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Ionization in elliptically polarized pulses: Multielectron polarization effects and asymmetry of
photoelectron momentum distributions
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In the tunneling regime we present a semiclassical model of above-threshold ionization with inclusion of the
Stark shift of the initial state, the Coulomb potential, and a polarization induced dipole potential. The model is
used for the investigation of the photoelectron momentum distributions in close to circularly polarized light, and
it is validated by comparison with ab initio results and experiments. The momentum distributions are shown to be
highly sensitive to the tunneling exit point, the Coulomb force, and the dipole potential from the induced dipole
in the atomic core. This multielectron potential affects both the exit point and the dynamics, as illustrated by
calculations on Ar and Mg. Analytical estimates for the position of the maximum in the photoelectron distribution
are presented, and the model is compared with other semiclassical approaches.
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I. INTRODUCTION

The interaction of a strong laser field with atoms and
molecules gives rise to a variety of phenomena, including
above-threshold ionization (ATI) along with the formation of
the high-energy plateau in the electron spectrum, excessive
yield of doubly and multiply charged ions, and the generation
of the high-order harmonics of the incident field (see, e.g.,
Refs. [1–6] for reviews). The theoretical approaches used to
describe all of these phenomena are based on the numerical
solution of the time-dependent Schrödinger equation (TDSE)
(see, e.g., Refs. [7–11] and references therein), the strong-field
approximation (SFA) [12–14], and the semiclassical model
for strong-field ionization [15–19], with the initial step being
tunneling ionization [20–22] and the subsequent dynamics
described by classical equations of motion. When all other
interactions but that of the laser field are ignored in this
propagation, this latter approach is known as the simpleman’s
model.

Although the solution of the TDSE in most cases gives
good agreement with the experimental data, it is often very
difficult to reconstruct the mechanism of the phenomena under
consideration. In the SFA the initial bound state of the atom is
unaffected by the laser field, whereas the final continuum state
does not feel the binding potential of the parent ion. Despite
the appealing physical picture of many laser-atom phenomena
provided by the SFA, it has been known for many years that
neglecting the binding potential is severe [23–31].

The three-step model [15–19] has given great insight into
strong-field phenomena. Presently semiclassical simulations
based on the three-step model are widely used due to
(i) their numerical simplicity and (ii) the physical picture
of strong-field phenomena. For some laser-atom problems,
the semiclassical simulations are, in fact, the only feasible
approach, for example, for the nonsequential double ionization
of molecules [32] and atoms by elliptically [33–36] and
circularly polarized fields [37]. For a linearly polarized field the
three-step model is equivalent to the following simple picture.
At some time an electron tunnels out of the atom and moves
along a classical trajectory in the laser field. The tunneling

rate is calculated in the static limit [20] with a field strength
set equal to the instantaneous value of the oscillating laser field.
The description of the ionization step by tunneling is expected
to be accurate when the Keldysh parameter γ = ωκ/F � 1
[12], where ω is the carrier angular frequency, F is the
field strength, and κ = √

2Ip with Ip the ionization potential
(atomic units are used throughout this paper). In most cases the
tunneled electrons reach the detector without recolliding with
their parent ions. These direct electrons have energies below
2Up, where Up = F 2/4ω2 is the ponderomotive energy. There
are also electrons which are driven back by the laser field to
rescatter on their parent ions by angles close to 180◦. These
backscattered electrons are responsible for the formation of
the high-energy plateau of the ATI spectrum, which is usually
4–6 orders of magnitude lower than the maximum of the
low-energy spectrum. In this work we focus on the direct
electrons, that is on the low-energy spectrum, therefore the
model that we use consists of essentially two steps: Ionization
and propagation. In the following we shall refer to this situation
where recollision has been switched off as the two-step model.
An example where recollision is absent is the case of ionization
in close to circularly polarized fields considered here.

Above-threshold ionization, as well as other strong-field
phenomena generated by elliptically polarized fields, has
attracted particular attention for a number of reasons. First,
the evolution of the distributions with increasing ellipticity
from linear to circular gives additional information about
the process under consideration. Second, in the experiment
it is easier to control the ellipticity than the intensity of the
fluctuating laser pulse. Finally, the kinematics caused by an
elliptically polarized field is essentially two dimensional (2D),
in contrast to the case of linear polarization, when the laser
field acts only along one spatial direction. The 2D nature,
in turn, gives rise to features and properties which are not
accessible with a linearly polarized laser field. For example,
the ATI by a circularly polarized laser pulse was used in the
first observation of the carrier-envelope effect in [38], see also
theoretical studies [39,40].

Another example is the angular distribution of photo-
electrons generated by an elliptically polarized field. While
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the SFA predicts a fourfold symmetry of the photoelectron
angular distribution with respect to the both main axes of
polarization ellipse [41], the experimentally observed distri-
butions possess only inversion symmetry, see Refs. [23–25].
This was soon realized to be an effect of the Coulomb
potential [26–28,42–44]. Other examples are the predomi-
nant ionization when the field points along the major axis
resulting in peaks in the photoelectron momentum distri-
bution along the minor axis [41,45,46], asymmetries in the
photoelectron angular distributions resulting from the ioniza-
tion of the oriented molecules [47–52], attosecond angular
streaking [53,54], and the possibility of detailed exploration
of Stark and polarization effects in the initial tunneling
step [55].

