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Generalized space-translated Dirac and Pauli equations for superintense laser-atom interactions
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We obtain a generalization of the nonrelativistic space-translation transformation to the Dirac equation in the
case of a unidirectional laser pulse. This is achieved in a quantum-mechanical representation connected to the
standard Dirac representation by a unitary operator T transforming the Foldy-Wouthuysen free-particle basis
into the Volkov spinor basis. We show that a solution of the transformed Dirac equation containing initially
low momenta p (p/mc � 1) will maintain this property at all times, no matter how intense the field or how
rapidly it varies (within present experimental capabilities). As a consequence, the transformed four-component
equation propagates independently electron and positron wave packets, and in fact the latter are propagated via
two two-component Pauli equations, one for the electron, the other for the positron. These we shall denote as the
Pauli low-momentum regime (LMR) equations, equivalent to the Dirac equation for the laser field. Successive
levels of dynamical accuracy appear depending on how accurately the operator T is approximated. At the
level of accuracy considered in this paper, the Pauli LMR equations contain no spin matrices and are in fact
two-component Schrödinger equations containing generalized time-dependent potentials. The effects of spin
are nevertheless included in the theory because, in the calculation of observables which are formulated in the
laboratory frame, use is made of the spin-dependent transformation operator T . In addition, the nonrelativistic
limit of our results reproduces known results for the laboratory frame with spin included. We show that in intense
laser pulses the generalized potentials can undergo extreme distortion from their unperturbed form. The Pauli
LMR equation for the electron is applicable to one-electron atoms of small nuclear charge (αZ � 1) interacting
with lasers of all intensities and frequencies ω � mc2.
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I. INTRODUCTION

The relativistic study of laser-atom interactions has be-
come timely because electrons are driven with quasiluminal
velocities by superintense lasers already in operation or
envisaged [1]. This requires treatment of the electron motion
using relativistic dynamics and that of the radiation including
retardation in its propagation. (For a background on relativistic
laser-atom interactions, see [2,3].) As a preliminary step
toward this goal, substantial effort has been invested in
exploring the retardation corrections to the nonrelativistic
(NR) Schrödinger equation within the dipole approximation.
The limitations of this approach are that the fields need to be
weak and the electron velocities NR. The Dirac equation, on
the other hand, does not have these limitations but is much
more difficult to handle. In three dimensions (3D) it is also
notoriously difficult to integrate numerically at high laser
intensities. Moreover, in its standard laboratory-frame version,
it is opaque to physical insight. An alternative point of view
was desirable.

In the case of the Schrödinger equation, such an alternative
point of view was offered by its space-translated version;
see [4,5]. Via a time-dependent space translation, the laser-
atom interaction is described in a reference frame in which
the classical electron is at rest, while the nucleus oscillates
driven by the field. A requirement is that one can apply the
dipole approximation, i.e., that the wavelengths be sufficiently
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long, as in the optical case. This approach had rewarding
consequences, such as a semianalytic treatment at high
optical frequencies, the discovery of atomic dichotomy and
stabilization, and the possibility of a simplified numerical
treatment. When retardation is taken into account, the main
obstacle is that an oscillating space-translated reference frame
can no longer be defined. A space-translated version of the
Schrödinger equation with retardation has nevertheless been
found and applied to ionization [6–8].

The generalization of the NR space-translation method to
the Dirac equation was also shown to be possible, albeit it
proves to be considerably more intricate. It was done a long
time ago, but has attracted little attention and was barely
pursued. The work focused on the case of monochromatic
plane-wave radiation. Thus, Kaminski formulated the operator
transform mediating the generalization in connection with
laser-assisted scattering [9]. The transformed Dirac equation
was expressed in terms of an integral potential operator
containing the original potential embedded in a double sum
over generalized Bessel functions depending on the frequency
and amplitude of the radiation; see [9], Eq. (24). Although
quite complicated, this expression enabled the desired goal,
namely, the relativistic generalization of the low-frequency
Kroll-Watson formula.

Some years later, Krstic and Mittleman (KM) derived the
space-translated Dirac equation in connection with atomic
structure in a monochromatic plane wave, with emphasis on the
high-frequency case [10]. Their version of the space-translated
Dirac equation is similar to that of Kaminski except that their
integral potential operator is expressed in a different form,
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convenient for the low-momentum approximation needed in
the treatment of the bound-state atomic problem. In this
case the integral potential operator could be reduced to a
potential function U (r,t); see [10], Eq. (2.30). KM studied
only the high-frequency form of U(r,t), when cycle averaging
is meaningful and yields an average potential U0(r) [see [10],
Eqs. (2.33) and (2.34)]. U0(r) generalizes the dressed potential
of the NR case [4]. U0(r) was found to display a figure-8
logarithmic singularity for linear polarization, and an estimate
for its ground-state energy was given. In a subsequent paper
[11], KM considered spin corrections to their equation. Several
details about the differences between the KM approach and
ours are given throughout this paper. The work of KM was
continued by Ermolaev [12], who studied the properties of
U0(r) and computed the corresponding levels for a 1D model.

We consider that the space-translation approach to the
Dirac equation could yield promising results, both in terms
of physical insight and as a numerical avenue. In terms of
the physical understanding, if carried through consistently, it
could transcend the numerous results obtained by considering
first-order retardation corrections to the Schrödinger equation
as well as other approximations, for processes such as
ionization and high-order harmonic generation. Moreover, by
writing the Dirac equation in a different way, one might get
answers to fundamental problems, such as the limitations of
relativistic one-electron theory in superintense fields because
of pair-production pheneomena, and information as to when
one should resort to QED theory [13]. On the numerical
side, any tractable algorithm derived from it would represent
an advancement, as in 3D and with superintense fields the
ordinary Dirac equation is still not tractable (e.g., see [14,15];
for the 1D and 2D cases, see [16] and references therein).

Therefore, we address in this paper the issue of finding the
space-translated version of the Dirac equation for the realistic
case of a laser pulse interacting with an atom. No limitations
are imposed on the intensity of the field. We endeavor to give
a transparent account of the rather tedious mathematics. We
start with some remarks on Volkov spinors (Sec. II). Then
the generalized space-translated transformation operator for
laser pulses is formulated in terms of Volkov spinors. This
operator is used to derive the exact form of the generalized
space-translated Dirac equation in the quantum-mechanical
representation, denoted the translated Dirac picture (Secs. III
and IV). We indicate in Sec. V that there are reasons to
assume that in the translated Dirac picture current laser-atom
interactions can be described by spinors pertaining to the
low-momentum regime (LMR). Indeed, we show that for LMR
spinors the generalized translated Dirac equation simplifies
substantially when we work with electron or positron wave
packets; it is equivalent at all times to two independent
Pauli equations, one for the electron case and the other for
the positron case (Secs. VI–VIII). This shows that LMR
spinors are appropriate to describe in the translated Dirac
picture current laser-atom interactions. We designate the Pauli
equations obtained as the LMR equations. The procedure to
extract physical information from the formalism is discussed in
Sec. IX. In Sec. X we analyze the properties of the generalized
space-translated potential entering the Pauli LMR equations.
The NR limit of these equations is considered in Sec. XI. In
Sec. XII we comment on our results.

II. RELATIVISTIC-FIELD-DRIVEN QUANTUM
MECHANICAL AND CLASSICAL ELECTRONS

We recall some basic facts, essential for what follows.
The relativistic quantum-mechanical motion of a free electron
(mass m, charge e < 0) in a radiation field of vector potential
a (we assume the Coulomb gauge ∇ · a = 0) is described by
the Dirac equation

[cα · (P−mca) + mc2β]� = i
∂�

∂t
. (1)

Here P is the momentum operator, α and β are the standard
Dirac matrices defined as in [17], and we have set h̄ = 1 [18].
Throughout this paper the radiation is assumed to be a laser
pulse of arbitrary shape and magnitude propagating in one
direction n, so that the vector potential is a function of
τ ≡ t − n · r/c only, i.e., a = a (τ ). Transversality of the light
oscillations in the Coulomb gauge requires that a (τ ) · n =0.

We shall assume that a (τ ) vanishes sufficiently rapidly for
τ → ±∞, so that the electron can be considered initially and
finally as free. We thereby exclude the case of a monochromatic
plane wave with fixed amplitude in space-time.

Equation (1) can be solved exactly for an arbitrary field
a (τ ) in terms of Volkov spinors [19]. These can be written as

�pσ (r,t) = 	pσ (τ ) ei 
pσ (τ )upσ (r,t) . (2)

Here,

upσ (r,t) = 1

(2π )3/2 ei(p·r−Epσ t) ξpσ (σ = 1, . . . ,4) , (3)

is the free-particle eigenspinor for momentum p and definite
spin projection on the direction of p in the laboratory frame.
The subscript values σ = 1,2 correspond to positive-energy
(electron) states, Epσ = +|Ep| ≡

√
m2c4 + c2p2, and σ =

3,4 to negative-energy (positron) states, Epσ = −|Ep|. We
shall refer to the spinor basis {ξpσ } as the standard basis set.
Further,

	pσ (τ ) ≡ I + mc2

2(Epσ − cp · n)
ν̂â(τ ) (4)

and


pσ (τ ) ≡ (mc2)2

2(Epσ − cp · n)

∫ τ

−∞

[
2

mc
p · a (χ ) − a2 (χ )

]
dχ.

