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Phase diagram of Landau-Zener phenomena in coupled one-dimensional Bose quantum fluids
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We study stationary and dynamical properties of the many-body Landau-Zener dynamics of a Bose quantum
fluid confined in two coupled one-dimensional chains by using a many-body generalization recently reported
Chen et al. [Nature Phys. 7, 61 (2011)], within the decoupling approximation and the one-level band scheme.
The energy spectrum shows evidence of the structure of the avoided level crossings as a function of the onsite
interparticle interaction strength. On the dynamical side, a phase diagram of the transfer efficiency across
ground-state and inverse sweeps is presented. A totally different scenario with respect to the original single-particle
Landau-Zener scheme is found for ground-state sweeps, in which a breakdown of the adiabatic region emerges as
the sweep rate decreases. On the contrary, the transfer efficiency across inverse sweeps reveals consistent results
with the single-particle Landau-Zener predictions. In the strong-coupling regime, we find that there is a critical
value of the onsite interaction for which the transfer of particles starts to vanish independently of the sweep rate.
Our results are in qualitative agreement with those of the experimental counterpart.
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I. INTRODUCTION

The original Landau-Zener (LZ) problem involves a two-
level system whose energy separation varies as a linear
function of time. These two states can be associated with the
lowest states of a single particle in a double-well potential.
As is well known [1,2], the transition probability between
the two energy states is the well-known LZ formula PLZ =
exp[−2πJ 2/(h̄α)] written in terms of the tunneling-coupling
parameter J and the time-dependent detuning � = αt , ac-
counting for the probability that a particle initially in the
bottom well at t = −∞ reaches the opposite well at t = ∞.
Recent experiments have demonstrated the many-body gener-
alization of the LZ phenomena by loading an ultracold Bose
gas into a pair of coupled one-dimensional chains where a
controllable interchain sweep leads to the observation of both
avoided crossings and a breakdown of adiabatic interchain
transfer [3].

Before the experimental realization of the many-body LZ
generalization, several theoretical descriptions of a Bose-
Einstein condensate (BEC) confined in a double-well potential
have addressed the LZ problem within two intrinsically
different approaches. We make reference to the two-mode
mean-field and Bose-Hubbard schemes inherited from the
Gross-Pitaevskii and full quantum approaches [4–9]. As a
result of incorporating the linear variation in time between
the two levels, all of those treatments suggested a breakdown
of the adiabatic limit; that is, that the LZ transition probability
does not vanish even in the adiabatic limit. For example,
the nonlinear two-level system shows that the mean-field
interactions among particles tend to increase the tunneling
probability and that there exists a critical value of the
interaction strength beyond which the transition probability
becomes nonzero even in the adiabatic limit [5]. On the other
hand, a stationary phase approximation leads to a characteristic
scaling or power law for the critical behavior that occurs as
the nonlinear parameter equals the gap of avoided-crossing
energy levels [8]. Regarding the asymmetric LZ tunneling in

a periodic potential, Jona-Lasinio et al. [9] found that the
tunneling rates for the two directions of tunneling are not
the same. Tunnelling from the ground state to the excited
state is enhanced by the nonlinearity whereas, in the opposite
direction, it is suppressed. Furthermore, an LZ formula has
been derived for the two-mode many-particle scenario [7].

Here, we devote ourselves to the description of the many-
body LZ generalization described in the first paragraph. That
is, we are interested in describing a BEC confined in two
coupled one-dimensional (1D) chains where the potential
depths, defining the lattice sites, are linearly modified in time
such that a sweep from an initial energy difference −� to
a final energy difference � is achieved. To analyze such a
system, we use a model Hamiltonian that incorporates both
the full quantum frame of the Bose-Hubbard Hamiltonian [10]
and a decoupling approximation scheme [11,12] that involves
certain superfluid order parameters. These are ψν = 〈b†i,ν〉 =
〈bi,ν〉, where b