In Ref. [56] the molecular SFA was extended to include
the linear and quadratic Stark shifts. The adiabatic approx-
imation was made in order to find the effective potential
for the outer electron, which includes the laser field and
the polarization effects of the inner core. It was found in
Ref. [55] that the parabolic coordinates approximately separate
the Schrödinger equation with this effective potential. This
separation procedure defines a certain tunneling geometry,
that is, identifies the flow of the electron charge associated
with the tunneling electron in parabolic coordinates. The
emerging physical picture is referred to as tunnel ionization
in parabolic coordinates with induced dipole and Stark shift
(TIPIS). Here we describe the TIPIS model and explore its
predictions.

In the study of Ref. [55] the offset angle θ , that is, the angle
between the maximum of the momentum distribution and the
minor axes of the polarization ellipse (see Fig. 1), was in focus.
It was found that for Ar in the tunneling regime this angle is
of the order of 10◦–15◦ and decreasing with laser intensity,
whereas for He the angle was 5◦–10◦ and less sensitive to the
laser intensity. The difference between Ar and He was related
to the difference in polarizability of the two systems. It is
interesting to find a situation where the offset angle is larger,
that is, the effect of rotation away from the minor axis is more
pronounced. Here we consider not only the offset angle, but
the shape of the whole distribution and its evolution with the
intensity and wavelength.

In this paper we (i) present an exhaustive derivation of
the TIPIS model; (ii) validate the semiclassical approach
by comparing with TDSE results; (iii) analyze momentum
distribution generated by an elliptically polarized laser field;
(iv) further investigate the role of the polarization effects;
and (v) compare different approaches to the semiclassical
simulations of the ATI.

The paper is organized as follows. In Sec. II we discuss
approaches to the classical simulation of the momentum
distribution, present a detailed derivation of the TIPIS
model, and discuss its range of applicability. Our results
are discussed in Sec III and conclusions are given in
Sec. IV.

II. SEMICLASSICAL MODELS

In the semiclassical approach to ATI, the electron is ejected
from the atom by tunneling [20–22]. Subsequently, Newton’s
equations of motion are solved for the electron, starting out at

the exit of the tunnel in the combined atomic or ionic potential
V (r) and the electric field F(t) of the laser pulse,

d2r
dt2

= −∇V (r) − F(t). (1)

Semiclassical models have been successfully used to explain
various strong-field phenomena involving single ionization
(see, e.g. [55,57–64]) and double ionization [34–37,65,66].
The abovementioned models vary greatly with respect to the
particular implementation. Here we present the semiclassical
model referred to as TIPIS [55].

To solve Eq. (1) one needs to specify the initial conditions
for the electron in phase-space just after the escape from the
atom. The static tunneling rate with which the classical tra-
jectories are weighted is a quantum input in the semiclassical
model. The exit point at the outer turning point of the barrier
also depends critically on the quantum model used to solve the
tunneling problem—a key point that we come back to below.
To start, we consider the static problem of an electron, bound
by V (r) in the presence of the static electric field F (which
should be interpreted as the instantaneous value of the laser
field at the time of ionization and it is assumed to point in the
positive z direction) [67],( − 1

2� + V (r) + F · r
)
� = −Ip(F )�. (2)

In Eq. (2) we have included the static Stark shifts [50,56],

Ip(F ) = Ip(0) + 1
2 (αN − αI )F 2, (3)

where Ip(0) is the field-free ionization potential and αN and
αI are the static polarizabilies of the atomic system with
charge Z − 1 and the Z-charged atomic ion, respectively.
We have specialized to the case of atoms, with no permanent
dipole moment and therefore no linear Stark shift is present in
Eq. (3). The above perturbative expansion of the Stark-shifted
ionization potential holds for shifts that are small compared to
the field-free ionization potential Ip(0). In all cases presented
in this paper, this requirement is satisfied.

Following the ionization step, we will consider propagation
in the potential V (r),

V (r,t) = −Z

r
− αI F (t) · r

r3
, (4)

which is valid at large and intermediate distances [56,67], and
where the multielectron effect expressed through the induced
dipole of the ion [αI F (t)] is taken into account [55,56]. We
refer to the second term of Eq. (4) as the multielectron (ME)
term.

In semiclassical simulations it is important to find the tunnel
exit point ze, from where the classical trajectory starts. In the
next two subsections we present two possible approximate
separations of the static tunneling problem that lead to different
values of the tunnel exit point, and therefore different results
in the semiclassical model.

A. Field direction model

The simplest and most widely used approach to determine
the tunneling path and ze is to consider the potential barrier
formed by the atomic potential and the electric field of the
laser in a 1D cut along the direction of the field. We denote
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this approach as the field direction model (FDM) (see, e.g.,
Refs. [57,58,63,68,69]), where this model was used. The
tunnel exit point is found from

V (ze) + Fze = −Ip(F ). (5)

However, in this approach, it is implicitly assumed that the
tunneling problem can be treated as one dimensional along the
field direction. The direction along the field can be separated
from the transverse coordinates in Eq. (2) if the potential does
not depend on the transverse dimension, that is when V (r) =
V (z). Then the wave function can be sought as a product
�(x,y,z) = �2(z)�1(x,y), and Eq. (2) is separated as follows:

−1

2

(
∂2

∂x2
+ ∂2

∂y2

)
�1(x,y) = λ1�1(x,y), (6)

λ1 = p2
x + p2

y

2
= p2

⊥
2

, (7)(
−1

2

∂2

∂z2
+ V (z) + Fz

)
�2(z) = λ2�2(z), (8)

where λ1 and λ2 are the separation constants. The sum of the
separation constants is equal to the energy of the initial state

λ1 + λ2 = −Ip(F ), (9)

and therefore

λ2 = −
(

Ip (F ) + p2
⊥

2

)
. (10)

Equation (6) states the fact that because the artificial potential
used in the FDM does not depend on the transverse dimension,
the electron can be described as a free particle in these degrees
of freedom. On the other hand, Eq. (8) gives the effective 1D
tunneling problem where Eq. (10) shows that the effective
ionization potential is increased by the transverse kinetic
energy of the particle [70]. The minimal ionization potential
that occurs for transverse energy zero is taken into the equation
for the tunnel exit point in FDM (5).