(5)

Here, we have introduced the four-vectors ν(1,n) and
a(0,a), and, given the four-vector qμ(q0,q), we have denoted
q̂ ≡ q0γ0 − q · γ , where γ0 = β, γ = βα. Note that

lim
τ→−∞ �pσ (r,t) = upσ (r,t) .

The set {�pσ (r,t)} is orthonormal [20] and complete [21] at
all times t .

For the same field conditions as above, the relativistic
classical motion of an electron (charge e < 0) or positron
(charge −e > 0), initially at rest at the origin (ri = pi = 0 for
t → −∞), represented by γ e|p(t), is given by the equations
[e.g., see [2], Eq. (27), with r0 = 0,β0 = 0, γ0 = 1 at t →
−∞]:

γ e|p(t) = γ
e|p
⊥ (t) + γ ‖(t), (6)
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γ
e|p
⊥ (t) = ∓c

∫ t−γ ‖(t)/c

−∞
a(χ )dχ,

(7)

γ ‖(t) = c

2
n

∫ t−γ ‖(t)/c

−∞
a2(χ )dχ.

γ
e|p
⊥ (t) represents the oscillatory motion of the two particles in

the direction of the electric field, which obviously is in opposite
directions for the two particles [18]. γ ‖(t) represents the drift
motion of the particles, parallel to the propagation direction,
which is the same for both. The equation for γ ‖ needs to be
solved first and γ

e|p
⊥ calculated thereafter. Equation (7) gives

for the position at the end of the pulse [22]

rf ≡ γ e|p(∞) = ∓c

∫ +∞

−∞
a(χ )dχ + c

2
n

∫ +∞

−∞
a2(χ )dχ.

(8)

In the NR limit and for the dipole approximation of a weak
field [a (τ ) 	 a(t) and O

(
a2

)
neglected], Eq. (6) reduces to

γ NR(t) = ∓c

∫ t

−∞
a(t ′)dt ′. (9)

III. GENERALIZED SPACE-TRANSLATED
DIRAC EQUATION

We define the space-translation transformation as the
transformation mapping a free-particle basis set in the absence
of the field into a free-particle basis set in the presence
of the field. In the NR case of the Schrödinger equation
with the dipole approximation, this is equivalent to a change
of physical reference frame, from the frame in which the
classical electron is at rest to the laboratory frame in which
the particle oscillates. With retardation included, the latter
definition cannot be upheld, as a space-translated reference
frame cannot be introduced if the field does not oscillate in
phase throughout space. Moreover, in the relativistic case,
because of the existence of spin, one needs to specify the
spin basis sets considered.

There are various possibilities for selecting a complete
set of Dirac free-particle spinors {vpσ (r,t)}, depending on
the representation chosen for the Dirac matrices. In order to
simplify the physical interpretation in terms of electrons and
positrons (see Sec. VIII), we shall choose the set {vpσ (r,t)}
to be that of the Foldy-Wouthuysen (FW) representation i.e.,
satisfying the free-particle Dirac equation in the form ( [23];
see also [17], Chap. XX, Secs. 32 and 33)

H ′� ′ = i
∂� ′

∂t
, H ′ ≡ Eβ, (10)

where E is the operator

E ≡ +(m2c4 + c2P2)1/2. (11)

vpσ (r,t) has the simple form

vpσ (r,t) = 1

(2π )3/2
ei(p·r−Epσ t)ζσ (σ = 1, . . . ,4), (12)

with

ζσ =
(

χσ

0

)
, ζσ+2 =

(
0
χσ

)
; σ = 1,2,

and χσ are two-component spinors, which can be taken as
(1,0), or (0,1). The FW free-particle spinor basis {ζσ } is
connected to the standard basis {ξpσ } by

ξpσ = SFW(p)ζσ , (13)

where SFW(p) is the unitary transformation matrix

SFW(p) = g[(|Ep| + mc2)β + cα · p]β;

g ≡ [2|Ep|(|Ep| + mc2)]−1/2; (14)

see [23], Eq. (16).
We now introduce the generalized relativistic space-

translation operator as the operator transforming the FW set of
Dirac free-particle spinors {vpσ (r,t)} into the Volkov spinors
{�pσ (r,t)}, Eq. (2). As both sets are orthonormal and complete
at all t , this defines a unitary operator T (t) on the Hilbert space
H of quatum-mechanical spinors:

�pσ = T (t)vpσ . (15)

In coordinate representation the action of T on an arbitrary
spinor �(r) ∈ H is defined by the integral operator

T (t)�(r) =
∫

T (r,r′,t)�(r′)dr′, (16)

where [24]

T (r,r′,t) ≡
∑

σ=1,...,4

∫
�pσ (r,t)v†

pσ (r′,t)dp. (17)

We recall that if the integral operator T is represented by
the kernel T

(
r,r′,t

)
, its adjoint T † is represented by the kernel

T † (
r,r′,t

) ≡ [
T

(
r′,r,t

)]∗tr
, where the superscripts ∗ and tr

stand for matrix complex conjugation and transposition. From
Eq. (17),

T †(r,r′,t) ≡
∑

σ=1,...,4

∫
vpσ (r,t) �†

pσ (r′,t) dp . (18)

As T is unitary, T T † = T †T = I.

It is not difficult to see that in the NR limit and with the
dipole approximation, ignoring spin, T is expressible as

TNR(t) = exp

(
∓i

mc2

2

∫ t

−∞
a2

(
t ′
)
dt ′

)
e−i γ NR(t)·P , (19)

where γ NR(t) is the NR trajectory of the particle, Eq. (9). Apart
from an irrelevant time-dependent phase factor, TNR(t) stands
for a translation of vector γ NR(t) representing the passage
from the laboratory frame to an oscillating reference frame
(e.g., see [4]). By contrast, the relativistic operator T (t) does
not represent a change of physical reference frame, but rather a
change of quantum-mechanical representation. Nevertheless,
because of its underlying NR limit, we shall designate T (t) as
the generalized translation operator.

We now use the unitary transformation � = T (t) � ′ to
transform the standard Dirac equation containing the field
A (τ ) and the atomic potential V (r):

[cα · (P−mca) + mc2β + V (r)I ]� = i
∂�

∂t
(20)

to

H ′� ′ = i
∂� ′

∂t
, H ′ ≡ Eβ + V ′(t), (21)
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where E is defined by Eq. (11) and

V ′(t) ≡ T †(t)V T (t) (22)

is the generalized space-translated potential. The radiation
field a(t) has been entirely absorbed in the potential V ′, which
is a complicated integral operator. Its kernel is given by

V ′(r,r′,t) =
∫

T †(r,r′′,t)V (r′′)T (r′′,r′,t)dr′′. (23)

In the following we shall have in mind the realistic case of the
Coulomb potential V (r) = −Z/r, although our calculations
may apply to more general model potentials.

Equation (21) will be designated as the generalized trans-
lated Dirac equation. Quantities pertaining to this equation
and its interpretation will be referred to as belonging to the
translated Dirac picture.

At this point it is useful to address an issue of terminology.
The Dirac equation (20) for the negative electron in the
absence of a radiation field has energy eigenstates, some of
positive energy (discrete and continuous), associated with the
threshold +mc2. These will be termed electron states and any
linear combination of them forms an electron wave packet.
There are also the continuous eigenstates of negative energy,
below the threshold −mc2, termed positronic states due to their
reinterpretation in QED. We refer to any wave packet made of
these as a positron wave packet. At small Z (αZ � 1) there is
no problem in distinguishing the two kinds of states (there is
no level “diving” into the negative-energy “sea”).

IV. EXACT EXPRESSION FOR V ′

For the calculation of V ′, Eq. (22), it is convenient to
separate the contribution of the positive and negative energies
in the exact T (t), Eq. (17), according to

T = T+ + T−. (24)

Hence, V ′ can be written as [see Eq. (23)]

V ′ ≡ T †V T = V ′
++ + V ′

−− + V ′
+− + V ′

−+, (25)

where we have denoted V ′
±± ≡ T

†
±V T± and V ′

±∓ ≡ T
†
±V T∓.

Here and in the following the upper subscripts represent one
alternative and the lower subscripts the other.

According to Eqs. (17), (2), and (12), we have the exact
expression

T±(r′′,r′,t) ≡
∑

σ

1

(2π )3

∫
dpei[p·(r′′−r′)+
pσ (τ ′′)]	pσ (τ ′′)ξpσ ζ †

σ .

(26)

Here, for subscript + the sum over σ extends over σ = 1,2,

and for subscript −, over σ = 3,4. By introducing the notation

±

p ≡ 
pσ ,	±
p ≡ 	pσ , where the superscript + corresponds

to σ = 1,2 and the superscript − corresponds to σ = 3,4, we
can write Eq. (26) as

T±(r′′,r′,t) ≡ 1

(2π )3

∫
dpei[p·(r′′−r′)+
±

p (τ ′′)]	±
p (τ ′′)

∑
σ

ξpσ ζ †
σ .