†
i,ν and bi,ν , ν ∈ {L,R} create and annihilate

particles, respectively, at lattice sites i and side chain ν ∈ L,R.
The average is the expectation value in the investigated states.
A previous theoretical work has employed the time-dependent
density matrix renormalization group method [13] where, with
a small number of links in the chains, qualitative agreement
with the experiment was found. Our model simulates two
coupled infinite chains with a local site Hamiltonian written in
terms of the onsite nonperturbative interparticle interaction
strength U , the time-dependent detuning � and the intra-
and interchain coupling energies J ‖ and J⊥. The model
satisfactorily describes qualitatively the main features of the
experiment: the transfer efficiency across ground-state sweeps
that in turn exhibits a breakdown of adiabaticity as the
sweep rate decreases, and the transfer efficiency across inverse
sweeps that actually shows consistent results with the single-
particle Landau-Zener scenario. Regarding the single-particle
LZ result, the model Hamiltonian allows us to recover the
result for a single dimer. In addition, since the number of
particles per lattice site in the actual experiments is not too
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large, it is possible to perform accurate numerical simulations
of the system. Such a analysis gives rise to a richer spectrum
with respect to the single dimer considered in [3].

The paper is organized in five sections. In Sec. II we
introduce the model Hamiltonian that provides a suitable
description of the experiment. We also justify the use of the
decoupling approximation and the one-band scheme within
the full quantum and mean-field approximation schemes. In
Sec. III we characterize the stationary states as a function
of the both, the interparticle interaction strength U and
the the parameter characterizing the tilt �. In particular,
we concentrate on determining the energy spectrum for the
model Hamiltonian and the behavior of the superfluid order
parameters ψ . An exhaustive exploration of the parameter
space allows us to encode the dynamical behavior of the of
ground-state and inverse sweeps in a phase diagram. The latter
are presented in Secs. IV and V, respectively. Finally, in Sec. VI
a summary of the main results is given.

II. THE MODEL: DECOUPLING APPROXIMATION
IN ONE-LEVEL BAND PICTURE

The physical system that we want to describe is a finite
collection of interacting Bose atoms initially placed in one of
the sides of a composed pairwise-coupled lattice (see Fig. 1),
and its subsequent evolution when the pairwise potential
depths are linearly modified in time. As schematically shown,
the transport of particles in the x and z directions occurs as
a consequence of the intrinsic tunneling among the pairwise-
coupled sites, but it is also affected by the external variation
of the well potential depths with time in the form of a sweep
from an initial energy difference �i = −� to a final energy
difference �f = �. The parameters responsible for such
transport are the onsite interparticle interaction strength U ,
the intrachain coupling energy J ‖ (z direction), the interchain
coupling energy J⊥ (x direction), and the time-dependent
parameter characterizing the tilt between the two wells of each
site in the chain; namely, the detuning parameter �.

The purpose of the present paper is to fully characterize the
stationary and dynamical properties of the system described
above. To proceed, we consider the experimental realization
reported in Ref. [3] where the transfer of particles in the x

J

J ||

x

z

FIG. 1. (Color online) Schematic representation of the double-
well trap chain potential. The coupling energies are intrachain J ‖

(z direction) and interchain J ⊥ (x direction). The time-dependent
parameter � characterizes the tilt between the two wells of each site
in the chain.

and z directions is studied in what it is called the ground-state
and inverse sweeps; the former accounting for a sweep starting
from the ground state (i.e., where all the particles initiate in
the bottom well with lower energy) and the latter where the
initially filled sites are those with higher energy. This scheme
leads us to answer several questions; on one side those related
to the stationary properties, such as the energy spectrum, and,
on the other side, aspects related to the dynamical behavior
of the atomic population in the wells. Of special interest in
this regard is the determination of the phase diagram encoding
the dependence of the transfer efficiency on the parameters
characterizing the dynamics.

Let us now turn our attention to the model Hamiltonian
of the system. Since the particles are not allowed to tunnel
between left and right wells of different sites i, movements
in the x and z directions must be considered separately.
Therefore, we consider the dynamics along the sites and their
counterpart between the left and right chains.

Regarding the two-well geometry and its intrinsic asymme-
try supplied by the time-dependent parameter �, we should
first argue about the level picture scheme where our system
is appropriately described. Due to the variation of such a
parameter, not just the first band but excited levels might play
a significant role. As established by Dounas-Frazer et al. [10],
the transport phenomena of a Bose-Einstein condensate in
an asymmetric double well leads to three new energy scales
with respect to the symmetric-trap and one-band assumptions.
These are the hopping, the tilt, and the energy gap between the
first and second bands. The task of including at least a two-band
picture (that is, four levels per site) leads to a Hilbert space of
size (N + 1)(N + 2)(N + 3)/6 with N being the number of
atoms per site. However, since the LZ phenomenon involves
the presence of just two states, we should restrict ourselves to
the first band of the time-varying tilted double-well potential.
This can be done by appropriately taking the formal bounds
where a one-band picture is well justified, which primarily
assumes that the interaction energy is much smaller that the
energy-band difference. In the appendix we present a study
of the single-particle energy levels in a double-well potential
as a function of the tilt �. To fulfill the condition that the
interparticle energy interaction is much smaller than the energy
gap between the first and second bands, we confine ourselves
to values of � for which the bands are well separated and
thus the condition with the interparticle interaction will be
considered accordingly.

