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Sub-millikelvin spatial thermometry of a single Doppler-cooled ion in a Paul trap
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We report on observations of the thermal motion of a single, Doppler-cooled ion along the axis of a linear
radio-frequency quadrupole trap. We show that for a harmonic potential the thermal occupation of energy levels
leads to a Gaussian distribution of the ion’s axial position. The dependence of the spatial thermal spread on the
trap potential is used for precise calibration of our imaging system’s point spread function and sub-millikelvin
thermometry. We employ this technique to investigate the laser detuning dependence of the Doppler temperature.
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I. INTRODUCTION

In the final stages of laser cooling the motion of an atom
is dominated by the random recoils of photon absorption and
emission events [1,2]. If the atom is harmonically confined,
this Brownian motion [3,4] is expected to result in a Gaussian
distribution of its position and velocity [5–7]. The width of
this distribution can be intuitively interpreted as temperature,
which we define as the time-averaged energy divided by Boltz-
mann’s constant for a single particle. This is a powerful notion,
since many experiments require low residual kinetic energy,
e.g., for precision metrology [8–12] or quantum computation
and simulation [13,14]. In this article we study the spatial
probability density of a Doppler-cooled Mg+ ion trapped in a
linear radio-frequency (rf) trap, confirm the expected Gaussian
distribution and demonstrate that our straightforward imaging
approach enables precise thermometry, as required for a wide
range of experiments.

While in the strong-binding limit the comparison of the
strengths of motional sidebands allows precise temperature
measurements [15,16], in the weak-binding limit the side-
bands are not resolved. In this regime, ion temperatures are
usually derived from the fluorescence line shapes, which are
decomposed into their Lorentzian lifetime contribution and the
thermal distribution [17] by fitting a Voigt function. However,
this method relies on the assumption of a Gaussian thermal dis-
tribution and the separation of the lifetime and thermal widths
can be accompanied by rather large uncertainties [9,18]. Upper
limits for the temperatures of cooled ions have also been ob-
tained by measuring the (thermal) spatial distribution in early
laser cooling experiments [19]. Uncertainties down to 5 mK
have recently been reported [20] by means of a specifically
designed Fresnel lens with a high spatial resolution. A similar
technique has also been applied to atoms [21]. Thermometry on
large ion crystals has been performed by comparing crystal im-
ages to the results of molecular dynamics simulations [22,23].

In this work (see also [24]), we investigate the time-
averaged spatial distribution of a single Mg+ ion confined in
a linear quadrupole trap and laser-cooled close to the Doppler
limit. The trap is operated with weak axial dc confinement,
which results in an axial spatial spread considerably larger than
the resolution of our imaging optics. As expected for Doppler
cooling, we observe a Gaussian fluorescence distribution.
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By accurately calibrating both the magnification and the
resolution of our imaging optics, we are able to measure
accurate values of the thermal spread which allow us to
extract ion temperatures with sub-millikelvin uncertainties.
We employ this precise thermometry to investigate the laser
detuning dependence of the Doppler temperature.

II. THEORETICAL BACKGROUND

We consider an ion of mass m, trapped along the z axis in
a harmonic potential V = mω2z2/2 with secular frequency ω,
leading to motional quantum mechanical oscillator states ψn(z)
of energy En = (n + 1/2)h̄ω. Under the assumption that the
ion’s random walk caused by the stochastic photon absorption
and emission is ergodic, the single ion can be assigned a
temperature T which quantifies the time-averaged occupation
number of the states n = [exp(h̄ω/kBT ) − 1]−1 [25] with
Boltzmann constant kB . The population probabilities Pn of the
states ψn(z) follow the distribution Pn = nn(n + 1)−(n+1) [25],
which translates into a time-averaged spatial distribution of the
ion around its mean position z0:

f (z) =
∞∑

n=0

Pn|ψn(z)|2 = 1√
2π�zth

e
− (z−z0)2

2�z2
th . (1)