(27)

Using Eq. (13), we have

∑
σ

ξpσ ζ †
σ = SFW(p)

I ± β

2
. (28)

Here again, the sum over σ extends over 1,2 or 3,4, and one
should choose + or − on the right-hand side, respectively.
The matrices (I ± β)/2 are the projection operators for the
electron and positron subspaces of the FW representation. By
denoting

M±(p;τ ) ≡ 	±
p (τ )SFW(p), (29)

we have

T±(r′′,r′,t) ≡ 1

(2π )3

∫
dp M±(p;τ ′′)ei[p·(r′′−r′)+
±

p (τ ′′)] I ± β

2
.

(30)

Similarly, for the exact T †
±, we have

T †
±(r,r′′,t) = I ± β

2

1

(2π )3

∫
M

†
±(p′,τ ′′) e

−i[p′ ·(r′′−r)+
±
p′ (τ ′′)]

dp′,

(31)

where τ ′′ = t − n · r′′/c, and M
†
±(p,τ ′′) is the adjoint of the

matrix Eq. (29).
The kernel V ′(r,r′,t) of V ′ is given by Eq. (23). We

decompose V ′(r,r′,t) as in Eq. (25) and write the Fourier
transform of the (negative electron) potential energy as

V (r) ≡
∫
V(q)eiq·rdq. (32)

This gives, for example,

V ′
±±(r,r′,t)

= 1

(2π )6

∫
dqV(q)

∫
dr′′

∫
dp

∫
dp′ I ± β

2

×M
†
±(p′;τ ′′)M±(p;τ ′′)

I ± β

2
exp[i{(p − p′+q) · r′′

+ p′ · r − p · r′ + 
±
p (τ ′′) − 
±

p′(τ ′′)}]. (33)

As mentioned above, the upper signs represent one alternative
and the lower signs the other. Four of the twelve integrals in
the expression Eq. (33) can be carried out immediately. By
decomposing dr′′ = dr′′

⊥dz′′, where ⊥ denotes the direction
perpendicular to n and z is the direction parallel to n, the
integration over r′′

⊥ gives δ(p⊥−p′
⊥+q⊥), so that we have the

exact formula

V ′
±±(r,r′,t)

= 1

(2π )4

∫
dqV(q)

∫
dz′′

∫
dp

∫
dp′

z

×I ± β

2
M

†
±(p⊥ + q⊥,p′

z;τ
′′
) M±(p⊥,pz ;τ ′′)

I ± β

2
× exp[i{(pz − p′

z + qz)z
′′ + (p⊥ + q⊥) · r⊥

+p′
zz −p⊥ · r′

⊥ − pzz
′ + 
±

p⊥,pz
(τ ′′)− 
±

p⊥+q⊥, p′
z
(τ ′′)}].

(34)

023425-4



GENERALIZED SPACE-TRANSLATED DIRAC AND PAULI . . . PHYSICAL REVIEW A 85, 023425 (2012)

Proceeding similarly, an exact expression can be obtained also
for V ′

±∓(r,r′,t):

V ′
±∓(r,r′,t)

= 1

(2π )6

∫
dqV(q)

∫
dz′′

∫
dp

∫
dp′

z

×I ± β

2
M

†
±(p⊥ + q⊥,p′

z;τ ′′)M∓(p⊥,pz ;τ ′′)
I ∓ β

2
× exp[i{(pz − p′

z + qz) z′′ + (p⊥ + q⊥) · r⊥
+p′

zz− p⊥ · r′
⊥ − pzz

′ + 
±
p⊥,pz

(τ ′′) − 
∓
p⊥+q⊥, p′

z
(τ ′′)}].

(35)

V. ATOMIC LOW-MOMENTUM REGIME (LMR)

As Eqs. (20) and (21) are unitarily equivalent, use of one
or the other is a matter of convenience, provided that the
observables are properly transformed. Both equations can treat
all physical phenomena that can be described within single-
electron Dirac theory, involving one electron of any speed,
photons of any energy, and nuclear potentials of any charge
Z. Some of these are typical high-energy phenomena deriving
from high-energy initial conditions, like fast-electron–heavy-
nucleus collisions in the presence of radiation, leading to
scattering with absorption or emission of high-energy photons
ω (ω � mc2). Physically, pair-production phenomena (requir-
ing photon energies larger than 2mc2) become possible, but
these lie out of the range of single-electron Dirac theory.
On the other hand, current superintense laser phenomena in
the presence of small-Z atoms (e.g., laser-modified atomic
structure, multiphoton ionization, free-free transitions) imply
NR photon energies (ω � mc2) and low-momentum initial
conditions (p � mc). These phenomena may need relativistic
treatment because the electron can acquire velocities close to
c due to the superintense fields acting on it. It is this kind of
phenomenon that we want to address here.

For a relativistic description of such phenomena one could
use the Dirac equation for the laboratory frame, Eq. (20), with
an initial condition �0(r) containing low NR momenta. During
its evolution the wave spinor �(r,t) could acquire relativistic
momenta p � mc in superintense fields. Alternatively, one
could use the generalized space-translated Dirac equation
Eq. (21), starting from an equivalent initial condition � ′

0(r)
given by �0(r) = T (−∞)� ′

0(r). As in this picture one has
extracted the highly relativistic oscillatory motion of the free
electron, it is conceivable that, for atomic-type processes with
NR initial conditions, the solution � ′(r,t) might contain only
low momenta at all times. This would imply that, if � ′(r,t)
starts as an electron wave packet, it could not acquire positron
components, and vice versa. Moreover, the single-electron
Dirac equation would be adequate for treating the process
considered and a QED description would not be needed. It
might also allow the reduction of the generalized translated
Dirac equation (21) to a simpler form. This is the problem we
want to investigate in the following.

To fix the mathematical framework of the problem, let us
consider the spinors of the translated Dirac picture which
contain only low momenta p < � � mc, where � is a
cutoff. We shall refer to them as pertaining to the atomic

low-momentum regime (LMR). Such spinors � ′ are charac-
terized by the fact that their Fourier expansion

� ′(r) =
∑

σ=1,...,4

∫
p��

cpσ vpσ (r,0)dp, (36)

with vpσ (r,t) defined by Eq. (12), contains a cutoff cpσ 	 0,
for p > � and all σ, i.e., the integration domain in Eq. (36)
is limited to p � � [25]. Mathematically, the set of all LMR
spinors � ′ forms a subspace D of the quantum-mechanical
Hilbert space H (D ⊂ H).

Because of the charge symmetry of the Dirac equation
and the possibility of coupling between the positive-energy
and the negative-energy components of the wave spinor � ′,
in the beginning we allow in the expansion Eq. (36) of
LMR spinors electron as well as positron states vpσ (r). The
introduction of the cutoff at � � mc is the only restriction
made on the dynamics in our calculation. The ratio �/mc

will serve to classify in the following the orders of magnitude
encountered. Note that, for the bound states of a Coulomb
potential, this limitation implies that the internal momenta,
of order αZmc, should be small with respect to mc, i.e.,
αZ � 1, and consequently Z should be sufficiently small.
In this case there is a clear-cut distinction between the electron
and positron states.

With the definitions above, we can rephrase the problem
we shall be studying in the following (see Secs. V–X) as
follows: if a solution of the generalized space-translated Dirac
equation belongs initially to D, will it remain in D during its
time evolution according to the transformed equation (21)?

We outline our strategy for solving the problem. We shall
apply the operator V ′, Eq. (22), to a LMR spinor � ′(r) of
the translated Dirac picture, and then the Hamiltonian H ′,
Eq. (21). In this paper we shall present only the result for
H ′� ′ to lowest order in �/mc, which we shall denote O(1).
The ordering in powers of �/mc will occur naturally, by
series expansion in p/mc of the Volkov spinors contained in
the operator T (r,r′,t), Eq. (17). Having obtained H ′� ′ we
can find out if the solution of the generalized space-translated
equation H ′� ′ = i∂� ′/∂t remains within D at all times.

We emphasize that throughout the paper we endeavor to
make no approximations regarding the magnitude of the field
a(τ ) or its retardation (dependence on τ ). On the other hand,
we anticipate here that in the course of the calculation there
will appear the following condition on its space-time variation
(see end of Sec. VI):

da(τ )

dτ
� mc2. (37)

It immediately follows that the magnitude of the electric field
should be limited by E � ES ≡ m2c3, which is the so-called
Schwinger field (see [1,2]). The latter has the very large
value of ES 	 2.6 × 106 a.u., corresponding to an intensity
of IS = 2.3 × 1029 W/cm2, which shows that the condition is
irrelevant in practice.

In addition to the field intensity, another important physical
characteristic of the laser pulse is the spectral energy range �ω

of the photons contained in it, which determines the energy of
the ionized electrons. In order that the LMR restriction can be
maintained at all during the evolution of the state spinor � ′,
it is obvious that we have to limit �ω such that no relevant

023425-5



MADALINA BOCA, VIORICA FLORESCU, AND MIHAI GAVRILA PHYSICAL REVIEW A 85, 023425 (2012)

multiphoton absorptions can generate relativistic momentum
components in the spinor � ′. This means that the range �ω

should be NR: �ω � mc2.