Starting from the Bose-Hubbard Hamiltonian of an optical
lattice [3], one can write down the Hamiltonian of atoms in
the two-well chain as

H = H‖ +
∑

i

H⊥
i +

∑

i

HU
i ,

H‖ = −J ‖ ∑

ν=R,L

∑

〈i,j〉
(b̂†i,ν b̂j,ν + H.c.),

(1)
H⊥

i = −J⊥(b̂†i,Rb̂i,L + b̂
†
i,Lb̂i,R) + �

2

∑

i

(n̂i,R − n̂i,L),

HU
i = U

2

∑

ν=R,L

b̂
†
i,ν b̂

†
i,ν b̂i,ν b̂i,ν ,
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where the labels ‖ and ⊥ denote movements in the z and
x directions, respectively. H‖ represents tunneling along the
chains, while H⊥

i takes into account the local two-level
structure at sites i. HU

i corresponds to the onsite interaction
energy.

To consider the participation of the lattice sites, (i.e.,
the transport in the z direction), we use the decoupling
approximation where order parameters ψν = 〈b†i,ν〉 = 〈bi,ν〉,
ν ∈ {L,R} are introduced to account for the expectation
value of the tunneling of particles between left and right
wells, disregarding the position of the site i within the chain.
We consider negligible the average fluctuations of creation
and annihilation particle operators in sites i and j , such
that �b

†
i,ν = b

†
i,ν − ψν ≈ 0 and �bj,ν = bj,ν − ψν ≈ 0. This

allows us to write [11,12,14]

b̂
†
i,ν b̂j,ν ≈ ψν(b̂j,ν + b̂

†
i,ν) − ψ2

ν . (2)

Thus, by substituting this expression into H‖, we arrive at
the model Hamiltonian for each lattice site given by

Hloc
i = −J ‖ ∑

ν=R,L

[
ψν(b̂i,ν + b̂

†
i,ν) − ψ2

ν

] + H⊥
i + HU

i . (3)

This model Hamiltonian represents the local site energy
of an infinite chain, where the interaction is nonperturbative.
We should emphasize that the fact of considering a mean-
field approach to separate the effective contributions by site
leads us to the task of self-consistently determining the order
parameters ψν , ν ∈ {L,R} to specify the Hamiltonian (3).

Regarding size of the Hilbert space, one can see that the
Fock space of the coupled chains can be described in terms
of the occupation number of sites i and i + 1. In Fig. 2 we
illustrate the equivalence among both sites i − (i + 1) and
(i − 1) − i and sides R and L. The Fock-space elements
can be written as |ni

R,ni
L,ni+1

L 〉, where ni
R = 0, . . . ,N , ni

L =
0, . . . ,N − ni

R , and ni+1
L = N − ni

R − ni
L, with N being the

total number of particles at each site i. Thus, our model Hamil-
tonian, representing the local site energy of an infinite chain,
corresponds effectively to N particles with three “internal”
states. Consequently, the Fock space at each lattice site scales
with the number of particles as � = (N + 1)(N + 2)/2.

It is important to notice that, while the transport along the z

direction is accounted for in a mean-field fashion, the tunneling
among left and right sides (x direction) is fully quantum
described. The assumption of the mean-field approach in this
case is well justified in the sense that, in the experimental

site i =

R

L

i − 1 i i + 1

|ni
R, ni

L, ni±1
L = |ni

R, ni
L, ni±1

R

. . . 

. . . 

. . . 

. . . 

= =

FIG. 2. (Color online) Schematic representation of the lattice sites
in the chain of double wells.

situation near the center of the trap, the average the number
of particles per site on left and right sides is the same along
the chains. As we shall see in the next sections, this treatment
allows us to study up to N = 8 particles per site.

