the lowest
dipole mode frequency ωm=−1 as a function of g↑↓/g at λSO =
1 and g(N − 1) = 20(h̄ω⊥a2

⊥). Indeed, with decreasing g↑↓/g,
the mode frequency ωm=−1 decreases and approaches to zero
exactly at the phase transition point.

B. Instability with respect to high-order angular
momentum components

There is another instability for the half-quantum vortex
state, which occurs with increasing interatomic interaction
strength. With sufficiently large interactions, we anticipate that
the state with high-order azimuthal angular momentum will
energetically become favorable. For example, let us consider a
condensate state with an azimuthal angular momentum m = 1
(the 3/2-quantum vortex state), which has the form

φm=1(r) = 1√
2π

[
φ↑(ρ)eiϕ

φ↓(ρ)ei2ϕ

]
. (43)

The GP energy of this state can be obtained by solving the
GPE equation as before, except that we need to take Rk1(ρ)

(a)

(b)

FIG. 13. (Color online) (a) GP energy of the 3/2-quantum vortex
state φm=1(r) and of the half-quantum vortex state φm=0(r) as a
function of interaction strength at λSO = 2 and g↑↓/g = 1.1. Beyond a
critical interaction strength as indicated by an arrow, φm=1(r) becomes
energetically favorable. (b) The corresponding lowest quadrupole
mode frequency ωm=−2. It becomes unstable beyond a threshold gc.

and Rk2(ρ) as the expansion functions for φ↑(ρ) and φ↓(ρ),
respectively. Its degenerate time-reversal partner state has an
azimuthal angular momentum m = −2.

It is easy to see from Fig. 13(a) that, beyond a criti-
cal interaction strength, the condensate state with m = 1,
φm=1(r), is lower in energy than the half-quantum vortex state,
φm=0(r). We note, however, that the critical interaction strength
determined in this way is not accurate, as a superposition
state of φm=0(r) and φm=1(r) may already become energet-
ically more preferable than φm=1(r) at a smaller interaction
strength.

An accurate determination of the threshold could be
obtained by monitoring the instability in a particular collective
mode. As the condensate state has a well-defined parity,
we find that the instability occurs in the lowest quadrupole
mode with m = −2. In Fig. 13(b), we graph the lowest
quadrupole mode frequency ωm=−2 as a function of the interac-
tion strength. As the interaction increases, the real part of mode
frequency decreases to zero and the imaginary part becomes
positive, indicating clearly that this mode will exponentially
grow if the condensate is initially in the half-quantum vortex
configuration. The condensate then starts to involve high-
order angular momentum components. The critical interaction
strength gc can be determined simply from the softening of the
mode frequency [i.e., ωm=−2(g = gc) = 0].

In Fig. 14, we graph the critical interacting strength as a
function of SO coupling at g↑↓ = g and g↑↓ = 2g. The solid
line at the isotropic point g↑↓/g has been recently calculated
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FIG. 14. (Color online) Phase diagram at g↑↓ = g and g↑↓ = 2g.
The critical interaction strength has been shown as a function of SO
coupling.

by Xiang-Fa Zhou and Congjun Wu by using an imaginary
time evolution method [14]. Our results are in excellent
agreement with theirs. We find that, at smaller SO cou-
plings, the critical interaction strength decreases rapidly with
increasing g↑↓/g.

C. Instability against anisotropy in SO-coupling strength

So far we have focused our attention on the half-quantum
vortex state in an isotropic 2D harmonic trap subject to an
isotropic Rashba SO coupling. Here we discuss the effect of
anisotropy in the SO-coupling strength λR on the stability of
the half-quantum vortex state. The effect of trap anisotropy
will be discussed in the next subsection. In the context of
ultracold gases, anisotropic Rashba spin-orbit coupling was
first discussed in Ref. [6] and the coupled GP equations were
solved for a many-body system in the absence of the trap and
in the restricted scenario where g↑↓ = g.