Let us consider the effect of applying the operator T (t) to
a LMR spinor � ′ ∈ D. From Eqs. (16) and (17) we can write

T (t)� ′(r) =
∑

σ=1,...,4

∫
dp �pσ (r,t)

∫
v†

pσ (r′,t)� ′(r′)dr′.

(38)

Because of the low momentum content of � ′, Eq. (36), only
�pσ (r,t) with subscript p of small magnitude (p � � ) will
appear in Eq. (38), for which only the low-p form of Eq. (2) is
needed. Stated differently, LMR wave packets � ′ in the Dirac
picture correspond in the laboratory frame wave packets T � ′
containing Volkov spinors with small values of the subscript
p. An approximation of T (t) obtained by cutting off the
integration over p in Eq. (38) at some � will be denoted by
T ap(t). We shall need the explicit form of T ap(t) only later;
see Sec. IX, Eq. (76).

When acting on the LMR subspace D ⊂ H, the operator
T (t) maps it into a subspace �(t) ⊂ H. As T (t) depends on a,
so does �(t); we write therefore �a(t). The correspondence
established between the elements of D and �a(t) is one to
one.

In view of Eq. (18), the action of T † on a � ∈ �a(t) is

T †(t)�(r) =
∑

σ=1,...,4

∫
dp vpσ (r,t)

∫
�†

pσ (r′,t)�(r′)dr′.

(39)

Since T †�(r) ∈ D, this means that its Fourier components
are limited by the same cutoff � which appears for T � ′ in
Eq. (38), i.e., the integral over p in Eq. (39) extends over p �
�. Thus, for �

†
pσ (r′,t) we can use the low-p approximation we

have used for �pσ (r,t) in T ap(t). T † with the p � � limitation
will be denoted by (T †)ap.We conclude that on �a(t) we have,
for T †, (T †)ap 	 (T ap)†.

In the following we are interested in the action of V ′ on a
LMR spinor � (� ∈ D). As discussed above, this means that
the integration range over p in Eqs. (34) and (35) has a cutoff
at � , and we can use low-p approximations for the quantities

±

p (τ ′′) and M±(p;τ ′′) involved, which are simpler than the
exact expressions. These we obtain from series expansions in
p/mc.

For 	±
p (τ ) and 
±

p (τ ) we find from Eqs. (4) and (5) the
approximate expressions to first order in p/mc:

	±
p (τ ) 	

[
I − 1

2
(I + α · n)

(
±1 + n · p

mc

)]
, (40)


±
p (τ ) 	 p · R

±
(τ ) ∓ mc2

2

∫ τ

−∞
a2(χ )dχ. (41)

Here,

R±(τ ) = R±
⊥(τ ) + Z(τ )n, (42)

R±
⊥(τ ) = ±c

∫ τ

−∞
a(χ )dχ ; Z(τ ) = − c

2

∫ τ

−∞
a2(χ )dχ.

(43)

By also approximating consistently SFW (p):

S
ap

FW(p) 	 I − β
α · p
2mc

, (44)

we find from Eq. (29) the expression for M± (p;τ ) to first order
in p/mc:

M± (p;τ ) 	 I + ν̂â (τ )

2

(
± 1 + n · p

mc

)
−

[
I ± ν̂â (τ )

2

]
β

α · p
2mc

. (45)

Note that we have introduced above expressions up to first
order in p/mc although we aim at a result for H ′ which is of
order O (1) .This is due to a peculiarity of the problem which
will become evident in Sec. VII [26].

Whereas the expression of T±
(
r′′,r′,t

)
in Eq. (23) could

be approximated by invoking LMR conditions, this is not
warranted a priori for the expression of T †

±
(
r,r′′,t

)
. In

principle, one should use for the latter its exact expression
Eq. (31), with the integration over p′ extended to infinity.
However, we now show that this is not necessary and that
we can limit the p′ integration in Eqs. (33)–(35) by the
same cutoff � used for the p integration (p′ � � ) and,
consequently, use the same approximations Eqs. (40)–(45) for
the p′ integration in Eq. (33). Indeed, note first that the range of
large momenta p′ � mc in Eq. (33) corresponds to the range
of large momenta q⊥,p′

z � mc in Eqs. (34) and (35). Next, we
compare the orders of magnitude of V(q) at LMR momenta
q = O(1) and at large momenta q⊥ 	 q = O(mc). For the
Coulomb case, for which V(q) ∼ 1/q2, V(q) is c2 	 18 700
smaller in the large-momentum case and hence negligible.
[The presence of M

†
±(p⊥ + q⊥,p′

z; τ ′′)—see Eq. (29)—does
not alter this conclusion.] Thus, the range of large momenta
q⊥,p′

z � mc � � in Eqs. (34) and (35) or p′ � � in Eq. (33)
gives indeed a negligible contribution, which proves our
statement [27].

With the approximations above, V ′ will be denoted as V ′ap.

In Secs. VI and VII we proceed to evaluate the terms of V ′ap
according to the decomposition in Eq. (25).

VI. CALCULATION OF V ′ap
±± (r,r′,t)

For V ′ap
±±

(
r,r′,t

)
, Eq. (34), we calculate the approximate

LMR expressions


±
p⊥,pz

(τ ′′) − 
±
p⊥+q⊥, p′

z
(τ ′′)

	 (pz − p′
z)Z(τ ′′) − q⊥ · R±

⊥(τ ′′), (46)

I ± β

2
M

†
±(p⊥ + q⊥,p′

z; τ
′′)M±(p⊥,pz;τ

′′)
I ± β

2

	
{[

1 + a2

2
− 1

2mc
a · (2p⊥ + q⊥)

]
I

+ 1

4mc
(pz + p′

z)a
2β + i

2mc

[
a × q⊥

−1

2
(q⊥ × n)a2 β

]
· �

}
I ± β

2
, (47)

where we have neglected terms in (p/mc)2; all a depend on τ ′′.
Upon inserting these expressions in Eq. (34), we can replace
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the integration variable p′
z appearing on the right-hand side of

Eq. (47) with the operator Pz acting on the variable z, over
which one does not integrate. This allows the p′

z integration to
be carried out, which leads to δ(z′′ − z + Z(τ ′′)). Hence,

V ′ap
±±(r,r′,t) = 1

(2π )3

∫
dqV(q)

∫
dz′′

∫
dp

I ± β

2

×M
†
±(p⊥ + q⊥,Pz; τ

′′)M±(p⊥,pz;τ
′′)

I ± β

2
× δ(z′′ − z + Z(τ ′′)) exp[i{(pz + qz)z

′′

+ (p⊥ + q⊥) · r⊥−p⊥ · r′
⊥ − pzz

′ + pzZ(τ ′′)
− q⊥ · R±

⊥(τ ′′)}].
We would like to integrate next over z′′, but the δ function

does not have a suitable form. However, by using known
formulas [28] we can write

δ(z′′ − z + Z(τ ′′)) = 1

c
δ

(
τ ′′ − τ − 1

c
Z(τ ′′)

)
= 1

c

1

1 + a2(τ )/2
δ(τ ′′ − τ (τ )), (48)

where τ (τ ) is the solution of the equation

τ = τ + 1

c
Z(τ ). (49)

With the definition of Z(τ ), Eqs. (42) and (43), we can write
Eq. (49) as

τ = τ − 1

2

∫ τ

−∞
a2(χ )dχ. (50)

Setting τ ≡ τ + ζ here results in an equation for ζ (τ ) which is
identical to the equation for γ ‖(t) in Eq. (7) with t replaced by
τ , if one sets ζ (τ ) = −γ ‖(τ )/c. We recall that we are denoting
by γ e|p(t) the solution Eq. (6) of the relativistic equation of
motion. Hence, we have found that the solution we seek is

τ (τ ) = τ − 1

c
γ‖(τ ). (51)

Besides, due to Eq. (49), Z(τ ) = −γ‖(τ ). Taking into account
also Eqs. (42), (6), and (7), we have more generally

R±(τ ) = −γ e|p(τ ). (52)

Returning to Eq. (48), by applying Eq. (49), we can also write
this as

δ(z′′ − z + Z(τ ′′)) = 1

1 + a2(τ )/2
δ(z′′ − z + Z(τ )). (53)

Performing the z′′ integration then gives

V ′ap
±±(r,r′,t)

= 1

(2π )3

∫
dqV(q)

∫
dp

I ± β

2
M

†
±(p⊥ + q⊥,Pz; τ )

×M±(p⊥,pz ;τ )
I ± β

2

1

1 + a2(τ )/2

× exp (i{p · (r − r′) − q · [r + γ e|p(τ )]}). (54)

Further, we can extract the matrices in Eq. (54) out of the
integrals if we replace the vectors p,q⊥ in Eq. (47) by the
momentum operators P′,P⊥, acting on the variables r′⊥,r⊥,

respectively (over which one does not integrate), as follows:
p → −P′, q⊥ → P⊥. Equation (54) becomes

V ′ap
±±(r,r′,t) = I ± β

2
M

†
±(P⊥ − P′

⊥,Pz; τ )M±(−P′
⊥, − Pz;τ )

× I ± β

2

∫
dqV(q)

∫
dp

1

1 + a2(τ )/2

× exp (i{p · (r − r′) − q · [r + γ e|p(τ )]}).
(55)