In the evaluation of the sum we used Mehler’s Hermite
polynomial formula [26]. The variance of this Gaussian is
�z2

th = (n + 1/2)h̄/(mω). For kBT � h̄ω as appropriate for
the weak-binding regime, we have n ≈ kBT /(h̄ω) and the root
mean square (RMS) width

�zth ≈
√

kBT

mω2
. (2)

The temperature limit of a Doppler-cooled ion due to secu-
lar motion in a harmonic potential results from an equilibrium
of laser-induced cooling and heating rates and is given by [27]

T = h̄�

8kB

(1 + ξ )

(
(1 + s)

�

2|�| + 2|�|
�

)
. (3)

It depends on the laser detuning � < 0 and the laser
intensity I = sIsat, where s and Isat are the saturation parameter
and intensity, respectively. � is the natural line width of the
optical dipole transition and ξ = 2/5 takes the dipole emission
pattern into account. The temperature diverges for |�| → 0,
|�| → ∞, and s → ∞. The minimum of Tmin = √

1 + s(1 +
ξ )h̄�/4kB is obtained at a detuning of �min = −�

√
1 + s/2,

which, for small s, reduces to �min ≈ −�/2.
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S. KNÜNZ et al. PHYSICAL REVIEW A 85, 023427 (2012)

Single-Photon
Camera

Laser 4-Rod 
RF Ion Trap

Axial Rings, DC Voltage

280 nm

FIG. 1. (Color online) Experimental setup: A 24Mg+ ion is
trapped in a linear Paul trap. Radial confinement is accomplished
by an rf voltage applied to two of the four rods. A dc voltage
applied to the rings provides tunable axial confinement. The ion is
Doppler cooled by red-detuned laser light addressing the cycling
D2 transition. A single-photon camera observes the axial spatial
fluorescence distribution via an imaging system.

III. EXPERIMENTAL SETUP

Our experimental setup is shown in Fig. 1 (see also [11]).
A single 24Mg+ ion is trapped in a linear rf quadrupole
trap which operates at a trap frequency � = 2π × 22.6 MHz
and generates radial rf confinement with a secular frequency
ωr ≈ 2π × 1 MHz. The trap electrodes are surrounded by two
rings with a dc voltage applied to generate axial confinement
tunable from ω ≈ 2π × 10 to 150 kHz. These frequencies are
measured by secular excitation with a weak external signal and
can thus be controlled with an accuracy of �ω < 2π × 1 kHz.
Since ωr � ω, axial and radial motion are decoupled so
that we can neglect radial movement in the following. Due
to its zero nuclear spin, the alkali-like spectrum of 24Mg+
shows no hyperfine structure and the D1 and D2 lines
constitute clean cycling transitions well suited for Doppler
cooling without the need for repumper lasers. Two laser
beams, each stabilized in frequency and intensity, address
the 3 2S1/2–3 2P3/2 D2 transition near 280 nm [natural line
width � = 2π × 41.8(4) MHz [28], Isat = 2.50 kW/m2]. One
beam is aligned along the axial trap direction. The second
laser beam is slightly tilted, by 14◦, against the first beam to
provide radial cooling. The beams are detuned with respect
to each other by ≈500 kHz to avoid a stable interference
pattern. The ion is imaged with an f/2 condenser lens and
a microscope objective onto a single-photon camera (SPC;
Quantar Mepsicron II). Because of the SPC’s limited spatial
resolution of 56 μm, a magnification of M ≈ 100 is chosen for
the imaging system. The detector plane is digitized in pixels
of 49-μm size. The conversion factor between the real-space
object size in micrometers and the image size in pixels is
calibrated accurately by measuring the distance between two
simultaneously trapped ions in the imaging plane of the camera
for several trapping potentials ω [29]. The RMS resolution of
the imaging system’s point spread function (PSF) at 280 nm
is �zPSF ≈ 1 μm for optimal alignment. It derives from the
resolution of the lens system, the resolution of the camera,
and the discretization of the camera data. However, it is