Here, we move beyond these restrictions and discuss the
ground state of the system. We write the SO-coupling term in
the form VSO = −i(λyσ̂x∂y − λxσ̂y∂x), where λx and λy are
SO-coupling strengths in the two perpendicular directions. By
including this SO-coupling term and solving the coupled GP
equations under the Hamiltonian as given in Eq. (3) using the
TSSP technique, we obtain the ground-state wave function at
various values of anisotropy in SO coupling represented by
λx/λy . In Fig. 15, we plot the corresponding ground-state
density profiles of ↓-spin component for an SO coupling
strength of λx = 4.0 and for various values of λx/λy .

We see from Fig. 15(a) that the half-quantum vortex state
is indeed the ground state [already mentioned in Fig. 1(b)]
for the parameter set: g(N − 1) = 0.1(h̄ω⊥a2

⊥), g↑↓/g = 1.1,
λx = 4.0, and λx/λy = 1.0. We shall now analyze the pattern
of density profile changes, as the anisotropy in SO-coupling
strength is varied. This is shown in Figs. 15(b)–15(d). It
is evident from the density distributions in Fig. 15 that
the half-quantum vortex state is unstable even against a
small anisotropy in the SO-coupling strength. Adopting a
similar method to that presented in Ref. [35], we analyze

FIG. 15. (Color online) Plot of the ground state density pro-
files of ↓-spin component for the parameter set: g(N − 1) =
0.1(h̄ω⊥a2

⊥), g↑↓/g = 1.1, λx = 4.0, with varying ratios of λx/λy . (a)
Isotropic case: λx/λy = 1.0, (b) λx/λy = 1.01, (c) λx/λy = 1.05, (d)
λx/λy = 1.1. Viewing angle is slightly tilted for aesthetic purposes.

this systematically by expanding the wave function of the
down-spin ↓-component in an orthogonal basis set of the form
	↓(ρ) = �n fn(ρ) ei (2n+1) ϕ , where n measures the vorticity
and fn(ρ) absorbs the nth mode’s contribution in the radial
direction. We quantify the weights of the wave function in the
nth mode by computing an = ∫

dρ |fn(ρ)|2. In Fig. 16, we plot
the weights an relative to a0, as computed for a half-quantum
vortex state with λx/λy = 1.0. As we would expect, for this
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FIG. 16. (Color online) Plot of the weights of the ground-state
wave function of ↓-spin component—corresponding to the density
profiles in Fig. 15—in the nth mode. The weights are normalized
with respect to a0 computed for a half-quantum vortex state with
λx/λy = 1.0. (a) Isotropic case: λx/λy = 1.0, (b) λx/λy = 1.01,
(c) λx/λy = 1.05, (d) λx/λy = 1.1.
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FIG. 17. (Color online) Plot of ground-state density profiles of
↓-spin component for the parameter set: λSO = 4.0, g(N − 1) =
0.1(h̄ω⊥a2

⊥), g↑↓/g = 1.1, but with varying ratios of fy = ωy/ωx .
(a) Isotropic case: fy = 1.0, (b) fy = 1.01, (c) fy = 1.05, (d) fy =
1.1. Viewing angle is slightly tilted for aesthetic purposes.

isotropic case, a0 = 1 and an = 0 for n �= 0. As the anisotropy
in the SO-coupling strength increases, more and more n �= 0
components become mixed into the ground state.

We note that, due to the sensitivity of the half-quantum
vortex state with respect to the anisotropy in the SO-coupling
strength, to observe such a state therefore requires a highly
symmetric Rashba spin-orbit coupling in future experiments.

D. Instability to anisotropy in trap potential

Now we examine the effect of anisotropy in the trapping
potential, but with isotropic SO coupling, on the stability
of half-quantum vortex state. We write the trapping poten-
tial in the form V (x,y) = M(ω2

xx
2 + ω2

yy
2)/2 = Mω2

⊥(x2 +
f 2

y y2)/2, where ωx = ω⊥,ωy = fyω⊥ are trapping frequen-
cies in x- and y directions respectively. We again obtain the
ground-state wave functions at various values of fy by solving
the coupled GP equations using the TSSP technique. In Fig. 17,
we plot the corresponding ground-state density profiles of
the ↓-spin component for an SO-coupling strength of λSO =
4.0 and for various values of trap anisotropy ranging from
0 to 10%.