As, from Eq. (32),∫
dqV(q) exp (i{q·[r + γ e|p(τ )]}) = V (r + γ e|p(τ )),

(56)

taking into account the expression of the matrix product
Eq. (47), Eq. (55) becomes

V ′ap
±±(r,r′,t) = [AI + B·�]

1

1 + a2(τ )/2
δ(r − r′)

×V (r + γ e|p(τ ))
I ± β

2
, (57)

where

A ≡
[

1 + a2

2
− 1

2mc
a ·(P⊥−2P′

⊥)

]
I + 1

4mc
(Pz − P ′

z)a2β,

(58)

B ≡ i

4mc
{[n × P⊥] a2β + 2a × P⊥}. (59)

Here all a depend on τ and the momentum operators P and P′
act on all functions depending on r or r′, respectively, to their
right in Eq. (57). With the definition of an integral operator
[see, for example, Eq. (16)] and using Eqs. (57)–(59), we find
that V

′ap
±± acting in the subspace D can be expressed up to

O(p/mc) as

V
′ap
±± =

[
V (r + γ e|p(τ ))I + 1

mc
(Ã I + B̃ · �)

]
I ± β

2
,

(60)

where

Ã ≡ − i

2(1 + a2/2)2
a · da

dz
V (r + γ e|p(τ ))β

+ 1

(1 + a2/2)

{
− 1

2
〈a · [P⊥V (r + γ e|p(τ ))]〉

+1

4
a2[PzV (r + γ e|p(τ ))]β + V (r + γ e|p(τ ))

×
〈
− a · P⊥+1

4
a2Pzβ

〉}
, (61)

B̃ ≡ i

4(1 + a2/2)
{n × [P⊥V (r + γ e|p(τ ))]a2β

+ 2a × [P⊥V (r + γ e|p(τ ))]}. (62)

In the equations above the only place where the action of the
momentum operators P⊥,Pz extends beyond the brackets they
are enclosed in is the last bracket 〈· · ·〉 of Eq. (61).

Equation (61) contains the derivative da/dz, appearing
for the first time in the calculation. We want to confine the
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corresponding term in Eq. (60) to being a correction term to
V (r + γ e|p(τ )), while assuming, as was done before, that a

can be large [a = O(1)]. This requires that (1/mc)(da/dz)
� 1, and Eq. (37) follows. The significance of this condition
was discussed in Sec. V.

VII. CALCULATION OF V ′ap
±∓(r,r′,t)

For V
′ap
±∓ , Eq. (35), we calculate the approximate LMR

expressions:


±
p⊥, pz

(τ ′′) − 
∓
p⊥+q⊥,p′

z
(τ ′′)

	 ∓ 2mcZ(τ ′′) + (pz − p′
z)Z(τ ′′)−(2p⊥ + q⊥) · R±

⊥(τ ′′),
(63)

where we have used R−
⊥ = −R+

⊥ [see Eq. (42)] and

Q±∓

≡ I ± β

2
M

†
±(p⊥ + q⊥,p′

z; τ
′′)M∓(p⊥,pz ;τ ′′)

I ∓ β

2

	
{

i

2mc
(n × a) · q⊥ρ +

(
1 − a2

2

)
βα · q⊥

2mc
.

+α · n
[
a2

2
− a · (2p⊥ + q⊥)

2mc

]
+β α · n

(1 + a2/2)

2mc
(p′

z − pz)

}
I ∓ β

2
, (64)

where we have introduced the odd matrix ρ = (
0 I

I 0
) [29]. We

have neglected here second-order terms in p and p′; all a
depend on τ ′′.

In the following we want to determine V ′
±∓, Eq. (35), only

to O (1). To this end we can discard in Eq. (64) all linear terms
in the momenta as giving contributions of O(p/mc), except
for the term containing p′

z/mc on the last line of Eq. (64).
By a peculiarity of the problem, this gives a contribution of
O (1) instead of O(p/mc); see below. Consequently, we shall
be working with the matrix

Q±∓(p′
z,τ

′′) ≡ I ± β

2

[
a2

2
I +

(
1 + a2

2

)
p′

z

2mc
β

]
α · n

(
I ∓ β

2

)
. (65)

We perform first the p′
z integration. To this end we can

replace the variable p′
z contained in Eq. (64) by the operator

Pz acting on the variable z, over which one does not integrate
in Eq. (35). This allows the integral over p′

z to be carried out,
yielding δ(z − z′′ − Z(τ ′′)). The integration over z′′ is done
using Eq. (53), which gives

V ′ap
±∓(r,r′,t) 	 1

(2π )3

∫
dqV(q)

∫
dp exp[i{p⊥ · (r⊥ − r′

⊥)

−pzz
′− q⊥ · r⊥}Q±∓(Pz; τ )]

× 1

1 + a2(τ )/2
exp (i{∓ 2mcZ(τ ) + (pz + qz)

× [z − Z(τ )] − (2p⊥ + q⊥) · R±
⊥(τ )}). (66)

where the operator Pz acts on all functions placed to its right
in Eq. (66). Recall that the δ function changes τ ′′ into τ , which
is z dependent; see Eq. (51).

When Pz is applied in Eq. (66), several terms appear. One
of them contains the derivative

[Pz exp{∓2imcZ(τ )}]
= ∓2mca2(τ )

dτ

dτ

(
∂τ

∂z

)
exp[∓2imcZ(τ )]

= ∓2mca2(τ )

(
1−1

c

dγ‖(τ )

dτ

)
exp[∓2imcZ(τ )],

(67)

where we have used Eq. (51). By considering the equation of
motion for γ‖(τ ) from Eq. (7) with t replaced by τ , we find

1

c

dγ‖(τ )

dτ
= 1

2

(
1 − 1

c

dγ‖(τ )

dτ

)
a2(τ ).

This can be solved for dγ‖(τ )/dτ to give

1

c

dγ‖(τ )

dτ
= a2(τ )/2

1 + a2(τ )/2
. (68)

Thus, Eq. (67) becomes

Pz

mc
exp[∓2imcZ(τ )] = ∓ a2(τ )

1 + a2(τ )/2
exp[∓2imcZ(τ )].

(69)

Here, the exponential on the left-hand side being of order O(1),
one might have expected to get a result of order O(p/mc),
but the result turns out to be of order O(1). The change
in the order of magnitude occurs because the argument of
exp[∓2imcZ(τ )] contains the large factor mc. This explains
why we have kept the term p′

z/mc in Eq. (64). The other terms
resulting from the application of the operator Pz in Eq. (66)
are of O(p/mc).

By making use of Eqs. (65) and (69) in Eq. (66), we have
to O(1)

Q±∓(Pz; τ )
1

1 + a2(τ )/2
exp i{· · ·}

	 I ± β

2
(I ∓ β)

a2

2
α · n

(
I ∓ β

2

)
1

1 + a2(τ )/2
exp i{· · ·}.

As (I ± β)(I ∓ β) = 0,

V ′ap
±∓(r,r′,t) = 0. (70)

VIII. GENERALIZED SPACE-TRANSLATED
PAULI EQUATIONS

In the following we shall concentrate on our results to O(1).
Taking into account Eqs. (25), (60), and (70), the expression
of the operator V ′ ap takes to this order the remarkably simple
form of a multiplicative operator:

V ′ ap(t) = V (r + γ e(τ ))
I + β

2
+ V (r + γ p(τ ))

I − β

2
.

(71)

We are now in a position to write the action of the Hamiltonian
H ′(t), Eq. (21), on a LMR spinor �(r) ∈ D. We note that
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the kinetic energy term Eβ of H ′ was obtained using the
exact form of the operator T . This represents a higher level
of accuracy than we are interested in, and we need to take
the O(1) approximation of Eβ with respect to p/mc, which
gives Eβ� 	 (mc2 + P2/2m)β�. We can express the result
for H ′� 	 H ′ap� to O(1) as

H ′ap(t)� 	 [mc2 + P2/2m + V (r + γ e(τ ))]
I + β

2
�

+[−mc2 − P2/2m + V (r + γ p(τ ))]
I − β

2
�.

(72)

In Sec. V we showed that V ′ap� ∈ D (see also [27]), and
hence also H ′ap(t)� ∈ D, whatever t .

We now consider what happens to a spinor � ′ starting
from a LMR initial condition at some time t0 and evolving
according to the translated Dirac equation (21). We recall that a
differential equation like Eq. (21), containing only the first time
derivative ∂/∂t , implies the existence of a unitary evolution
operator U (r; t,t0). In general, U (r; t,t0) can be represented
by Neumann’s series [30]:

U (r; t,t0) = I +
∞∑

n=1

(−i)n
∫ t

t0

dt1H (r; t1)

×
∫ t1

t0

dt2H (r; t2) · · ·
∫ tn−1

t0

dtnH (r; tn),

where t0 < tn−1 < · · · < t1 < t. The existence of the solution
� ′(r,t) implies the convergence of the series. When applying
U (r; t,t0) to � ′

0(r) ∈ D, one first encounters the integral

χ (r,tn−1) =
∫ tn−1

t0

dtnH (r; tn)� ′
0(r).