It is clear that the potential in Eq. (4), even without the ME
term, is not in the form required for a separation in the FDM. A
much more accurate approach is to use parabolic coordinates
as discussed in the next subsection.

B. Separated problem in parabolic coordinates
and TIPIS model

To separate the problem of an electron bound by a pure
Coulomb potential in a static field, parabolic coordinates are
used [20]:

ξ = r + z, η = r − z, φ = arctan (y/x) . (11)

Under the assumption that the electric field vector points in the
positive z direction, the separation results in two 1D problems:
in the ξ coordinate the electron is trapped in an attractive
potential without the possibility to tunnel out, whereas in the η

coordinate a potential barrier exists that enables tunneling [20].
However, for the potential in Eq. (4), where the ME term
is included, and also, in general for atomic and molecular
potentials, such a separation is not possible. In Ref. [55] an
approximate separation in the limit ξ/η � 1 was carried out.
As the external field is increased, the exit point moves to

smaller distances. Hence, the approximate separation becomes
inaccurate if the field strength becomes too large.

To perform the separation we seek the solution to Eq. (2) in
the product form �(r) = (1/

√
ξη)f1(ξ )f2(η)eimφ/

√
2π , and

after retaining the lowest-order term in ξ/η coming from αI F ·
r/r3 we arrive at two separated equations

d2f1(ξ )

dξ 2
+ 2

(
−Ip(F )

4
− V1(ξ,F )

)
f1(ξ ) = 0, (12)

d2f2(η)

dη2
+ 2

(
−Ip(F )

4
− V2(η,F )

)
f2(η) = 0. (13)

The potentials V1 and V2 are

V1(ξ,F ) = −β1(F )

2ξ
+ m2 − 1

8ξ 2
+ Fξ

8
, (14)

V2(η,F ) = −β2(F )

2η
+ m2 − 1

8η2
− Fη

8
+ αIF

η2
, (15)

where β1 (F ) and β2 (F ) are the separation constants fulfilling

β1(F ) + β2(F ) = Z, (16)

β2(F ) = Z − (1 + |m|)
√

2Ip(F )

2
. (17)

Again, the potential V1(ξ,F ) along the ξ coordinate is a
bound one, while V2 (η,F ) shows that along the η coordinate
tunneling is possible. To lowest order in ξ/η, the potential (14)
is identical to the potential obtained for ξ when separating the
pure Coulomb plus field problem. In addition to the terms that
appear for pure Coulomb potential and a field, the potential
(15) along the η direction contains the multielectron term
αIF/η2. The sum of the separation constants gives the nuclear
charge Z [Eq. (16)], in contrast to the FDM where the sum of
the separation constants gives the Stark-shifted eigenenergy of
the initial state [Eq. (9)].

The separation in parabolic coordinates is not to be
understood as a coordinate transformation from the FDM
since Eqs. (13) and (8) define different tunneling problems.
The tunneling occurs through the η coordinate; this defines
the geometry of tunneling, that is, the “natural” path of the
tunneling current flow in atoms [55]. The tunnel exit point ze

is obtained as ze ≈ −ηe/2, where ηe is obtained by equating
the potential V2 of Eq. (15) with the energy term −Ip/4, that
is,

V2(ηe,F ) = −Ip(F )

4
. (18)

The approximate separation of the tunneling problem in
parabolic coordinates, together with the inclusion of Stark
shifts and the ME term, are the essential ingredients of the
TIPIS model. We note that, contrary to the FDM, in this
treatment no unphysical assumption about free motion in the
transverse degrees of freedom is introduced.

Equation (18) for ηe is a cubic equation. However, for exit
points that are sufficiently far away from the origin, that is, for

ηe � 2[αIF + (m2 − 1)/8]

β2(F )
, (19)
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Eq. (18) becomes quadratic and the exit point ηe is well
approximated by

ηe ≈
Ip(F ) +

√
I 2
p(F ) − 4β2(F )F

F
. (20)

In Cartesian coordinates, using ze ≈ −ηe/2,

ze ≈ −
Ip(F ) +

√
I 2
p(F ) − 4β2(F )F

2F
, (21)

which is different from the corresponding exit point in FDM,
following from (5)

ze ≈ −
Ip(F ) +

√
I 2
p(F ) − 4ZF

2F
. (22)

Below we show examples highlighting that the final momen-
tum depends very sensitively on the use of either Eq. (18) or
Eq. (22) for the exit point.

C. Details of the classical simulations

In our calculations we consider the following short laser
pulse elliptically polarized in the (x,y) plane:

F (t) = F0√
1 + ε2

sin2 (πt/τL)

× [cos(ωt + ϕ)ex + ε sin(ωt + ϕ)ey], (23)

with the duration τL = (2π/ω)np and a sine-square envelope,
and where np is the number of cycles, ε is the ellipticity,
and ϕ is the carrier-envelope phase. As in recent experiments
[55] we use ε = 0.78 throughout. Note that the rescattering
process is suppressed for close to circularly polarized field
(see, e.g., [71]), and direct electrons, which we are interested
in, dominate in the ATI spectrum.

