
PHYSICAL REVIEW A 85, 023420 (2012)

Scattering from radiation-induced entangled states
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The scattering dynamics of a particle incident on a model system with three bound states in the presence of a
localized radiation field is studied using Floquet scattering theory. An analytic expression for the Floquet S matrix
is derived for the case of a radiation field containing two frequency components. The radiation field destabilizes
and can entangle the bound states forming quasibound states that fundamentally alter the scattering dynamics of
an incident particle.
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I. INTRODUCTION

Coherent time-periodic radiation interacting with mat-
ter can fundamentally change its dynamics. Energy is not
conserved, but quasienergies (which are eigenphases of the
Floquet states governing such systems) are conserved. The
scattering of particles in the presence of coherent radiation can
serve as a probe of the effect of the radiation on the internal
dynamics of system. Radiation can destabilize bound states
and entangle internal states in such a way that key features of
the scatterer are radically altered.

The dynamics of a quantum system driven by a time-
periodic field, with period T , is governed by a time-periodic
Hamiltonian with period T . The solution to the Schrödinger
equation for such processes is best obtained in terms of Floquet
theory. Floquet theory allows the construction of Floquet
scattering matrices that give the probability amplitude for
transmission or reflection due to the emission or absorption
of photons in the presence of the scattering potential and the
driving field. Floquet scattering theory has been applied to a
harmonically driven square barrier system [1], the scattering
of an electron from an inverted Gaussian potential [2] in the
presence of a single-mode radiation field, and the scattering
of electrons from oscillating δ function potentials [3,4] for
single-mode driving field. It has also been used to to compute
the conductance of electrons across oscillating barriers [5] and
the conductance of electron pumps [6,7].

The systems described above, which are driven by a
single-mode radiation field, conserve parity and generalized
parity and exhibit a zero average current. Several authors have
studied the dynamics of systems driven by two frequencies,
one being an harmonic of the other (harmonic mixing) [8–10].
Rohling and Grossman [10] have shown that driving fields,
with harmonic mixing and broken parity and generalized
parity, give rise to a nonvanishing average currents.

The mixing of frequencies in a radiation field is a standard
procedure for STIRAP (stimulated Raman adiabatic passage)
based quantum control [11–14]. The use of Floquet theory to
describe STIRAP processes was developed by Na and Reichl
[15] and subsequently used by other authors on a variety of
systems [16–19].

In this paper we obtain the Floquet scattering matrix for
an exactly solvable open system, with bound states, that is
driven by a single-mode radiation field and by a two-mode
time-periodic driving field whose frequencies are chosen to
resonant with the energy spacing of the bound states. We show

that an incident particle scatters from states that are radiation
induced entangled superpositions of the bound states. The
resulting scattering resonances in the transmission probability
amplitudes occur at the quasienergies of the entangled states.
We find that, although the radiation fundamentally changes the
dynamics of the system, the incident particle can serve as a
probe of this altered dynamics.

In subsequent sections we consider scattering from a square
well potential that, in the absence of radiation, has three bound
states. We assume that the potential well depth is periodically
modulated by a space-dependent field. In Sec. II we introduce
the model system and derive the Floquet eigenstates. In Sec. III
we derive the Floquet scattering matrix and in Sec. IV we
compute transmission probabilities for the single-frequency
and two-frequency cases and show that scattering resonances
occur at the quasienergies of the irradiated system. In Sec. V
we make some concluding remarks.

II. THE SCATTERING SYSTEM

We consider a particle of mass μ in infinite space, but in
the presence of the square well potential V (x) = V0 = −7.8
for −a � x � a and V (x) = 0 for −∞ � x � −a and a �
x � ∞ (all parameters are measured in atomic units). The
values of V0 and x were chosen to optimize the two-frequency
resonances that we describe below. A sketch of the potential
is given in Fig. 1. The energy spectrum consists of three
bound states with energies E1 = −7.020, E2 = −4.757, and
E3 = −1.397 and a continuum of energies 0 � E � ∞. The
spacings between the bound state energies are �E32 = E3 −
E2 = 3.360 and �E21 = E2 − E1 = 2.263.