As H (r; tn)� ′
0

∼= Hap(r; tn)� ′
0 ∈ D at all times tn, χ (r,tn−1),

which is an integral over elements of D (i.e., a linear
combination of them), will also belong to D, χ (r,tn−1) ∈
D. This means that we can repeat the argument stepwise
to conclude that � ′(r,t) = U (r; t,t0)� ′

0(r) ∈ D, and hence
that the solutionremains in the LMR at all times t and
the approximation for the Hamiltonian H ′ 	 H ′ap remains
valid. The space-translated Dirac equation (21) is therefore
equivalent to O(1) to the equation{

[mc2 + P2/2m + V (r + γ e(τ ))] − i
∂

∂t

}
I + β

2
� ′

+
{

[−mc2 − P2/2m + V (r + γ p(τ ))] − i
∂

∂t

}
I − β

2
� ′

= 0. (73)

If initially � ′ is an electron (positron) wave packet, i.e., only
its first two (last two) components are nonvanishing, because
of the projection operators, Eq. (73) can be split into two
independent equations. By introducing the four-component
spinors ϕ and χ containing, respectively, the upper and lower
components of a solution � ′ according to

� ′ ≡ e−imc2t I + β

2
ϕ + e+imc2t I − β

2
χ∗,

the two equations can be written as

[P2/2m + V (r + γ e(τ ))]ϕ − i
∂ϕ

∂t
= 0, (74)

[P2/2m − V (r + γ p(τ ))]χ − i
∂χ

∂t
= 0. (75)

Although Eqs. (74) and (75) are 4 × 4 equations, because of
the structure of ϕ and χ they reduce for practical purposes to
two-component Pauli equations [31]. These we shall denote
as Pauli LMR equations. In fact, due to our restriction
to O(1) in p/mc, they are two-component Schrödinger
equations because they contain no spin matrices. The fact
that these are not present is deceptive, as will be shown in
Secs. IX and XI.

We can finally answer the problem posed in Sec. IV:
with LMR initial conditions the solutions of the generalized
translated Dirac equation Eq. (21) remain LMR at all times,
and the electron and positron components of the solutions
evolve according to two independent Pauli equations. For
LMR initial conditions all information contained in the original
Dirac equation is present also in Eqs. (74) and (75), if terms of
order O(�/mc) in the translated Dirac picture are neglected.
As a consequence, under these conditions the electron cannot
generate electron-positron pairs no matter how intense the
field and how rapidly it varies (recall however, the limitation
mentioned at the end of Sec. VI, irrelevant in practice) [13,32].

IX. CALCULATION OF OBSERVABLES

Physical observables are defined in the laboratory frame and
are calculated in terms of the laboratory-frame wave spinors
�(r,t), using the appropriate form of the scalar product. We
show in the following how to express these quantities in
terms of the corresponding spinors � ′(r,t) of the translated
Dirac picture. The exact transformation operator T being
unitary ensures the conservation of the scalar product when
passing from one representation to the other: 〈� | �〉 =
〈T � ′ | T �′〉 = 〈� ′ | �′〉, as T †T = I exactly. It is easy to
show that the approximate T

ap
± also has this property. Indeed,

if we replace V by I in Eq. (71), we find T †apT ap = I to
O(1), which means that also T ap conserves the scalar product
to O(1) [33].

We now calculate the appropriate forms of T ap and T †ap.

Starting from the exact T±(r,r′,t), Eq. (30), by applying the
approximations Eqs. (40)–(45), it is easy to show that

T ap
± (r,r′,t) = exp

(
∓ i

mc2

2

∫ τ

−∞
a2(χ )dχ

)
M±(−P′; τ )

× I ± β

2
δ(r − r′ + R±(τ )), (76)

where M±(P; τ ) is defined by Eq. (45), with p replaced by the
momentum operator P. In Eq. (76) P′ acts on the coordinate
r′ of the δ function to its right. Consequently, T

ap
± acts on a

spinor � ′(r) as

T
ap
± (t)� ′(r) = exp

(
∓ i

mc2

2

∫ τ

−∞
a2(χ )dχ

)
×

{
M±(+P′;τ )

I ± β

2
� ′(r′)

}
r′=r+R±(τ )

.(77)
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Recall that R±(τ ) can be expressed with Eq. (52). The
complete transform of � ′ is given by T ap� ′(r) ≡ T

ap
+ � ′(r) +

T
ap
− � ′(r).

Let us consider the special cases t → ±∞, when the field
vanishes in the vicinity of the atom. From Eqs. (77) and (29),
we find for t → −∞

[T ap
± ]−∞ = S

ap

FW(P)
I ± β

2
. (78)

Here, S
ap

FW(P) is given by Eq. (44) with p replaced by P. The
fact that [T ap

± ]−∞ differs from (I ± β)/2 and [T ap]−∞ �= I

is due to the initial spinor change of basis, from the standard
basis set to the FW basis set; see Eq. (13). Thus, the connection
between the initial conditions of the laboratory frame and the
translated Dirac picture is

� ′
i(r) = I ± β

2
S

ap†
FW (P)�i(r). (79)

For t → +∞, the distances r of interest being finite, τ,τ →
∞. We are then dealing with Eqs. (42) with γ e|p(∞); see
Eq. (8). Equation (77) gives

[�±(r)]f = exp

(
∓ i

mc2

2

∫ +∞

−∞
a2(χ )dχ

)
S

ap

FW(P)

× I ± β

2
� ′

f (r − rf ), (80)

where rf is the forward drift of the classical electron, Eq. (8).
The complete transform of � ′

f (r) is

�f (r) =
{

exp

(
−i

mc2

2

∫ +∞

−∞
a2 (χ ) dχ

)
S

ap

FW(P)
I + β

2

+ exp

(
+i

mc2

2

∫ +∞

−∞
a2 (χ ) dχ

)
S

ap

FW (P)
I − β

2

}
×� ′

f (r − rf ). (81)

We shall also need in the following the operator T
†ap
± , for

whose kernel we find the two alternative forms

T †ap
± (r,r′,t) = exp

(
±i

mc2

2

∫ τ ′

−∞
a2(χ )dχ

)
I ± β

2

×M
†
±(P; τ ′)δ(r′−r + R±(τ ′)) (82)

= exp

(
±i

mc2

2

∫ τ

−∞
a2(χ )dχ

)
I ± β

2

×M
†
±(P; τ )

δ(r′−r + R±(τ ))
1 + a2(τ )/2

(83)

to be used depending on the integration variable r or r′.
The second form was obtained from the first one by using
Eq. (53) [28]. Here M

†
±(P; τ ) is the adjoint of the operator in

Eq. (77), taking duly into account the order of noncommuting
operators it contains. Note that Eqs. (76) and (82) contain
R±(τ ), whereas Eq. (83) contains R±(τ ); the latter can be
expressed in terms of τ via Eq. (52). The complete transform
T †ap is T †ap ≡ T

†ap
+ + T

†ap
− .

In most problems the quantity of interest is the final
wave spinor for the laboratory frame, �f (r). The standard

procedure would be to obtain it by integrating the Dirac
equation for the laboratory frame starting from a certain atomic
initial condition, �i(r). With our procedure, however, the
propagation of the wave spinor in time is carried out using
the Pauli LMR equations (74) and (75), starting from an initial
condition � ′

i(r), connected to �i(r) by Eq. (79). Once � ′
f (r)

is obtained, �f (r) results from Eq. (81). Concerning the initial
condition �i(r) for the laboratory frame, this should be either
an electron or a positron wave packet, which is an eigenspinor
of some observables, such as energy, spin, etc. Clearly, �i(r)
should be expressed at the level of approximation of our theory,
i.e., reflecting the light-atom condition αZ � 1.

Although there are no spin matrices in Eqs. (74) and
(75), the fact that the solution is an electron or positron
wave spinor on which S

ap

FW(P) needs to be applied to get
the laboratory spinor �f (r) indicates that spin is taken into
account. We illustrate this as follows. If the initial state is
a relativistic Coulomb-energy bound state with fine-structure
quantum numbers n,l,j,m, and �i(r) = unljm(r), the αZ � 1
approximation that should be used for unljm(r) is, in split
notation,

unljm(r) 	 {
Rnl(r)Ym

lj (r̂); (σ · P/2mc)Rnl(r)Ym
lj (r̂)

}
,

(84)

where Rnl(r) are the NR radial functions and Ym
lj (r̂) are the

Pauli eigenspinors common to J2, L2, and Jz. The initial
condition in the translated Dirac picture deriving from Eq. (84)
is, according to Eq. (79), in split notation

� ′
i = {

(1 + P 2/4m2c2)Rnl(r)Ym
lj (r̂); 0

} 	 {
Rnl(r)Ym

lj (r̂); 0
}
,

(85)

where we have neglected the term with P 2 as being O(α2Z2).
Referring to Eq. (74), the initial condition Eq. (85) for ϕ has
two different nonvanishing components. Thus, we need (in
general) to integrate the Schrödinger equation in (74) twice,
for two different initial conditions in order to obtain the � ′

f (r).
As an example for the calculation of an observable quantity

we take the survival probabilitiy of the atom in the ground
state after the passage of a radiation pulse. Since there are two
degenerate ground states n = 1, l = 0, j = 1/2, m = ±1/2,

we have for the survival probability of the atom initially in the
m spin state the laboratory-frame formula (electron case)

P s
m ≡

∑
n′l′j ′m′

|〈un′l′j ′m′(r) | �f m(r)〉|2, (86)

where �f m(r) is the final wave spinor evolving from the initial
state m. Insertion of Eq. (80) here leads to

P s
m =

∑
n′l′j ′m′

∣∣∣∣〈 un′l′j ′m′(r)

∣∣∣∣I + β

2
S

ap

FW(P)� ′
f μ(r − rf )

〉∣∣∣∣2

.