In the present studies we assume that the electron has
zero initial velocity in the direction of the laser field v|| =
0, however, we include an initial transverse velocity v0⊥.
The ionization instant and this initial transverse velocity
are distributed according to the static ionization rate in the
tunneling regime [21,22,68]:

w (t0,v0) ∼ exp

(
−2κ

3

3F

)
exp

(
−κv2

0⊥
F

)
, (24)

where F = F (t0). For simplicity, we omit the preexponential
factor in Eq. (24). Although this factor changes the total
ionization rate by several orders of magnitude, its effect on
the shape of the final momentum distributions, which we are
interested in, is weak for atoms. Moreover, analysis of the
transverse momentum distributions in terms of the Siegert
eigenfunctions [72] showed that the Gaussian shape of the
distribution in Eq. (24) holds if the laser field is less than
0.2 a.u., which is the regime of interest in our case.

An ensemble of 1.5 × 106 trajectories weighted with the
probability given by Eq. (24) was used to calculate the
momentum distributions. Equation (1) was solved using
a fourth-order Runge-Kutta method with adaptive stepsize
control [73]. It is necessary to soften the 1/r2 ME term in
numerical simulations because it tends to the infinity as r → 0.
To do so we multiply this term by the factor exp (−b0/r),

where b0 = 0.1 a.u. Otherwise, nonphysical bursts can appear
in the momentum distributions. Bearing in mind that it is
often very difficult to stabilize the carrier-envelope phase
in the experiment, we choose ϕ in Eq. (23) randomly for
each trajectory. The distributions calculated in this way are,
however, very similar to those with ϕ = π (or ϕ = 0) since the
absolute maximum of the field (23) occurs at that particular
phase and according to Eq. (24) the absolute maximum of the
field is strongly favored. We typically use np = 6.

The calculation of the momentum distributions of the
photoelectrons must take into account the possible population
of Rydberg orbits, see [59,74]. So we follow the procedure of
Ref. [74] and exclude trajectories with negative energy at the
end of the pulse, and take into account the subsequent motion
of electrons with positive energies in the Coulomb field of
the atomic residual. The electron momentum q = q (t0,v0,τL)
and its position r = r (t0,v0,τL) at the end of the laser pulse
uniquely determine the asymptotic momentum:

P = P
P (L × a) − a

1 + p2L2
. (25)

Here L = r × q and a = q × L − r/r are the conserved
angular momentum and Runge-Lenz vector, respectively. The
above equation corrects a misprint in Ref. [74]. The absolute
value P of the asymptotic momentum, appearing in Eq. (25),
is found from energy conservation:

q2

2
− Z

r
= P 2

2
. (26)

D. Analytical estimates

Numerical simulations give valuable insights into the
properties and evolution of the momentum distributions.
Nevertheless, it would be desirable to have some analytical
estimates for better understanding of the underlying physics.
Let us then write the asymptotic momentum of an electron
tunneling at time t0 with nonzero initial velocity v0 as a sum:

P(t0,v0) = PL(t0) + v0 + PC(t0,v0)

+ PME (t0,v0) . (27)

Here PC and PME are the contributions of the Coulomb force
FC = −r/r3 and of the multielectron force FME = ∇[αI F(t) ·
r/r3], respectively, and PL(t0) = − ∫ τL

t0
F(t)dt is the integral

of the force due to the external field F(t) from the time of
ionization. In the simpleman’s model PL is the estimate of
the final momentum. Here, however, the effects of other force
terms are significant. In order to estimate PC and PME, one
can use the approach of Refs. [25,74]. Hence we treat the
Coulomb and ME potentials as perturbations and calculate
each contribution by integrating the respective force along
a trajectory rL(t) = ∫ t

t0
PL(t ′)dt ′ + v0(t − t0) governed by the

laser field only:

PC = −
∫ +∞

t0

dt
rL(t)

r3
L(t)

, (28)

PME =
∫ +∞

t0

dt

(
αIF(t)

r3
L

− 3αI [F(t) · rL]rL

r5
L

)
, (29)
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where the upper integration limit is extended to infinity. We
restrict our consideration to sufficiently large ellipticities.
Therefore, the trajectory of an electron will not come very
close to the atomic residual for the vast majority of initial
conditions. Already at the exit of the tunnel the Coulomb and
ME forces are small as compared to that of the laser field and
they decrease further along the trajectory [25].

Estimates for both contributions can be obtained by calcu-
lating the integrals in Eqs. (28) and (29) along the trajectory
generated by a constant field F (t) = F (t0). Then, for small
initial velocities, v0 � κ, the main contributions are given by

PC = −π

4

√
2

r3
0 F (t0)

nF (t0) − v0⊥
2r2

0 F (t0)
n⊥ (t0) (30)

and

PME = 3παI

8

√
2F (t0)

r5
0

nF (t0) + αIv0⊥
r3

0

n⊥ (t0) , (31)

where r0 is the absolute value of the tunnel exit point, nF (t0)
is a unit vector along the laser field at time t0, and n⊥ (t0) is a
unit vector in the polarization plane perpendicular to the laser
field at t0.