We now add a two-mode time-periodic driving force to this
system. The oscillating force is localized to the potential well.
The Hamiltonian takes the form

H (t) = − h̄2

2μ

∂2

∂x2
− |V0| + V1x cos(ω1t) + V2x cos(ω2t)

for − a � x � a (1)

and H (t) = − h̄2

2μ
∂2

∂x2 for −∞ � x � −a and a � x � ∞.
(In atomic units Planck’s constant h̄ = 1.) We require that
ω1 = n1ω and ω2 = n2ω, where n1 and n2 are integers. The
Hamiltonian is periodic in time with period T = 2π

ω
. For the

potential well depth V0 = −7.8, a photon with frequency
ω = 1.124 resonates with energy levels E2 and E3 when
n1 = 3 and with energy levels E1 and E2 when n2 = 2.
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FIG. 1. Schematic diagram of the square-well potential with three
bound state levels.

The Schrödinger equation can be written

ih̄
∂ψ(x,t)

∂t
= − h̄2

2μ

∂2ψ(x,t)

∂x2
+ [−|V0| + V1x cos(ω1t)

+V2x cos(ω2t)]ψ(x,t) (2)

for a � x � a and

ih̄
∂ψ(x,t)

∂t
= − h̄2

2μ

∂2ψ(x,t)

∂x2
(3)

for ∞ � x � −a and a � x � ∞. Because the Hamiltonian
H (t) for this system is time periodic, the Schrödinger equation
has solutions which are eigenstates of the Floquet Hamiltonian
HF (t) = H (t) − ih̄ ∂

∂t
. The Floquet states can be written

ψ�(x,t) = e−i�t/h̄φ�(x,t), (4)

where φ�(x,t) is periodic with the period T = 2π
ω

of the
Hamiltonian H (t) and the Floquet eigenvalues � have values
that lie in the fundamental interval 0 � � � ω. The states
φ�(x,t) are eigenstates of the Floquet Hamiltonian HF (t)
with eigenvalues h̄�. Any solution ψ(x,t) of the Schrödinger
equation can be expanded in terms of a spectral decomposition
involving the Floquet eigenstates and eigenphases.

It is possible to obtain analytic solutions for the Floquet
eigenstates in each spatial interval −∞ � x � −a, −a � x �
a, and a � x � ∞. We can then require that the eigenstates
and their slopes be continuous at the boundaries of these
intervals to obtain Floquet eigenstates for the entire interval
−∞ � x � ∞. Below we obtain these analytic solutions.

A. Region I (−a � x � a)

In region I (−a � x � a) we write the Floquet eigenstate
in the form

ψ
(I)
� (x,t) = e−i�t/h̄
(ξ,t)χ (x,t), (5)

ξ = x − V1

μω2
1

cos(ω1t) − V2

μω2
2

cos(ω2t), (6)

and

χ (x,t) = exp

{
−i

[
V1x sin(ω1t)

h̄ω1
+ V2x sin(ω2t)

h̄ω2
+ f (t)

]}
,

(7)

where

f (t) = − 1

2μh̄

{
V 2

1 sin(2ω1t)

4ω3
1

+ V 2
2 sin(2ω2t)

4ω3
2

+ V1V2 sin[(ω1 + ω2)t]

ω1ω2(ω1 + ω2)
− V1V2 sin[(ω1 − ω2)t]

ω1ω2(ω1 − ω2)

}
.

(8)

If we substitute Eq. (5) into Eq. (2) and note that

∂


∂t
=

(
∂


∂t

)
ξ

+
[
V1 sin(ω1t)

μω1
+ V2 sin(ω2t)

μω2

]
∂


∂ξ
, (9)

we obtain

ih̄

(
∂


∂t

)
ξ

= − h̄2

2μ

∂2


∂ξ 2
+

(
V 2

1

4μω2
1

+ V 2
2

4μω2
2

− |V0| − �

)

.

(10)

Now write 
(ξ,t) in the form


(ξ,t) =
∞∑


=−∞
e−i
ωt (α
e

ik
ξ + β
e
−ik
ξ ) (11)

and substitute it into Eq. (10). This yields the dispersion
relation

h̄2k2



2μ
= � + 
h̄ω + |V0| − V 2

1

4μω2
1

− V 2
2

4μω2
2

(12)

or

k
 =
√

2μ

h̄2

(
� + 
h̄ω + |V0| − V 2

1

4μω2
1

− V 2
2

4μω2
2

)
. (13)

If we now combine Eqs. (5), (6), (7), and (11), the Floquet
eigenstate takes the form

ψ
(I)
� (x,t)

= e−i�t/h̄exp

{
−i

[
V1x sin(ω1t)

h̄ω1
+ V2x sin(ω2t)

h̄ω2
+ f (t)

]}

×
∞∑


=−
LB

e−i
ωt
(
α
e

ik
[x− V1
μω2

1
cos(ω1t)− V2

μω2
2

cos(ω2t)]

+β
e
−ik
[x− V1

μω2
1

cos(ω1t)− V2
μω2

2
cos(ω2t)])

. (14)

The lower bound 
LB of the index 
 is chosen to provide
enough scattering channels to enable multiphoton transitions
to the lowest energies available inside the potential well in the
presence of radiation.