2ΔzPSF

2Δzcam

FIG. 2. (Color online) Time-averaged spatial distribution of a
single laser-cooled ion trapped with secular frequency ω = 2π ×
15 kHz (T ≈ 1 mK). The inset shows the ion image, while the plot
is a histogram in the axial direction. The residuals (lower graph) of
a Gaussian fit (solid line) confirm a normal distribution as expected
from Brownian motion caused by the recoils of stochastic photon
scattering events. The RMS width �zcam of the Gaussian and the
RMS resolution �zPSF ≈ 1 μm of our imaging system are indicated.

diminished when the ion is shifted out of focus, particularly
by varying laser forces, and thus becomes slightly detuning
dependent. After conversion into micrometers in object space,
the RMS spot size �zcam of a recorded ion image appears as
a convolution of the thermal spread �zth with the finite PSF
width �zPSF. Assuming the PSF to be Gaussian, we have

�zcam =
√

�z2
PSF + �z2

th. (4)

IV. MEASUREMENT AND RESULTS

A. Time-averaged spatial distribution

The inset in Fig. 2 shows an image of a Mg+ ion trapped
with a secular frequency ω = 2π × 15 kHz and cooled close to
the Doppler limit of about T ≈ 1 mK (n ≈ 1400). From Eq. (2)
follows a RMS spatial spread of �zth ≈ 8 μm, which is about
8 times larger than the PSF of our imaging system. In this case,
with Eq. (4), the PSF only contributes ≈1% to the width �zcam

of the image. The laser detuning is set to � = −2π × 40 MHz
≈ −�, and the total laser intensity—with both laser intensities
equal at the location of the ion—is limited to s � 0.1, which
is monitored by the observed photon scattering rate. Figure 2
shows a histogram of the axial spatial distribution obtained
from the image. No statistically significant deviation from a
Gaussian could be found with a fit, as can be seen from the
residuals, which confirms the stochastic nature of the ion’s
motion. The RMS spot size of the ion image of �zcam = 7.7(1)
μm is indicated by the horizontal bar, while the vertical bar
shows the resolution of our imaging system.

B. Spatial thermometry

In order to obtain a precise value of the absolute temperature
for higher oscillation frequencies ω as well, we need to
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(a) (b)

FIG. 3. (Color online) (a) Measurement of the spot size �zcam of the ion images with � = −2π × 18.7 MHz and s � 0.1 for various
trapping potentials ω/2π . Insets: Exemplary ion images. From a fit (solid line) of Eqs. (2) and (4), we obtain an ion temperature of T = 1.02(3)
mK and a PSF of �zPSF = 1.13(3) μm RMS with statistical uncertainties. (b) The same analysis for various laser detunings �. Results are shown
as squares together with temperatures expected from Eq. (3) [dashed (gray) line]. We attribute the observed temperature excess of up to ≈0.2
mK to systematic micromotion; see discussion in the text. Values of �zPSF obtained for all data points agree within their statistical uncertainties.
This measurement demonstrates the precision of thermal spread thermometry, providing a total accuracy of <0.3 mK, unchallenged by other
methods in the unresolved sideband regime.

determine �zPSF more accurately. We use the fact that, accord-
ing to the laws of Brownian motion, the width �zth of the ther-
mal distribution varies ∝ 1/ω [Eq. (2)]. From measurements of
the spot sizes �zcam for different ω, we obtain �zPSF, �zth, and
thus the absolute temperature T of the ion from a fit of Eqs. (2)
and (4). This method depends on the shape of the PSF and the
constancy of its width �zPSF. The ion images at high secular
frequencies which reflect the PSF do not show a significant
deviation from a Gaussian. To ensure the constancy of its
width, we readjust the imaging system for optimal resolution
at each data point, thus compensating the effects of ion position
changes due to the varying balance between the trap potentials
and the laser force. At the same time, we minimize radial
micromotion at each data point to avoid axial heating via
possible coupling to the radial motion. Figure 3(a) shows such
a measurement for � = −2π × 18.7 MHz and s � 0.1, with ω

between 2π × 12 and 124 kHz. The insets show corresponding
images, and the resulting axial RMS spot sizes �zcam obtained
from Gaussian fits to the image histograms are plotted versus
ω/2π . Note that the radial widths only increase slightly,
by about 15%, toward lower axial potentials because radial
micromotion compensation becomes increasingly difficult.
The 1/ω behavior of �zth is confirmed by a fit [Eq. (4)] which
yields an ion temperature of T = 1.02(3) mK and a PSF of
�zPSF = 1.13(3) μm, both with statistical uncertainties.