One can improve the estimate of Eq. (30) by evaluating
the integral in Eq. (28) along a trajectory in the field F (t) ≈
F (t0) + F′ (t0) (t − t0). For simplicity, in this analytical devel-
opment let us consider only a single electron trajectory, cor-
responding to the maximum of the field. For such a trajectory
and for carrier-envelope phase ϕ = π one has t0 = τL/2, and,
therefore, nF = ex , n⊥ = ey , and F = F0/

√
1 + ε2. Then, one

has the following estimate of the Coulomb contribution:

PC (t0 = τL/2,v0⊥ = 0) = −
(

π

4

√
2

Fr3
0

ex + εω

6Fr0
ey

)
.

(32)

Let us also introduce the total correction PI = PC + PME due
to the ion potential to the electron momentum:

PI (t0 = τL/2,v0⊥ = 0) = π

4

√
2

Fr3
0

(
3αIF

2r0
− 1

)
ex

− εω

6Fr0
ey. (33)

For the parameters considered here 3αIF/2r0 � 1 so the
estimates Eqs. (32) and (33) show that the contribution of
the ME term is small compared to the Coulomb correction.
Both contributions increase with increasing intensity, but PME

increases faster than PC due to the additional factor of r0 in
the denominator, see Eq. (33). As we shall see in Sec. III B
the estimates provided by Eqs. (32) and (33) underestimate the
effect of the ME term and do not account quantitatively for the
momentum distributions. However, they do provide valuable
insight in the evolution and properties of the momentum
distributions.

III. RESULTS AND DISCUSSION

In the following, using our semiclassical model, we con-
sider the momentum distributions from elliptically polarized

FIG. 1. (Color online) The 2D electron momentum distribution
for ionization of Ar by a Ti:sapphire laser pulse (λ = 800 nm) with
a duration np = 6 cycles, peak intensity of 0.8 × 1015 W/cm2, and
ellipticity ε = 0.78. The Keldysh parameter is γ = 0.5. The offset
angle θ is shown on the figure. The black curve represents −A (t),
where A (t) is the vector potential corresponding to the field (23).

pulses, compare them with the solution of the TDSE, and
consider the differences between the FDM and TIPIS model.
In Ref. [55] the TIPIS model was already compared with exper-
imental data for the rotation (offset) angle of the momentum
distribution generated by elliptically polarized field, that is,
the angle θ between the maximum of the distribution and the
minor axes of the polarization ellipse. In Fig. 1 we present the
momentum distribution in the polarization plane for ionization
of Ar by the field of Ti:sapphire laser. The figure shows the
main characteristics of the momentum distribution consisting
of two main lobes rotated by the angle θ with respect to the
minor axis, and that the distribution peaks at −A (t).

A. Validation of the TIPIS model

We establish the validity of our semiclassical model by
comparison with the experiment and an ab initio solution of
the TDSE. In Fig. 2 we present the momentum distribution
in the polarization plane for the case of ionization of the
hydrogen atom. In Ref. [75] the solution of the TDSE for the
case of the hydrogen atom in a few-cycle circularly polarized
laser pulse was presented. The distribution now only has a
single main lobe. This is due to the short duration of the
phase-stabilized pulse. Calculations in our semiclassical model
for the exact same parameters as in Ref. [75] yielded the
momentum distribution in Fig. 2. Comparing the momentum
distributions obtained with the TDSE, the distributions in Fig. 2
look qualitatively very similar. The interference pattern that
is present in the TDSE momentum distribution is not repro-
ducible by our semiclassical model. A quantitative comparison
of the distributions can be made by calculating the offset angle:
for the TDSE the offset angle is 23◦ for 5.0 × 1013 W/cm2 and
12◦ for 1014 W/cm2 [75], while the offset angles calculated
at these intensities within the semiclassical model are 18◦
and 15◦, respectively. The agreement is quite good, also for
lower intensity where γ = 1.5, and the application of tunneling
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FIG. 2. (Color online) The 2D electron momentum distributions
in the polarization plane for ionization of H(1s) by circularly polarized
Ti:sapphire laser pulse with a duration np = 3 cycles and peak
intensity of 1014 W/cm2. Panels (a) and (b) show results obtained
by solving the TDSE, and using the classical simulations within the
TIPIS model, respectively. The curves represent −A (t), where A (t)
is the vector potential, defined as in Ref. [75] for this particular figure.

theory for the description of the initial tunneling step is
expected to be less accurate.

B. Momentum distributions for λ = 1600 and λ = 800 nm:
Difference between the FDM and the TIPIS model, and the

role of the ME term

We are interested in a situation where the offset angle θ

is larger than for noble gases, that is, when the rotation of
the momentum distribution is more pronounced, so that any
differences between the semiclassical approaches and also the
role of the ME term could be more easily observed. At first
glance it would seem that alkali metals are suitable candidates
for a large θ . Indeed, the static polarizabilities of the Ar and
Ar+ atom are αN = 11.08 a.u. and αI = 7.2 a.u, and, for
example, in the case of Li the same quantities are equal to 164.2
and 0.1883 a.u., respectively [76,77]. However, alkali metals
have very low ionization potential (for Li I0 = 5.39 eV) and
this prevents us from using them in our simulations. In order to
understand this fact, let us discuss the applicability conditions
of the TIPIS model in more detail.

The validity range of the simulations based on the TIPIS
approach is restricted by the two following conditions. On one
hand, the laser intensity should not be too high: The second
term of Eq. (3) should be not more than 10−20% of the first
one. On the other hand, the laser field needs to be strong enough
to keep the Keldysh parameter less than or of the order of
unity, such that the ionization probability can be described by
tunneling. Thus for each atomic species and given wavelength
(in our case λ = 1600 or λ = 800 nm) the aforementioned
conditions define a range of acceptable intensities. In the
case of Li and λ = 800 nm, this range of intensities is
8.7 × 1012−8.7 × 1013 W/cm2, which corresponds to the
following interval of the Keldysh parameter: γ = 4.8 − 1.6.
Although the tunneling ionization rate often works even when
the Keldysh parameter is several times greater than unity (see,
e.g., Ref. [78]), we do not consider alkali metals here.