B. Region II (−∞ � x � −a)

In region II, for summation index 0 � γ � ∞, the Floquet
eigenstate (3) takes the form

ψ
(II)
� (x,t) = e−i�t/h̄

∞∑
γ=0

e−iγ ωt

⎛
⎝ Aγ√

k0
γ

eik0
γ x + Bγ√

k0
γ

e−ikγ x

⎞
⎠ ,

(15)

where the wave vector k0
γ is defined

k0
γ =

√
2μ

h̄2 (� + γh̄ω), (16)
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Aγ is the probability amplitude of an incoming wave (from
the left) in the γ th channel and Bγ is the probability amplitude
of an outgoing wave (to the left) in the γ th channel. For
summation index 
LB � γ < 0, the Floquet eigenstate (3)
takes the form

ψ
(II)
� (x,t) = e−i�t/h̄

−
LB∑
γ=−1

e−iγ ωt

(
Eγ√
κγ

e+κγ x

)
, (17)

where Eγ is the amplitude of states that tunnel into region II.
The wave vector κγ is defined as

κγ =
√

2μ

h̄2 (|γ |h̄ω − �). (18)

C. Region III (a � x � ∞)

In region III, for summation index 0 � γ � ∞, the solution
to the Schrödinger equation (3) takes the form

ψ
(III)
� (x,t) = e−i�t/h̄

∞∑
γ=0

e−iγ ωt

⎛
⎝ Cγ√

k0
γ

eik0
γ x + Dγ√

k0
γ

e−ikγ x

⎞
⎠ ,

(19)

where Dγ is the probability amplitude of an incoming wave
(from the right) in the γ th channel and Cγ is the probability
amplitude of an outgoing wave (to the right) in the γ th channel.
For summation index −
LB � γ < 0, the Floquet eigenstate
(3) takes the form

ψ
(III)
� (x,t) = e−i�t/h̄

−
LB∑
γ=−1

e−iγ ωt

(
Fγ√
κγ

e−κγ x

)
, (20)

where Fγ is the amplitude of states that tunnel into region III.

D. Boundary conditions

We can obtain a relation between the coefficients Aγ , Bγ ,
Cγ , Dγ , Eγ , Fγ , α
, and β
 by equating the Floquet states and
the slopes of the Floquet states at the interfaces x = −a and
x = +a.

1. Equate states at x = +a and x = −a

If we set ψ
(I)
� (+a,t) = ψ

(III)
� (+a,t), and then multiply both

sides of the equation by 1
2π

∫ 2π

0 d(ωt)eiqωt , and integrate we
obtain

Cq√
k0
q

e+ik0
qa + Dq√

k0
q

e−ik0
qa =

∞∑

=−
LB

(Mq,
α
 + Nq,
β
) (21)

for q � 0 and we obtain

Fq√
κq

e−κqa =
∞∑


=−
LB

(Mq,
α
 + Nq,
β
) (22)

for q < 0. The coefficients Mq,
 and Nq,
 are defined in
Appendix A.

Similarly, if we set ψ
(I)
� (−a,t) = ψ

(II)
� (−a,t), then multiply

both sides of the equation by 1
2π

∫ 2π

0 d(ωt)eiqωt , and integrate
we obtain

Aq√
k0
q

e−ik0
qa + Bq√

k0
q

eik0
qa =

∞∑

=−
LB

(Rq,
α
 + Sq,
β
) (23)

for q � 0 and we obtain

Eq√
κq

e−κqa =
∞∑


=−
LB

(Rq,
α
 + Sq,
β
) (24)

for q < 0. The coefficients Rq,
 and Sq,
 are defined in
Appendix A.

2. Equate slopes of states at x = +a and a = −a

Let us now set ( dψ
(I)
� (x,t)
dx

)x=+a = ( dψ
(III)
� (x,t)
dx

)x=+a , multiply

both sides of the equation by 1
2π

∫ 2π

0 d(ωt)eiqωt , and integrate.
This gives

√
k0
qCqe

+ik0
qa −

√
k0
qDqe

−ik0
qa =

∞∑

=−
LB

(Pq,
α
 + Qq,
β
)

(25)

for q � 0 and

−√
κqFqe

−κqa =
∞∑


=−
LB

(iPq,
α
 + iQq,
β
) (26)

for −
LB � q � −1. The coefficients Pq,
 and Qq,
 are
defined in Appendix A.