C. Systematic effects

The main systematic uncertainty arises from residual axial
micromotion caused by the axial component of the rf fringe
fields. The simultaneous presence of dc and rf fields leads
to a parametric potential V (t) = 1

8m�2[a − 2q cos(�t)]z2.
� is the trap frequency. a ∝ eUdc/m�2 and q ∝ eVrf/m�2

are trap parameters associated with the dc and rf voltages
Udc and Vrf , respectively. Without damping and diffusion,

the ion’s equation of motion is a Mathieu equation, and for
certain parameter sets (a,q) there are stable trajectories of
the ion z(t) = zs cos(ωt)(1 + q

2 cos �t) with amplitude zs and
ω ≈ 1

2�(a + q2/2)1/2 [30]. The latter can be interpreted as
the secular frequency of the ion in a time-averaged pseudopo-
tential. For vanishing a it reduces to pure rf confinement
ωrf = q�/

√
8, while pure dc confinement ωdc = √

a�/2
results for q = 0. Superimposed on the secular motion, the
ion performs micromotion at the trap frequency � with an
amplitude zμ = qzs/2. For an ion cooled close to the Doppler
limit of 1 mK, zμ is of the order of 50 nm and does not
influence the apparent spread or lead to significant deviations
from a Gaussian distribution [6,31].

A stronger effect due to micromotion is expected via the
kinetic energy, which is given by [30]

Ekin = 1
4mω2z2

s + 1
4mω2

rfz
2
s + 1

2m
ω2

rfω
2
dc

ω2 �z2
0. (5)

The first term is due to secular motion; the second reflects
the contribution from the unavoidable ordinary micromotion
that is associated with the secular motion. It depends on
the secular amplitude zs and is significant for low secular
frequencies ω ≈ ωrf . The third term is caused by a mismatch
�z0 between the rf and the dc potential minima positions. It
results in a displacement δz = �z0ωdc/ω of the ion out of the
rf minimum so that it is exposed to excess micromotion [30]
that contributes an energy Eexcess

kin = 1
2mω2

rfδz
2. A cooling laser

introduces both damping and a stochastic force to the equation
of motion. Blatt et al. [6] have solved the corresponding
Fokker-Planck equation for the first two terms in Eq. (5), which
results in Gaussian spatial and velocity distributions. It turns
out that the presence of a stochastic force transforms part of
the micromotion energy into irregular motion (temperature)
by rf heating, which is reflected in a broadening of the velocity
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distribution as well as the spatial distribution, compared to the
case of pure secular motion.

From the lowest secular frequency that we have observed
when lowering the dc potential a, we estimate an upper
limit for the residual axial rf confinement of ωrf = 2π ×
7 kHz, corresponding to q = 8.8 × 10−4. According to [6],
the corresponding ordinary rf heating broadens the spatial
distribution by a factor of 1.15 for the lowest secular frequency
of ω = 2π × 12 kHz. This broadening decreases strongly
toward higher ω � ωrf . For the estimated upper limit of ωrf =
2π × 7 kHz, our Eq. (2) thus overestimates the temperature
by a factor of 1.3, which results in a systematic uncertainty of
�0.3 mK in our experiment.