A close inspection of the ionization potentials and static
polarizabilities of different atomic species shows that elements
as Mg, Cu, or Zn can be used for the present purpose. Indeed,
these elements have higher ionization potentials than the

alkali metals. Simultaneously, their polarizabilities are high
and substantially different from those of the corresponding
ions. We perform our simulations for Mg since multiphoton
ionization of this atom has already attracted attention in ex-
periment [79–83] and theory [84–88]. For Mg, Ip = 0.28 a.u.,
αN = 71.33 a.u., and αI = 35.00 a.u., and at the wavelength of
800 nm, our simulation technique is applicable at the intensities
of 2.35 × 1013−1.0 × 1014 W/cm2, for which the Keldysh
parameter is γ = 2.0 − 1.0.

The results of our simulations for Mg are shown in
Figs. 3–5. First we turn our attention to Figs. 3 and 4
where 2D momentum distributions at three different intensities
calculated within three different semiclassical models at
two wavelengths are shown. The difference between the
semiclassical models compared in Figs. 3 and 4 is the potential
V (r) in which the classical trajectories (1) are propagated. The
first column of Figs. 3 and 4, that is, panels (a), (d), and (g),
presents the distributions, calculated ignoring the influence
of the ionic potential on the electron motion after tunneling,
that is, the tunneled electron moves only in the laser field
(the simpleman’s model). It is reasonable therefore that these
distributions are very similar to those obtained within the SFA
(see, e.g. Ref. [78]). The second column of Figs. 3 and 4
shows the same distributions, but now including the Coulomb
potential. Finally, the third column presents the results of the
full TIPIS model when an electron moves under the action of
the laser field and the potential of Eq. (4). It should be stressed
that in all three cases the exit points were calculated with the
account of the Stark shift, while for the distributions in the first
and the second columns of Figs. 3 and 4, the ME term was
omitted in Eq. (18). Moreover, the effect of the capture into
Rydberg states was taken into account while calculating the
distributions of Figs. 3 and 4, see Sec. II above.

The distributions of Fig. 3 are similar to those for Ar at
800 nm, see Fig. 1 and Ref. [55]. As expected, the effect of the
rotation is more pronounced, now θ ∈ [30◦; 40◦], whereas for
Ar it was θ ∈ [10◦; 15◦] (see Fig. 1). At the same intensities
the shape of the distributions at a wavelength of 800 nm
differs from that at a wavelength of 1600 nm, compare Fig. 3
and Fig. 4. The reason is that the Keldysh parameter at λ =
800 nm is two times greater than at λ = 1600 nm. This, in turn,
has two consequences. First, for larger γ the 2D distribution
calculated within the plain SM [see Figs. 4(a), 4(d), and 4(g)]
is two times closer to the origin of the (px,py) plane because
one has P = PL ∼ (F/ω,εF/ω) = (κ/γ,εκ/γ ). Conversely,
at λ = 800 nm the relative yield of neutral excited atoms N∗
with respect to the number of singly charged ions N+ is larger
than at a wavelength of 1600 nm in accordance with Ref. [74],
where N∗/N+ ∼ 1/λ5/2, provided the field strength F is the
same for the two wavelengths.

In the first column of Figs. 3 and 4 the momentum
distributions consist of two lobes along the minor polarization
axis (along the Py axis), that peak at Py equal to the value
of the vector potential at the time of maximum emission
[the time when the electric field (23) points along the major
polarization axis]. In the second and third columns of Figs. 3
and 4, the momentum distributions are shifted with respect to
the minor polarization axis of the field by some offset angle,
discussed above in connection with Fig. 1. By comparison
between the second and third columns in Figs. 3 and 4 we
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FIG. 3. (Color online) Momentum distributions of the photoelectrons emitted from Mg at a wavelength of 1600 nm and ellipticity ε = 0.78
calculated within the three different versions of semiclassical approaches. The left column, that is, panels (a), (d), and (g), shows the distributions,
calculated ignoring the ionic potential after tunneling, when the tunneled electron moves in the laser field only. The middle column [panels (b),
(e), and (h)] depicts the same distributions, but with consideration for the Coulomb field. The right column [panels (c), (f), and (i)] presents
the results of the full TIPIS model, when both terms are taken into account in Eq. (4). The distributions (a)–(c), (d)–(f), and (g)–(i) correspond
to the intensity of 2.35, 3.5, and 5.0 × 1013 W/cm2, and to the Keldysh parameter of 1.05, 0.85, and 0.7, respectively. The same color scale is
used for all the distributions.