Similarly, if we set ( dψ
(I)
� (x,t)
dx

)x=−a = ( dψ
(II)
� (x,t)
dx

)x=−a , mul-

tiply both sides of the equation by 1
2π

∫ 2π

0 d(ωt)eiqωt , and
integrate we obtain

√
k0
qAqe

−ik0
qa −

√
k0
qBqe

+ik0
qa =

∞∑

=−
LB

(Uq,
α
 + Vq,
β
)

(27)

for q � 0 and

√
κqEqe

−κqa =
∞∑


=−
LB

(iUq,
α
 + iVq,
β
) (28)

for −
LB � q � −1. The coefficients Uq,
 and Vq,
 are defined
in Appendix A.

III. DERIVATION OF THE FLOQUET S MATRIX

The Floquet S matrix (SF matrix) relates incoming waves
Aγ and Dγ to outgoing waves Bγ and Cγ . In order to obtain
an expression for the SF matrix, we must solve Eqs. (21)–(28).
The first step is to write the equations as matrix equations. The
indices q and 
 have the range −
LB � q � ∞. In practice
we only need to keep a finite range of values for these indices.
When the incident particle has very high energy, it will not be
affected by the presence of the potential well and will transition
through the scattering region without change in its trajectory.
Thus we only need to retain a finite number N + 1 of positive
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energy scattering channels. Below we will assume that the
indices have the range −
LB � q � N and −
LB � 
 � N ,
so that there are N + 1 propagating channels (each with width
in energy equal to h̄ω) in the asymptotic regions. The value of
the cutoff N is chosen such that further increase in N does not
change the scattering properties of the system.

Let us now introduce the following column matrices for the
propagating modes:

A = (AN, . . . ,A0)T , B = (BN, . . . ,B0)T ,

C = (CN, . . . ,C0)T , D = (DN, . . . ,D0)T , (29)

αp = (αN, . . . ,α0)T , βp = (βN, . . . ,β0)T ,

where T denotes transpose. Similarly for the evanescent modes
we can write

E = (E−1, . . . ,E−M )T , F = (F−1, . . . ,F−M )T ,
(30)

αe = (α−1, . . . ,α−M )T , βe = (β−1, . . . ,β−M )T ,

where M = 
LB.
We define the square diagonal matrices of wave vectors as

(ηee)i,j = 1√
κi

δi,j and (K(±)
pp )i,j = e±i

√
kiaδi,j , (31)

with i = N,N − 1, . . . ,1,0. Similarly,

(ηpp)i,j = 1√
κi

δi,j and (K(±)
pp )i,j = e−√

κiaδi,j , (32)

with i = −1, − 2, . . . , − M .
We also construct the following four matrices out of the

coefficients Mq,
:

Mp,p =

⎛
⎜⎝

MN,N . . . MN,0
...

. . .
...

M0,N . . . M0,0

⎞
⎟⎠ ,

(33)

Mp,e =

⎛
⎜⎝

MN,−1 . . . MN,−M

...
. . .

...
M0,−1 . . . M0,−M

⎞
⎟⎠ ,

Me,p =

⎛
⎜⎝

M−1,N . . . M−1,−0
...

. . .
...

M−M,N . . . M−M,0

⎞
⎟⎠ ,

(34)

Me,e =

⎛
⎜⎝

M−1,−1 . . . M−1,−M

...
. . .

...
M−M,−1 . . . M−M,−M

⎞
⎟⎠ .

We construct a similar set of four matrices for each of the re-
maining coefficients Nq,
,Pq,
,Qq,
,Rq,
,Sq,
,Uq,
, and Vq,
.