We see from Fig. 17(a) that the half-quantum vortex state
is indeed the ground state [already mentioned in Fig. 15(a)]
for the parameter set: λSO = 4.0, g(N − 1) = 0.1(h̄ω⊥a2

⊥),
g↑↓/g = 1.1. We shall now analyze the pattern in which the
density profile changes depending on the trap anisotropy, as
shown in Figs. 17(b)–17(d). It is evident from the density dis-
tributions in Fig. 17 that the vortex core becomes increasingly
anisotropic with increasing fy . We analyze this systematically
by expanding the wave function of the ↓-component in an
orthogonal basis set and quantifying the weights in the nth
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FIG. 18. (Color online) Plot of the weights of ground-state
wave function of ↓-spin component—corresponding to the density
profiles in Fig. 17—in the nth mode. The weights are normalized
with respect to a0 computed for half-quantum vortex state with
fy = 1.0. (a) Isotropic case: fy = 1.0, (b) fy = 1.01, (c) fy = 1.05,
(d) fy = 1.1.

mode by an, as mentioned in Sec. IV C. In Fig. 18, we plot
the weights an relative to a0 computed for a half-quantum
vortex state with fy = 1.0. As we would expect, for the
isotropic case with fy = 1.0, a0 = 1 and an = 0 for n �= 0.
As the trap anisotropy increases, we observe that the ground
state is a mixture of n �= 0 components as well. Nevertheless,
we see that the trap anisotropy has a much smaller effect
on the half-quantum vortex state than the anisotropy in the
SO-coupling strength.

V. CONCLUSIONS

In summary, we have systematically investigated the ground
condensate state of a spin-orbit coupled spin-1/2 Bose gas
confined by a two-dimensional harmonic trap. The density
distributions and collective density excitations have been
obtained respectively by solving the Gross-Pitaevskii equation
and the Bogoliubov equation, which are generalized to include
spin-orbit coupling. We have found that

(1) The condensate is in a half-quantum vortex state if
the intraspecies interaction g is smaller than interspecies
interaction g↑↓ and if the interaction strength is below a
threshold gc. We have calculated the threshold by monitoring
the unstable quadrupole mode with an azimuthal angular
momentum m = −2. A phase diagram for the half-quantum
vortex state is therefore determined, as given in Figs. 1 and 14.

(2) The half-quantum vortex state (phase I) will turn into
a superposition of two degenerate half-quantum vortex states
(phase II A) if g > g↑↓ and will start to involve high-order
angular momentum components (phase II B) if g > gc, where
gc depends on the ratio g↑↓/g. The half-quantum vortex state is
unstable against small anisotropies in the SO-coupling strength
and large anisotropies in the trapping potential. The state tends
to be a superposition of higher angular momentum states.
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(3) In the presence of spin-orbit coupling, the behavior of
collective density modes becomes complicated. In particular,
the breathing mode with ω = 2ω⊥ and the dipole mode with
ω = ω⊥ are no longer exact solutions of the many-body
system.

(4) The condensate wave functions in the phases II A and
II B are yet to be determined using the time-splitting spectral
method for GPE. These wave functions break the rotational
symmetry. We anticipate that interesting density patterns will
emerge in the limit of very large interatomic interactions.
Moreover, we anticipate that the phase II B in Fig. 1 will
change to a density-stripe phase, while the phase II A will
ultimately change to a plane-wave phase. The density-stripe
and the plane-wave phases have been shown to be the
mean-field ground state of a homogeneous spin-orbit-coupled
Bose gas [8]. For the trapped system considered here, at

large interaction strength, the effect of the trap becomes less
important and our result therefore should be consistent with
that of a homogeneous system. These are to be explored in
future studies.
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