can gauge the influence of the ME term. At low intensities
[Figs. 3(b), 3(c), 4(b), and 4(c)] the ME term does not play
any noticeable role: there is hardly any difference whether
the ME term is taken into account or not. However, the
situation changes with increasing intensity: The offset angles
θ of the distributions of Figs. 3(f) and 3(i) are smaller than
those of Figs. 3(e) and 3(h). This is so because in the initial
stages of the propagation the ME and Coulomb forces act in
opposite directions, which results in a smaller offset angle
when the ME term is taken into account. This feature is
also captured in the analytic estimates: the x components of
the Coulomb and ME corrections of the electron momentum
have different signs, see Eq. (33). Next, detailed comparison
of the semiclassical calculations and the analytic estimates

show that the estimate of Eq. (31) for the contribution of
the ME term is quite good. For example, at the intensity
of 5.0 × 1013 W/cm2 and at a wavelength of 800 nm, for
ϕ = π and Ip = 7.64 eV (Mg atom), and for initial conditions,
which correspond to the maximum of the field Eq. (23), that
is, for t0 = τL/2 and v0 = 0, one has PME = (0.058,0) from
the estimate Eq. (31), whereas exact numerical solution of
Newton’s equations gives (0.046, − 0.01). Contrary to this, the
estimate of the Coulomb contribution Eq. (30) is not accurate.
The latter does not describe a decrease in the Py component
due to the Coulomb field (along minor axis), see Fig. 4, which
is clear from the following example: For the same initial
conditions and field parameters as above, the estimate Eq. (30)
gives PC = (−0.27,0), whereas the numerical solution gives
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FIG. 4. (Color online) Momentum distributions of the photoelectrons emitted from Mg at a wavelength of 800 nm and ellipticity ε = 0.78
calculated within the three different versions of semiclassical approaches. The left column, that is, panels (a), (d), and (g), shows the distributions,
calculated ignoring the ionic potential after tunneling, when the tunneled electron moves in the laser field only. The middle column [panels (b),
(e), and (h)] depicts the same distributions, but with consideration for the Coulomb field. The right column [panels (c), (f), and (i)] presents the
results of the full TIPIS model, when both terms are taken into account in Eq. (4). The distributions (a)–(c), (d)–(f), and (g)–(i) correspond to
the intensity of 2.35, 3.5, and 5.0 × 1013 W/cm2, and to the Keldysh parameter of 2.1, 1.7, and 1.4, respectively. The same color scale is used
for all the distributions.

(−0.31, − 0.19) with a nonvanishing y component. Therefore
the estimate of Eq. (32) is to be used instead of Eq. (30).

The evolution of the distributions at λ = 800 nm with
increasing intensity is more dramatic since not only do the
angular offset changes, but also the shapes of the momentum
distributions. The two main lobes in the momentum distribu-
tion, although distorted, are still present, but also a substantial
amount of probability is located in the low-energy part of the
distribution. The central (low energy) part of the distribution
shown in Fig. 4(e) is more depleted than that of Fig. 4(f). One
could expect that this depletion results from the more effective
capture into bound states in the absence of the ME force. This
is, however, not true. From the estimate (33) one can see that

the magnitude of the final electronic momentum is slightly
decreased when the ME term is taken into account. This leads
to a larger number of electronic trajectories finishing with
smaller radial momenta and, in accord with Eq. (26), more
trajectories will finish with negative energy and be captured.
Hence the effect of capture after the end of the pulse is stronger
when the ME term is taken into account in the potential
of Eq. (4): The relative yields of the captured trajectories
associated with the momentum distributions of Figs. 4(e) and
4(f) are equal to 0.06 and 0.13, respectively. As expected from
Eq. (15), it is seen from Figs. 3 and 4 that the influence of the
ME term increases with increasing intensity, which is again
consistent with the estimate of Eq. (31).
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FIG. 5. (Color online) The electron momentum distributions for
ionization of Mg at a wavelength of 1600 nm for the ellipticity
ε = 0.78 and two different intensities: (a), (b) 2.35 × 1013 W/cm2

and (c), (d) 3.5 × 1013 W/cm2, which corresponds to the Keldysh
parameter γ of 1.05 and 0.85, respectively. The left column of the
panels corresponds to the TIPIS model, whereas the right one presents
the results of the FDM with the potential given by Eq. (4). In both
cases Stark shifts and ME terms are included. The color scale is the
same for all the panels.

Next we test to which extent the separation procedure of the
static problem of an atom plus field into an one-dimensional
tunneling problem, described in Secs. II A and II B, can influ-
ence the outcome of the semiclassical simulation. Momentum
distributions calculated according to the full TIPIS approach
and within the FDM with all force terms are shown in Fig. 5
for three different laser intensities at wavelengths of 1600 nm.
The only difference between these approaches is the position
of the exit point, which is different in TIPIS and in FDM.
We note that in all cases in Fig. 5 the tunneling occurs
below the barrier, calculated in FDM or TIPIS. Figure 5
illustrates that the exit point plays a crucial role in semiclassical
simulations.

Since β2(F ) < Z [see Eq. (17)], and comparing Eqs. (21)
and (22), it is evident that the exit point evaluated with the
TIPIS model is larger than in the FDM. This is true whether
the inequality Eq. (19) is valid (as in the case of Figs. 3–5)
or not. Smaller exit points result in larger influence of the

parent ion potential on the trajectory of the tunnelled electron
and therefore larger offset angle. This explains why the offset
angle is larger in the FDM. At the lower intensity [Figs. 5(a)
and 5(b)], the difference between the exit points in the FDM
and the TIPIS model is small and therefore the differences
between the momentum distributions [Figs. 5(a) and 5(b)] are
small. Increasing the intensity [Figs. 5(c) and 5(d)], the tunnel
exit point moves closer to the origin and simultaneously the
difference between the exit points obtained with the FDM and
the TIPIS model increases. Hence, there is a large difference
between the offset angles in Figs. 5(c) and 5(d). These trends
are correctly captured in the analytic estimates (30)–(31) and
(33): they are all inverse proportional to powers of the tunnel
exit point r0. In the final expression of Eq. (33), the ratio
between the x and the y component of final momentum is
inverse proportional to the tunnel exit point, which gives
correct dependence of the offset angle on the tunnel exit point.