III. STATIONARY STATES

In this section we study the stationary states of Hamiltonian
(3) for a given number of particles as a function of the
interaction strength U and the parameter characterizing the tilt
�. In particular, we solve the time-independent Schrödinger
equation for the model Hamiltonian to determine the energy
spectrum as a function of the parameters U and �. It is
important to point out that, in our calculations, both the
parameters U and � are referred to the tunneling coupling
parameter J = J ‖ = J⊥. Here and henceforth we use Ũ =
U/J and �̃ = �/J .

To determine the entire energy spectrum of Hamiltonian
(3) we have to find the value of the order parameters ψν

(ν = L,R). We proceed as follows: For fixed values of Ũ

and �̃ we obtain by means of a variational procedure the
values of ψν (ν = L,R) [15] that minimize the ground-state
energy Ẽ0(Ũ ,�̃,ψL,ψR). In other words, we search for the
lowest eigenvalue of the Hamiltonian Hloc

i (Ũ ,�̃,ψL,ψR) by
minimizing with respect to ψν (ν = L,R). Once those optimal
values have been determined, we calculate the entire spectrum
by means of standard diagonalization methods. Then, for the
same value of Ũ we repeat the same process for each value
of �̃.

In Fig. 3 we show a density plot with the optimal values of
the order parameters ψL (left) and ψR (right), as functions of
Ũ and �̃. These calculations, performed for N = 6, allow us
to appreciate well-defined boundaries for which the optimal
values of the order parameters are identically zero. These are
Mott-insulating (MI) state-like regions. That is, according
to the identification given in Sec. II, ψν = 〈b†i,ν〉 = 〈bi,ν〉,
ν ∈ {L,R}, the region delimited for those values of Ũ and
�̃ indicates that there is no tunneling and consequently a
Mott-insulator phase can be nucleated since the average fluc-
tuations in the population per site are negligible. Conversely,
a superfluid phase is associated when the order parameters are
different from zero; the superfluid component in the system
being maximal in the diffuse area for Ũ � 10. As expected, the

FIG. 3. (Color online) Density plot of the optimal values of
the order parameters ψL and ψR as functions of the dimensionless
parameters Ũ and �̃ for the ground state of Hamiltonian (3) for
N = 6.
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FIG. 4. (Color online) Energy spectrum Ẽn

Ũ
= En/(J Ũ ) of

Hamiltonian (3), for N = 3 and Ũ = 1 [(a) and (d)], 10 [(b) and (e)],
100 [(c) and (f)]. The values of �̃ on the x axis have been rescaled
with respect to the dimensionless parameter Ũ ; that is, �̃Ũ = �̃/Ũ .
For Ũ = 100 the numbers on the right refer to the number of particles
in the right well, while the circles indicate the tunneling resonances.

indistinguishable character of left and right wells is confirmed
from the symmetry exhibited in ψL and ψR . It is important to
point out that the insulating regions that appear for Ũ ∼ 0 and
large |�̃| are finite-size effects similar to what was found in
small Bose-Fermi systems [16], where, in the limit of large N ,
these regions disappear.

For illustration purposes, in Fig. 4 we show the entire energy
spectrum of Hamiltonian (3) for N = 3 and different values of
Ũ . The values of Ẽn and �̃ have been rescaled with respect to
Ũ as �̃Ũ = �̃/Ũ and Ẽn

Ũ
= Ẽn/Ũ . For Ũ = 100, the numbers

on the right refer to the number of particles in the right well,
while the circles indicate how tunneling resonances are crossed
one after another. The left figures [Figs. 4(a), 4(b), and 4(c)]
are obtained by neglecting the transport along the z axis (see
Fig. 1). That is, they correspond to the energy spectrum of a
single double well. The right figures of the panel contains the
energy spectrum considering the transport in both parallel and
perpendicular directions. From the full panel of Fig. 4, one can
observe that, although avoided level crossings are exhibited in
the whole interval [−�̃Ũ ,�̃Ũ ] for every considered value of Ũ ,
the level crossing structure is more visible as Ũ grows. As can
be appreciated, the results of our model (3) when the transport
along the z axis is neglected, coincide with those obtained for
Bose-Hubbard Hamiltonians of one dimer only [3,17]. In other
words, if the onsite interaction energy Ũ between the particles

dominates the tunneling coupling J (Ũ = U/J 
 1), the LZ
transitions split into N avoided level crossings [see Fig. 4(c)],
each corresponding to the transfer of one particle. A different
situation is observed when particles can move through x and z

axis. The LZ transition for Ũ = U/J 
 1 split into 2N − 1
avoided level crossings. Regarding the number of avoided
crossings and its dependence with the number of particles N in
the limit of noninteracting bosons, the single-particle LZ result
is recovered for weaker interactions when transport along
the x and z axis is considered. It is important to emphasize
that considering the combined transport in the parallel and
perpendicular directions in general gives rise to a rich spectrum
with respect to the single dimer. Furthermore, it leads to
predictions of additional tunneling resonances with respect
to the single dimer.