(87)

As � ′
f m has two nonvanishing components that are different

for m = ±1/2, the corresponding P s
m will in general differ.
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X. GENERALIZED COULOMB POTENTIAL

The generalized potential V (r + γ e|p(τ )) is a quantity
which requires attention. For the Coulomb electron case we
have (in a.u.):

V e
LMR(r) ≡ VC(r + γ e(τ )) = − Z

|r + γ e(t − (n · r)/c)| .

(88)

This has a moving singularity and also can manifest a large
time-dependent distortion compared to the pure Coulomb
potential.

Let us consider first the motion of its singularity, rs(t). This
is given by

rs(t) + γ e(τs) = 0,

where γ e(τs) is obained from Eq. (7) with t replaced by τs =
t − n · rs(t)/c. In this case the upper limit of the integrals in
Eq. (7) is τs − γ‖(τs)/c = t . We find for rs(t)

rs(t) = +c

∫ t

−∞
a(χ )dχ − c

2
n

∫ t

−∞
a2(χ )dχ. (89)

By comparing Eqs. (7) and (89), it is apparent that rs(t)
has mathematically the same trajectory as −γ e(t), except
that the two motions are delayed in time. However, whereas
γ e(t) represents a trajectory in the laboratory frame, rs(t)
is a trajectory in a coordinate space that is not associated
with a physical reference frame. At times rs(t) moves with
superluminal velocities, but this is of no concern.

To illustrate the distortion of V e
LMR(r), let us consider its

behavior in the vicinity of the singularity where the interaction
with the radiation takes place. We assume that the pulse is
linearly polarized and propagates along Oz, with the vector
potential and electric field oscillating along Ox, i.e., of the
form a{a(τ ),0,0}. By introducing the polar coordinates ρ =
r − rs(t), the expansion of the denominator in Eq. (88) for
ρ < 1 leads to

V e
LMR(r) 	 − Z[

ρ2 − λ(t)ρ2
z + μ(t)ρxρz + O(ρ3)

]1/2 , (90)

where

λ(t) =
[

a2/2

1 + a2/2

]2

τ s

, μ(t) =
[

2a

1 + a2/2

]
τ s

. (91)

We have calculated the expressions for dγ ⊥ (τ ) /dτ and
dγ ‖ (τ ) /dτ required for Eq. (90) using Eq. (7). The result
for dγ ⊥ (τ ) /dτ was given in Eq. (68), and we obtain similarly

1

c

dγ⊥ (τ )

dτ
= − a2 (τ )

1 + a2 (τ ) /2
.

The coefficients λ(t) and μ(t) in Eq. (90) need to be calculated
at the point r = rs(t), which makes them depend on the value
of τ at this point, namely, τ s ≡ τs − γ e|p (τs) · n/c.

When expressing the quadratic form contained in Eq. (90)
with respect to the principal axes, we get

V e
LMR(r) = − Z[

(ρ ′
x/α)2 + ρ ′2

y + (ρ ′
z/β)2

]1/2 . (92)
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FIG. 1. (Color online) Dependence of α (continuous line) and β

(dotted line), the lengths of the semiaxes of the equipotential ellipses
of VLMR at ρ ′

y = 0 and Z = 1 [Eq. (92)], on the dimensionless field
strength parameter a in Eq. (1). The values in a.u. are given on the
ordinate at left. Dashed line: a dependence of the rotation angle θ

of the axes of the ellipse with respect to their initial position; values
given in degrees on the ordinate at right.

The coordinates ρ ′
x,ρ

′
z are obtained from the original ρx,ρz by

a rotation by angle θ in the positive sense, defined by

tan θ = −(λ/μ) +
√

1 + (λ/μ)2 (93)

and ρ ′
y = ρy. The dependence of θ on a is given in Fig. 1.

At given ρ ′
y, the level lines of VLMR(r) are ellipses with the

semiminor axis proportional to α and the semimajor axis
proportional to β. α and β are functions of a that can be
readily calculated analytically. Their graphical representation
is also shown in Fig. 1, for a > 0. As seen, α(a) stays rather
close to 1 (to within 20%) for all a, whereas β grows with a

(parabolically at large a). As α ≈ 1, Eq. (92) shows that the
3D equipotential surfaces of VLMR(r) are rather close to being
revolution ellipsoids with the axis along Oρ ′

z.

For a laser pulse, a(τ ) oscillates, taking positive and
negative values, depending on its specific form. Let us follow
the rotation and distortion of a typical equipotential ellipse
obtained by setting VLMR = −Z and taking ρ ′

y = 0 in Eq. (92).
Figure 1 shows that in the limit a = 0 we have α = β = 1,

i.e., the ellipse reduces to a circle of radius 1, and moreover
θ = π/4. As a increases the axes turn in the clockwise sense.
This goes on until a attains its maximum value and starts
decreasing. Then α, β, and θ retrace their paths until the circle
at a = 0 is regained. Figure 2 shows the rotation and distortion
of the ellipse at several values of a > 0. The distortion can
be substantial for high fields and low frequencies. As an
illustration we take the case of a pulse a(τ ) = a0(τ ) sin ωτ ,
the envelope a0(τ ) having a maximum a0(0) at τ = 0. It
can be shown [5] that in this case the maximum value of
the electric field is given by Emax = cωa0(0) a.u. Taking
here Imax = 1000 a.u. = 3.5 × 1019 W/cm2, Emax = 31.6 a.u.,
and ω = 0.057 (λ = 800 nm), we get a0(0) = 4.06. Figure 1
shows that the ratio of the semimajor and semiminor axes is
then quite large, β/α 	 β 	 10.8. The corresponding rotation
angle is θ = 24.2◦.

Note that the elongation of the major axis of the ellipse from
its unperturbed value 1 represents a deepening of the potential
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FIG. 2. (Color online) Rotation and elongation of a typical
equipotential ellipse of VLMR(r), Eq. (92) (VLMR = −Z with ρ ′

y = 0),
at various values of the dimensionless field strength a. As a increases,
the ellipse starts from a circle of radius 1 at a = 0 (unperturbed
Coulomb case), then elongates in the direction of the major axis and
rotates in the positive sense, while the semiminor axis stays fairly
close to 1. The units on the axes are a.u.

in the direction of this axis with respect to the original Coulomb
potential. Equation (92) gives V e

LMR(0,0,ρz) = βVC(0,0,ρz),
which means a 9.8 times deepening in the preceding example.
For a short and intense laser pulse this is particularly marked
during the time interval close to the peak and could lead to
interesting physical consequences.

XI. NONRELATIVISTIC LIMIT

In the translated Dirac picture the NR limit is achieved by
imposing the condition that the field a(τ ) be weak such that
mca = O(1) in a.u. (otherwise, |a| � 1/137). In this case the
momenta in the laboratory frame will automatically be NR
[of order O(1) a.u.], if they were so in the absence of the
radiation. In the following we establish the equivalence of the
NR limit of our Dirac picture Hamiltonian for the electron
[see Eq. (74)] with the NR Hamiltonian of the Dirac equation
for the laboratory frame, HNR [see Eq. (101) below], to order
O(a).

We start from the LMR Dirac Hamiltonian H ′ap, Eq. (72),
and endeavor to show that there exists an operator T̃ which
is an approximation of the exact T , such that the transformed
Hamiltonian Hap,

Hap ≡ i
∂T̃

∂t
T̃ † + T̃ H ′apT̃ † (94)

coincides with HNR, and

T̃ T̃ † 	 I + O(a2). (95)

As a candidate for T̃ we choose a simplified form of T ap,
Eqs. (76) and (77), with the operator matrix M±(+P′;τ )
replaced by [34]

M̃±(τ ) ≡ I ± i

2
� · (a × n). (96)

The total T̃ is given by T̃ = T̃+ + T̃−. Similarly, T̃ † is defined
by Eq. (82) with M±(+P′;τ ) replaced by Eq. (96). We shall
now check that T̃ is an appropriate choice.

First, let us consider the different terms of Eq. (94). We
begin by calculating the transform V ap of the potential term
V ′ ap, Eq. (71), contained in H ′ap, Eq. (72). To obtain the
kernel of V ap, we use a formula similar to Eq. (23):

Vap(r,r′,t) =
∫

T̃ (r,r′′,t)V ′ap(r′′)T̃ †(r′′,r′,t)dr′′.