D. Doppler temperatures

In the next step, we employ our thermometry method
to investigate the detuning dependence of Doppler cooling.
Figure 3(b) shows absolute temperatures measured for laser
detunings � between −0.2 and −1.0 �, indicated by squares,
while circles represent the Doppler temperatures predicted for
pure secular motion by Eq. (3). Our measurements follow
the detuning dependence of Eq. (3) qualitatively but show an
offset of ≈0.2 mK. The higher temperatures are of the order
of our conservative estimate for the systematic uncertainty.
However, such a temperature rise can also be caused by
excess micromotion in a significantly smaller residual axial
rf potential [30]. While the ordinary micromotion becomes
insignificant for ω � ωrf , excess micromotion due to a large
�z0 � zs leads to an ω-independent contribution Eexcess

kin ≈
1
2mω2

rf�z2
0 in Eq. (5) and may thus increase the ion temperature

through rf heating correspondingly.
In order to study the temperature over a wider range of

detunings, between 0 and −3.5�, we measure the image spot
sizes �zcam of the ions for fixed values of ω = 2π × 32 kHz
and s � 0.1 (Fig. 4). At this secular frequency the ordinary
micromotion increases the ion temperature by less than 1%.
Due to possible variations of the resolution �zPSF during
the laser scan, we do not extract the temperature in this
measurement. Nevertheless, the spot size �zcam can still serve
as a decent measure for the temperature. The solid line in Fig.
4 represents the behavior according to Eq. (3) in combination
with Eqs. (2) and (4), using s = 0.1 and �zPSF = 1.5 μm.
The latter is estimated to be an upper limit. Quantitatively, the
measured values are again up to 10% higher. The data supports
our hypothesis that rf heating due to excess micromotion is
the main cause of the higher observed temperatures. Since
rf heating is related to the photon scattering of the cooling
laser [6], its rate is expected to be detuning dependent, similar
to the cooling rate. The wide tuning range in this measurement
allows us to exclude two other possible effects as causes for
the excess temperature. As a comparison, the long-dashed line
shows the expected broadening, taking an additional, detuning-
independent heating rate into account. The short-dashed line
assumes that the line width is homogeneously broadened to
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FIG. 4. Measured ion image spot size �zcam versus laser detuning
for s � 0.1 and fixed ω = 2π × 32 kHz. The solid (black) line
shows the result expected from Doppler cooling according to Eq. (3),
together with Eqs. (2) and (4), using s = 0.1 and �zPSF = 1.5 μm.
Qualitative agreement with the overall temperature behavior of Eq. (3)
is found. However, quantitatively the measured spreads and thus the
temperatures are about 10% higher than expected, which we attribute
to rf heating due to excess micromotion, which depends on the
photon scattering rate and thus decreases toward larger detunings.
The long-dashed (gray) line represents Doppler cooling with an
additional detuning-independent heating rate; the short-dashed (gray)
line assumes a broadening of the line to 1.1� as caused, e.g., by
magnetic fields. Neither assumption can explain the observed thermal
spread. Larger error bars for larger negative detunings are due to the
lower photon count rate.

1.1�, caused, e.g., by the Zeeman splitting or micromotion-
induced line broadening [30]. From earlier spectroscopy
experiments [9], we know that for our experimental parameters
the homogeneous broadening is in fact lower. In conclusion,
both effects can be excluded as causes for the observed higher
thermal spreads (temperatures).

V. SUMMARY

To summarize, we have demonstrated that a single,
Doppler-cooled ion, weakly bound in an ion trap, shows
a Gaussian thermal spatial distribution as expected from
Brownian motion. We show that this time-averaged spatial
distribution can be used for sub-millikelvin thermometry with
an accuracy of <0.3 mK, unchallenged by similar methods in
the unresolved sideband regime. Further, we have employed
this thermometry to investigate the detuning dependence of
the temperature in Doppler cooling. Note that this method,
which was demonstrated for the axial trapping direction here,
can in principle be applied to any projection of an ion on the
imaging plane. The use of high-numerical-aperture objectives
with resolutions close to the diffraction limit [20,32] would
allow further improvement in accuracy and the performance
of thermometry in steeper trapping potentials.
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