IV. PHASE DIAGRAM

The LZ dynamics from �̃ = −αTmax to �̃ = αTmax for a
given value of α are obtained by evolving in time (�̃ = αt)
the initial state |�(0)〉 associated with the ground-state energy
Ẽ0(Ũ ,�̃). We have that, for a given value of α, one should
follow the evolution of the state where all the particles initiate
in the left chain with �̃ < 0, such that the filled chain is the one
with lower energy. Experimentally, this process is identified as
a ground-state sweep. The evolution is given by [18]

|�(ti+1)〉 ≈ e−iH (Ũ ,�̃)δt |�(ti)〉, (4)

where H is the local Hamiltonian (3) and h̄ = 1 is assumed.
The initial time t0 corresponds to Tmax = −�̃0/α while the
temporal step δt that we select, δt = 0.2, produces results that
are qualitatively similar results for δt � 0.2. It is important to
emphasize that the minimization procedure described above
(Sec. III) is performed at each temporal step δt to take
into account the variation of �̃ at each time interval δt .
Consequently, the ground state |�(ti)〉 is updated at each
temporal step and serves as a seed for the subsequent time. The
full dynamics, for a given rate α and interparticle interaction
strength Ũ , ends when the time ti+1 reaches its maximum
value Tmax = �̃0/α. To illustrate the evolution in time of the
population on the right side, in Figs. 5(a), 5(b), and 5(c) we
plot nR(t) for various rates α and for Ũ = 0.75 and N = 6.
The time is rescaled with respect to Tmax, t̃ = t/Tmax with
�̃0 = 20.

For N = 6 we investigated the many-body dynamics for
sweep rates in the interval 2π/α ∈ [0.1,10] and Ũ ∈ [0,10]
[19]. To condense the information of the LZ dynamics, as a
function of the interaction strength Ũ and the sweep rate α, we
show in a phase diagram the final state that the system reaches
as the initial state evolves in the interval [−Tmax,Tmax]. In
Fig. 5(d) we show a density plot with the normalized transfer
efficiency on the right side at t = Tmax. To complementary
visualize the dependence of nR on Ũ , in Fig. 5(e) we present
several contour plots of the normalized transfer efficiency as a
function of the sweep rate α, in the interval Ũ ∈ [0,3].

From Fig. 5(d) one can observe how the influence of both
the parameter characterizing the interaction among particles
and the sweep rate α lead the system to well-defined quantum
phases from minimum to maximal values of the transfer
efficiency nR . As can be observed from this figure, the effect
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FIG. 5. (Color online) Instantaneous right evolution nR(t) from
ground state for various rates 2π/α = 0.1 (a), 1.0 (b), 2.0 (c), Ũ =
0.75, and N = 6. The time is rescaled with respect to Tmax, t̃ = t/Tmax,
with �̃0 = 20. (c) Density plot of the normalized transfer efficiency
nR at t = Tmax. (d) Contour plots of the normalized transfer efficiency
for several values of the the dimensionless parameter Ũ (see main
text).

of having N > 1 induces the opposite behavior with respect to
the original LZ phenomenon when the sweep rate α decreases.
That is, the transfer of particles does not vanish as the sweep
rate tends to zero—on the contrary, when the sweep rate α takes
smaller values, the total population initially placed on the left
side is transferred almost completely to the right chain. In other
words, the main effect of having an interacting many-body
system is the breakdown of adiabaticity.

Regarding the role of the onsite interactions, one can
observe that the transfer efficiency diminishes as Ũ increases.
This result can be understood in the light of the well-known
prediction for bosonic Josephson junctions [20] where the
transport of particles diminishes as the interaction strength
increases. We observe that, for a given value of the onsite
interparticle interaction, the effect of decreasing the sweep
rate α is turned from detrimental into favorable for the transfer
efficiency in the N -body LZ scheme [see Figs. 5(d) and 5(e)].