When we insert Eq. (71) here and the appropriate forms for
T̃ ,T̃ † resulting from Eqs. (76) and (82), we get

Vap(r,r′,t) =
[
M̃+(τ )

I + β

2
M̃

†
+( τ ′)f+J+

+ M̃−(τ )
I − β

2
M̃

†
−(τ ′)f−J−

]
, (97)

where

f± = exp

(
∓i

mc2

2

∫ τ

−∞
a2 (χ ) dχ

)
× exp

(
±i

mc2

2

∫ τ ′

−∞
a2 (χ ) dχ

)
,

and for J± we find

J± = δ(r + R(±)(τ ) − r′ − R(±)(τ ′))
×V (r + γ e|p(τ ) + R(±)(τ )).

The δ function appearing here can be handled similarly to that
in Eq. (53); see [28]. This gives

J± = 1

[1 + a2(τ )/2]
δ(r − r′)V (r + γ e|p(τ ) + R(±)(τ )).

Neglecting O(a2) and inserting this in Eq. (97), we get

Vap(r,r′,t) = δ(r − r′)V (r), V ap(r) ≡ T̃ V ′apT̃ † = V (r)I,

(98)

as

M̃+(τ )
I + β

2
M̃

†
+(τ ) + M̃−(τ )

I − β

2
M̃

†
−(τ ) = I + O(a2).

(99)

Equation (98) allows us to verify that T̃ satisfies Eq. (95).
This is obtained by setting V → 1 in Eqs. (71) and (98).

Next we consider the contribution of the kinetic energy
terms of Eq. (72) to Eq. (94). This is

T̃

[
(mc2 + P2/2m)

I + β

2
+ (−mc2 − P2/2m)

I − β

2

]
T̃ †

=
(

mc2 + P2

2m

)
β,
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as P2 commutes with T̃ if terms of order O(a2) and crossed
order O (a) × O(p/mc) are neglected; we have also used
Eq. (95).

Finally, the contribution of the first term in Eq. (94) can be
written to order O (a) as

i
∂T̃

∂t
T̃ † = i

∂T̃+
∂t

T̃
†
+ + i

∂T̃−
∂t

T̃
†
−

=
{[

1

2
mc2a2 (τ ) − ca (τ ) · P

]
I− e

2mc
σ · H

}
β.

(100)

To derive this equation we have used the
form of T̃±

(
r,r′,t

)
resulting from Eq. (76) and

calculated ∂T̃±
(
r,r′,t

)
/∂t , noting that n × ∂a/∂t =

−c rot a = − (e/mc) H, where H is the magnetic field.
Neglecting terms of O

(
a2

)
, the matrix (I ± β) /2 can be

factored out to the right of the derivative ∂T̃±
(
r,r′,t

)
/∂t . The

same matrix can be factored out to the left of [T̃±
(
r,r′,t

)
]†

when calculating Eq. (100). One can then apply Eq. (95) which
leads to the result Eq. (100). Note that the term mc2a2 (τ ),
although proportional to a2 (τ ) , cannot be neglected in
Eq. (100) because of its large coefficient mc2.

Collecting the contributions to Hap , we find that it coincides
with

HNR =
[
mc2 + [P−mca (τ )]2

2m
− e

2mc
σ · H(τ )

]
β + V (r) I,

(101)

which is the textbook result for the NR limit of the Dirac
equation; see, e.g., [17], Chap. XX, Eq. (188). We have
thus proven that the unitary transformation T̃ establishes the
equivalence, in the NR limit and to O (a) , of our LMR Eq. (74)
and the Dirac equation for the laboratory frame, Eq. (101) [35].

Since HNR, Eq. (101), contains the Hamiltonian for the
Schrödinger equation with full retardation, this means that our
result Eq. (74) encompasses any approximate form derived
from HNR, such as retaining only the first-order retardation
correction in A (τ ) beyond the dipole approximation A(t),
a case considered in [36], Eq. (4); [37], Eqs. (2) and (3);
[38], Eq. (2); and [39], Eq. (14). Our result also encompasses
the space-transformed Schrödinger equation obtained in [6],
Eq. (5), since this too derives from the retarded Schrödinger
equation. A more direct contact cannot be established with [6],
as the operator transform U used there [see [6], Eqs. (2) and
(3)] does not represent the NR nondipole limit of our T ap.

XII. FINAL COMMENTS AND CONCLUSION

In this final section we endeavor to give more insight into
our calculations. We start by noting that in the NR case the
space-translation transformation for the Schrödinger equation
with a (dipole approximation) radiation field is achieved by
passing to an oscillating reference frame. In the relativistic
case, because of retardation, this oscillating frame cannot be
defined, as the field does not oscillate in phase throughout
space. A generalization of the space translation is defined in
the form of a change of quantum-mechanical representation,
defined with the help of the operator T (t), Eq. (17). The

resulting generalized translated Dirac equation (21) of the new
representation (the Dirac picture) contains a potential term
which is a complicated integral operator V ′ (r,t) , Eq. (22),
that makes the equation intractable in general. Its advantage,
however, lies in the fact that the field dependence is entirely
contained in V ′ (r,t) .

We have focused here on the special case of the interaction
of an atomic electron with an optical laser pulse of arbitrary
intensity and have considered the realistic situation of laser
physics in which the initial condition for the atom in the
laboratory frame, �i (r) , is represented by a spinor containing
only low momenta p/mc � �/mc � 1, where � is a cutoff.
Such spinors we have denoted as being in the low-momentum
regime (LMR). This implicitly limits our study to small-Z
atoms (αZ � 1) . When evolving from a LMR initial condition
�i (r) according to the Dirac equation for the laboratory frame,
a spinor � (r,t) will nevertheless develop in superintense
laser fields high relativistic momenta (p/mc � 1). In the
translated Dirac picture the corresponding initial condition
� ′

i (r) is also a LMR spinor, as �i (r) = T (−∞) � ′
i (r) and

T (−∞) represents only a change of spinor basis. We have
shown that the spinor � ′

i (r,t) , the solution of the generalized
Dirac equation, Eq. (21), remains a LMR spinor during its
evolution, no matter how intense the field (see Secs. VI–
VIII). A limitation was needed on the space-time variation
of the field, Eq. (37), but it turns out to be irrelevant in
practice.

On the other hand, when acting on a LMR spinor of
the transformed Dirac picture, the operator V ′ (r,t) reduces
to a remarkably simple form: it becomes a multiplicative
function. Moreover, for initial conditions chosen to be electron
or positron wave packets, the transformed Dirac equation
reduces in fact to two independent Pauli equations (denoted the
Pauli LMR equations), one for the electron, the other for the
positron. They contain all the information the Dirac equation
can offer for laser interactions with small-Z atoms.This implies
that in the conditions we have considered no pair production
can occur, no matter how intense the field a (τ ) , and that
the nonquantized Dirac equation is capable of handling our
situation, even though the laser field is allowed to be arbitrarily
intense.

The LMR equations can be obtained with various degrees of
accuracy with respect to the LMR cutoff �/mc. In this paper
we have neglected �/mc corrections to the dominant-order
results, denoted as O (1). The LMR equations then contain no
Pauli spin matrices, and are proportional to the 2 × 2 matrix
I. This means that they reduce to two-component Schrödinger
equations (74) and (75), one for the electron, the other for
the positron. They contain the time-dependent generalized
potentials V

e|p
LMR (r,t) [see Eq. (88)], manifesting rather unusual

properties, discussed in Sec. X.
It may appear puzzling that we started from a four-

component Dirac equation which contains the physics of
spin and have ended up with Schrödinger equations with
no spin in them. The explanation lies in the way physical
observables are calculated. For the Dirac equation these are
basically formulated in the laboratory frame in terms of scalar
products containing the laboratory-frame wave spinors. When
expressed in terms of the Dirac-picture wave spinors, use
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is made of the transformation operator T ap(t) which does
contain the spin (see Sec. IX). Moreover, we have shown in
Sec. XI that when transformed back to the laboratory frame,
Eqs. (74) and (75) yield in the NR limit (i.e., the case of small
momenta p/mc � 1 in the laboratory frame and weak fields)
the well-known textbook result with spin included.

We note that it would be in principle possible to apply our
procedure to obtain a higher-order approximation with respect
to the LMR cutoff �/mc. The analog of Eqs. (74) and (75)
would now contain the Pauli spin matrices.

The simple form of the electronic equation (74) makes
it potentially attractive for numerical integration. As noted
in the Introduction, the 3D Dirac equation for superintense
laser fields is notoriously difficult to integrate numerically. In
our case, instead of dealing with the Dirac system of four
coupled equations, one would be dealing with a Schrödinger
equation which, although of a more complicated sort, is
tractable with existing programs. The solution of Eq. (74)
would be started with an initial condition transformed from
that given for the laboratory frame, propagated according to the
equation, and finally transformed back to the laboratory frame
where observables are calculated (e.g., ionization survival

probability and angular distributions, high-order harmonic
emission spectrum, etc.).

To conclude, in this paper we have derived the Dirac
analog of the space-translated Schrödinger equation for laser
pulses. When applied to typical laser-atom interactions the
equation simplifies dramatically, reducing to two-component
Schrödinger equations (for the electron and positron, respec-
tively) with modified time-dependent Coulomb potentials.
This opens the way to relativistic theoretical treatments similar
to those applied in the NR case (like the high-frequency,
high-intensity approximation) and their application to physical
phenomena (ionization, high-order harmonic generation, etc).
In addition, the application in the relativistic case of well-tested
NR numerical methods could be of great use.
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