IV. CONCLUSIONS

In conclusion, we have investigated in detail a recently
introduced physical picture of above-threshold ionization [55]:
Tunnel ionization in parabolic coordinates with induced dipole
and Stark shift followed by classical propagation in all force
fields. We have tested this model by applying it for the
investigation of the photoelectron momentum distributions in
elliptically polarized field. The present approach demonstrates
good agreement with recent experimental data [55] and with
TDSE [75]. The role of the multielectron effects in the
formation of the photoelectron momentum distributions is
clearly identified and investigated over a wide range of laser
intensities and wavelengths. The tunnel exit point, and with
it the separation procedure yielding the one-dimensional tun-
neling problem, are clearly demonstrated to have a profound
influence on the momentum distributions. The evolution of
the momentum distributions with respect to the intensity, the
terms in the atomic (ionic) potential, and the tunnel exit point
are correctly captured by the analytic estimates and scalings
proposed here. Finally, all the effects presented here are studied
using pulses with random carrier-envelope phase and therefore
can be easily checked in an experiment.
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Denmark, 2007.

[12] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys.
JETP 20, 1307 (1965)].

[13] F. H. M. Faisal, J. Phys. B 6, L89 (1973).
[14] H. R. Reiss, Phys. Rev. A 22, 1786 (1980).
[15] H. B. van Linden van den Heuvell and H. G. Muller, in

Multiphoton Processes, edited by S. J. Smith and P. L. Knight
(Cambridge University Press, Cambridge, 1988).

[16] T. F. Gallagher, Phys. Rev. Lett. 61, 2304 (1988).
[17] P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev. Lett. 62,

1259 (1989).
[18] K. C. Kulander, K. J. Schafer, and J. L. Krause, in Super-Intense

Laser-Atom Physics, edited by B. Piraux, A. L’Hullier, and
K. Rzazewski (Plenum, New York, 1993).

[19] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[20] L. D. Landau and E. M. Lifschitz, Quantum Mechanics Non-

relativistic Theory, 2nd ed. (Pergamon, Oxford, 1965).
[21] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Zh. Eksp.

Teor. Fiz. 50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)].
[22] M. V. Ammosov, N. B. Delone, and V. P. Krainov, Zh. Eksp.

Teor. Fiz. 91, 2008 (1986) [Sov. Phys. JETP 64, 1191 (1986)].
[23] M. Bashkansky, P. H. Bucksbaum, and D. W. Schumacher, Phys.

Rev. Lett. 60, 2458 (1988).
[24] G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold,

and W. Becker, Phys. Rev. Lett. 84, 3791 (2000).
[25] S. P. Goreslavski, G. G. Paulus, S. V. Popruzhenko, and N. I.

Shvetsov-Shilovski, Phys. Rev. Lett. 93, 233002 (2004).
[26] S. Basile, F. Trombetta, and G. Ferrante, Phys. Rev. Lett. 61,

2435 (1988).
[27] P. Lambropoulos and X. Tang, Phys. Rev. Lett. 61, 2506 (1988).
[28] H. G. Muller, G. Petite, and P. Agostini, Phys. Rev. Lett. 61,

2507 (1988).
[29] S. V. Popruzhenko and D. Bauer, J. Mod. Opt. 55, 2573 (2008).
[30] S. V. Popruzhenko, G. G. Paulus, and D. Bauer, Phys. Rev. A

77, 053409 (2008).
[31] T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer,

Phys. Rev. Lett. 105, 253002 (2010).
[32] A. Emmanouilidou and D. S. Tchitchekova, Phys. Rev. A 84,

033407 (2011).
[33] N. I. Shvetsov-Shilovski, S. P. Goreslavski, S. V. Popruzhenko,

and W. Becker, Phys. Rev. A 77, 063405 (2008).
[34] X. Wang and J. H. Eberly, Phys. Rev. Lett. 103, 103007 (2009).
[35] X. Wang and J. H. Eberly, Phys. Rev. Lett. 105, 083001 (2010).
[36] X. Wang and J. H. Eberly, New J. Phys. 12, 093047 (2010).
[37] F. Mauger, C. Chandre, and T. Uzer, Phys. Rel. Lett. 105, 083002

(2010).
[38] G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli,

S. Stagira, E. Priori, and S. De. Silvestri, Nature (London) 414,
182 (2001).
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[40] D. B. Milošević, G. G. Paulus, and W. Becker, Laser Phys. 13,
948 (2003).

[41] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Zh. Eskp.
Teor. Fiz. 51, 309 (1966) [Sov. Phys. JETP 24, 207 (1967)].

[42] P. Krstic and M. H. Mittleman, Phys. Rev. A 44, 5938 (1991).
[43] A. Jaron, J. Z. Kaminski, and F. Ehlotzky, Opt. Commun. 163,

115 (1999).
[44] N. L. Manakov, M. V. Frolov, B. Borca, and A. F. Starace, J.

Phys. B 33, R141 (2000).
[45] S. P. Goreslavski and S. V. Popruzhenko, Zh. Eksp. Teor. Fiz.

110, 1200 (1996) [Sov. Phys. JETP 83, 661 (1996)].
[46] G. G. Paulus, F. Zacher, H. Walther, A. Lohr, W. Becker, and

M. Kleber, Phys. Rev. Lett. 80, 484 (1998).
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Milošević, Phys. Rev. A 80, 013420 (2009).
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