To illustrate the dependence of the many-body dynamics on
the initial value of the tilt −�̃0 and on the number of particles,
we performed calculations for �̃0 = 10 and 100 and N = 2
and 8 particles per site. The results are shown in the panel of
Fig. 6. As above, we plot the normalized transfer efficiency in
a density plot for 2π/α ∈ [0.1,10.0] and ŨN/�̃0 ∈ [0,3]. The
phase diagrams in Fig. 6 provide evidence of the impact of the
initial tilt −�̃0 on the final state that the system reaches after a
complete sweep. The region of maximum transfer is reduced
for either N = 2 and N = 8 as �̃0 goes from 10 to 100. That is,
the region exhibiting breakdown of adiabaticity becomes larger
as the time-dependent energy bias grows. From our simulations
we find that there exists a critical value of the onsite interaction
Ũc ∼ �̃0/N for which the atoms remain evenly distributed.
Due to the relationship with the order parameters (Fig. 3), we
find that the transfer efficiency is very sensitive with respect to
the variation of ψL and ψR . As the system evolves in time, the
presence and the crossing between superfluid and MI phases

FIG. 6. (Color online) Density plot of the normalized transfer
efficiency nR of ground-state sweeps as a function of dimensionless
parameters Ũ and α at t = Tmax = �̃0/α for N = 2 [(a) and (b)] and
N = 8 [(c) and (d)]. −�̃0 is the initial value of the tilt. Parameters
are �̃0 = 10 [(a) and (c)] and �̃0 = 100 [(b) and (d)].

give rise to reach a saturation value for the atoms to transfer
to the right side of the chain [max(nR) � 0.5 for Ũ � Ũc].

V. MANY-BODY DYNAMICS: GROUND-STATE
VS INVERSE SWEEPS

Following the experimental realization of LZ many-body
dynamics [3], we extend our study to investigate the dynamics
across inverse sweeps. Namely, the initial condition corre-
sponds to �̃ > 0 with the total particle population on the
left side. The time evolution is given as before, by (4), and
the same minimization procedure to determine the variational
order parameters ψL and ψR at each temporal step δt must be
carried out from �̃ = αTmax = �̃0 to �̃ = −αTmax = −�̃0

for a given sweep rate α.
To obtain the phase diagram for the inverse sweep scheme

we explore sweep rates in the interval 2π/α ∈ [0.1,10.0]
for N = 2 and set �̃0 = 10 and �̃0 = 100. For comparison
purposes with the results presented in Fig. 6, we plot in Fig. 7
the phase diagram of nR in terms of ŨN/�̃0. In this case,
results consistent with the single-particle LZ scenario are
found: the maximum transfer efficiency is observed as the
sweep rate increases. The effect of increasing the tilt �̃0 from
10 to 100 gives rise to a reduction of the region of maximum
transfer. That is, it leads to qualitative features similar to those
found for the ground-state sweeps. The role of the interparticle
interaction strength is perceived as in the ground-state scheme;
that is, increasing Ũ destroys localization between left and
right chains (nR ≈ nL � 0.5).

To compare the dynamical behavior between the ground-
state and inverse sweeps we study, as in the experimental
counterpart, the transferred population as a function of the
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FIG. 7. (Color online) Density plot of normalized transfer effi-
ciency nR of inverse sweeps as a function of dimensionless parameters
Ũ and α for 2π/α ∈ [0.1,10.0] and ŨN/�̃0 ∈ [0,3]. Parameters are
�̃0 = 10 (a), �̃0 = 100 (b), N = 2.

final tilt �̃f , for N = 2, a fixed sweep rate α and a fixed
interaction Ũ . As before, the initial state for the ground-state
(inverse) sweep corresponds to the total particle population
localized in the bottom well with lower (higher) energy.
However, it is important to point out that, in this case, the
sweeps are carried out from �̃i to �̃f ; that is, the sweeps
are not accomplished from −|�̃i | to |�̃i | as in Sec. IV. As
an initial condition for each sweep we consider �̃i = 20 and
�̃i = −20 for ground-state and inverse sweeps, respectively.
Figure 8 corresponds to ground-state [Figs. 8(a) and 8(c)] and
inverse [Figs. 8(b) and 8(d)] sweeps. In [Figs. 8(a) and 8(b)]
we plot nR for ground-state (inverse) sweeps as a function
of �̃f for Ũ = 1.5 and several values of 2π/α. In [Fig. 8(c)
and 8(d)] we plot nR for ground-state (inverse) sweeps as
a function of �̃f for 2π/α = 2.0 (1.0) and Ũ ∈ [0,10]. As

FIG. 8. (Color online) Normalized transfer efficiency nR for
ground-state (a) [inverse (b)] sweeps as a function of the final tilt �̃f

for Ũ = 1.5 and 2π/α ∈ [0.1,3.0]. Normalized transfer efficiency nR

as a function of the final tilt �̃f , for 2π/α = 2.0, [2π/α = 1.0] in
the ground-state (c) [inverse (d)] case and Ũ ∈ [0,10]. The number
of particles is N = 2. Dimensionless parameters are nR , �̃f , Ũ ,
and α.

can be observed from these figures the ground-state sweeps
show that the normalized population transferred increases from
zero to a maximum max(nR) < 1 for 2π/α � 1, while the
behavior for the inverse sweeps shows that the population
transferred is partial, reaching a maximum value below unity.
The effect of increasing the interaction for a fixed sweep rate
is to suppress the maximum population transfer. Comparison
with the experimental results show qualitative agreement (see
Fig. 3 of Ref. [3]).

VI. FINAL REMARKS

We have studied the dynamical and stationary proper-
ties of an interacting Bose quantum fluid confined in two
coupled one-dimensional chains. Such a system has been
realized experimentally [3] and represents a generalization of
the single-particle Landau-Zener dynamics. The competition
terms that determine the evolution in time from a given initial
state depend on the interparticle interaction strength U , the
intrachain coupling energy J ‖ (z direction), the interchain
coupling energy J⊥ (x direction), and the time-dependent
parameter characterizing the tilt between the two wells of each
site in the chain (i.e., the detuning parameter �).

To investigate the dynamics of the generalized LZ real-
ization, we work in the decoupling approximation and the
one-level band scheme and propose a model lattice-site Hamil-
tonian that represents two coupled infinite chains (3). Our full
many-body model is written in terms of the order parameters
ψν , ν ∈ {L,R} that account for the superfluid component of
the particle population. We exhaustively explore the space
of parameters {Ũ ,�̃} to determine by variational means the
order parameters ψν , ν ∈ {L,R} for the ground-state energy
Ẽ0(Ũ ,�̃,ψL,ψR). Next, we diagonalized the Hamiltonian to
obtain the energy spectrum. Concerning the stationary-state
properties, since the number of particles per lattice site in
the actual experiments is not too large, we were able to
perform accurate numerical simulations of the system to fully
characterize the entire energy spectrum. Such calculations lead
to the prediction of a richer spectrum with respect to that found
for a single dimer; that is, when the movement along the z axis
is neglected [3]. We found that, as Ũ grows in magnitude, a
more complex structure of the energy spectrum with respect
to the double-well system is developed in correlation with
the suppression of the superfluid component in the system,
thus promoting self-trapping behavior. In addition, our model
allow us to recover the single-particle LZ result for a single
dimer.

Regarding the dynamical evolution of the LZ many-body
generalization, we concentrate on studying ground-state and
inverse sweeps in order to compare the predictions of our
model with the experimental realization. The ground-state
and inverse-sweep dynamics account for a sweep from a
state where all the particles initiate in the bottom well with
lower energy (left well) and the counterpart where the filled
sites are the ones with higher energy, respectively. In a phase
diagram in terms of the interaction Ũ and the sweep rate α

we condense the normalized final transfer of atoms. A totally
different scenario with respect to the original single-particle
Landau-Zener scheme was found for ground-state sweeps.
That is, the transfer of particles does not vanish as the sweep
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rate tends to zero—on the contrary, when the sweep rate α

takes smaller values, the total population initially placed on
the left side is transferred almost completely to the right chain.
A different situation occurs in the study of the transfer effi-
ciency for inverse sweeps; this reveals consistent results with
the single-particle Landau-Zener-phenomenon predictions. As
the system evolves in time depending on the interaction, the
system can transit different phases (superfluid or insulating)
multiple times (see Fig. 3). We identified a critical value of
the interaction Ũc, for which Ũ � Ũc, where the system is in
a crossover from an insulating state (nR �= nL) with ψR,L = 0
to a superfluid state (nR ≈ nL � 0.5) with ψR,L �= 0. It is
important to emphasize that all of our results are in qualitative
agreement with the experimental realization. In addition, our
analysis provides insight to the region where the interaction is
nonperturbative.
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APPENDIX: SINGLE PARTICLE
IN TILTED DOUBLE WELL

To establish appropriate bounds for the values of the
parameters that determine the dynamics of the Bose gas
in coupled one-dimensional chains [i.e., their practical use
in relation to the proposed model Hamiltonian (3)], we
analyze here the eigensystem of a single particle confined
in an asymmetric double well. Although a previous study
has provided quantitative criteria regarding the energy level
scheme where a many-particle system can be properly
described for those potentials [10], the intrinsic nature of
the Landau-Zener phenomenon as well as the proposed
model requires us to justify the plausibility of the chosen
parameters.

Let us consider the potential

V (x) = cx − x2 + dx4, (A1)

4 2 0 2 4
x
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0.0
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x
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FIG. 9. (Color online) Energy spectrum of single particle in
double-well potential. The asymmetry is determined by the value
of the parameter c in (A1). In these plots c = 0, 0.04, and 0.08.

where d = 0.05 and the parameter c incorporates the asym-
metry. In Fig. 9 we show the energy spectrum as well as
the single-particle wave functions corresponding to different
values of c. From this figure we observe several features.
As expected, the energy levels are arranged in bands of two
levels. The energy difference between bands becomes similar
to the intraband energy difference as the asymmetry in the
potential grows. That is, as the asymmetry in the double-well
potential, represented by the parameter � = αt , changes with
time t , the energy spacing between bands starts to match the
energy difference among levels in the bands. This fact imposes
a restriction on the possible values of the � parameter. In
principle, one could think that the suitable range for values
of � is severely limited. However, we recall that in our
calculations all the parameters are referred to the tunneling
coupling parameter J = J ‖ = J⊥, which is related to the
energy difference of the two first energy levels at t = 0 (c = 0)
as J = (ε1 − ε0)/2 [21], with ε0 and ε1 being the ground-state
and the first-excited state energies, respectively, of the single
particle. Therefore, by restricting ourselves to those values of
�̃ = �/J � h̄ω/J and Ũ = U/J � h̄ω/J , with h̄ω ≈
(ε3 + ε2 − ε1 − ε0)/2 being the energy difference between
bands, we can validate the one-band scheme to determine the
dynamics of the proposed model Hamiltonian. For the chosen
double-well potential (A1), we found h̄ω/J ≈ 1.2 × 105 and
consequently �max/J ≈ 1.2 × 105. Thus, for values of �̃ <

�max/J , the choice of parameters in the simulations and our
model are well justified.

[1] L. D. Landau and L. M. Lifshitz, Quantum Mechanics Non-
Relativistic Theory, 3rd ed. (Elsevier Science, Ltd., Amsterdam,
1985), Vol. 3.

[2] C. M. Zener, Proc. R. Soc. London A 137, 696 (1932).
[3] Y.-A. Chen, S. D. Huber, S. Trotsky, I. Bloch, and E. Altman,

Nature Phys. 7, 61 (2011).
[4] O. Zobay and B. M. Garraway, Phys. Rev. A 61, 033603

(2000).
[5] B. Wu and Q. Niu, Phys. Rev. A 61, 023402 (2000).
[6] B. Wu and Q. Niu, New. J. Phys. 5, 104 (2003).
[7] D. Witthaut, E. M. Graefe, and H. J. Korsch, Phys. Rev. A 73,

063609 (2006).
[8] J. Liu, L. Fu, B. Y. Ou, S. G. Chen, D. I. Choi, B. Wu, and

Q. Niu, Phys. Rev. A 66, 023404 (2002).

[9] M. Jona-Lasinio, O. Morsch, M. Cristiani, N. Malossi, J. H.
Müller, E. Courtade, M. Anderlini, and E. Arimondo, Phys.
Rev. Lett. 91, 230406 (2003).

[10] D. R. Dounas-Frazer, A. M. Hermundstad, and L. D. Carr, Phys.
Rev. Lett. 99, 200402 (2007).

[11] D. van Oosten, P. van der Straten, and H. T. C. Stoof, Phys. Rev.
A 63, 053601 (2001).

[12] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B 40, 546 (1989).

[13] C. Kasztelan, S. Trotzky, Y.-A. Chen, I. Bloch, I. P. McCulloch,
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