In terms of the above matrices, Eqs. (21)–(24) can be
written

ηpp·K(−)
pp ·A + ηpp·K(+)

pp ·B
= Rp,p·αp + Rp,e·αe + Sp,p·βp + Sp,e·βe, (35)

ηee·Kee·E = Re,p·αp + Re,e·αe + Se,p·βp + Se,e·βe, (36)

ηpp·K(+)
pp ·C + ηpp·K(−)

pp ·D
= Mp,p·αp + Mp,e·αe + Np,p·βp + Np,e·βe, (37)

ηee·Kee·F = Me,p·αp + Me,e·αe + Ne,p·βp + Ne,e·βe,

(38)

respectively.
Equations (25)–(28) can be written

η−1
pp ·K(−)

pp ·A − η−1
pp ·K(+)

pp ·B
= Up,p·αp + Up,e·αe + Vp,p·βp + Vp,e·βe, (39)

−iη−1
ee ·Kee·E = Ue,p·αp + Ue,e·αe + Ve,p·βp + Ve,e·βe,

(40)
η−1

pp ·K(+)
pp ·C − η−1

pp ·K(−)
pp ·D

= Pp,p·αp + Pp,e·αe + Qp,p·βp + Qp,e·βe, (41)

iη−1
ee ·Kee·F = Pe,p·αp + Pe,e·αe + Qe,p·βp + Qe,e·βe,

(42)

respectively.
After considerable matrix algebra, we can solve these

equations to obtain (B
C

)
= SF

(
A
D

)
, (43)

where

SF =
(

r′ t

t′ r

)
(44)

is the (2N + 2) × (2N + 2) Floquet scattering matrix. The
submatrices t and t′ are (N + 1) × (N + 1) matrices of
transmission probability amplitudes and r and r′ are (N +
1) × (N + 1) matrices of reflection probability amplitudes.
For example, the matrix t has the structure

t =

⎛
⎜⎜⎝

tN,N . . . tN,0

...
. . .

...

t0,N . . . t0,0

⎞
⎟⎟⎠ , (45)

where tn,n′ is the probability amplitude for transmission from
the nth Floquet scattering channel to the n′th Floquet scattering
channel.

IV. TRANSMISSION PROBABILITIES

We can now calculate the transmission probability for a
particle of mass μ = 1 (in atomic units) that scatters from the
oscillating potential region (−a � x � a). We assume that
the particle, asymptotically, has energy E. To determine the
relevant scattering channel in the Floquet matrix, we note that
E = � + nh̄ω. The value of integer n that satisfies this equa-
tion determines the incident scattering channel in the Floquet
scattering matrix. The theory that we developed in previous
sections, allows us to compute transmission probabilities for
scattering in the presence of either single-mode or two-mode
radiation. We will consider both types of scattering process
below.

In Appendix B we have derived the Floquet eigenphases
for a bounded three-level model (TLM) consisting of the three
bound energy states driven by the radiation field. The TLM
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contains the effect of the radiation on the bound states in the
potential well without influence from the continuum. The three
Floquet states for the TLM have their support primarily on a
singe bound state (one bound state for each Floquet state)
when the radiation is out of resonance. When radiation is
resonant with pairs of bound states, the bound states become
entangled. The TLM describes the essential physics inside the
potential well when radiation is present. When a pair of bound
states is in resonance with the radiation field, one Floquet
state will consist primarily of the nonresonant bound state
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FIG. 2. (Color online) (a) Plot of transmission probability |t0,0|2
as a function of energy of the incident particle for V1 = 2.0, V2 = 0,
and ω1 = 3.372. (b) The transmission zeros of |t0,0|2 as a function of
V1. (c) The Floquet eigenphases for the TLM as a function of V1 for
V2 = 0 and ω1 = 3.372. All quantities in atomic units.

and the other two Floquet states will consist of symmetric and
antisymmetric superpositions of the two resonant bound states.
These superposition states are entangled pairs of bound states.
As we shall show, it is the entangle bound states that scatter
the incident particle

For scattering in the presence of single-mode radiation,
we consider first (case I) a radiation field with frequency
ω1 = 3.372 which resonates with energy levels E2 and E3,
and then (case II) a radiation field with frequency ω2 = 2.248
which resonates with energy levels E1 and E2. In each case,
the radiation entangles the two resonant bound states and
the incident particle scatters from the entangled states. We
will also consider the case (case III) in which the incident
particle scatters from the potential region with two-mode
radiation. We will compare the transmission resonances to
Floquet eigenvalues for TLM in Appendix B.

A. Case I: Single-mode scattering for n1 = 1, n2 = 0, V2 = 0,
and ω1 = 3ω = 3.372

We compute the transmission probability |t0,0|2 for an
incident particle with energy 0 � E � ω1 (so E = �). This
gives the probability that the particle, which is incident in
the n = 0 channel, will be transmitted past the scattering
potential in channel n = 0. The radiation field with frequency
ω1 = 3.372 has been chosen to resonate with bound states E2

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4
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0.8

1.0

E

(a)

0.0 0.5 1.0 1.5 2.0
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0.5
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1.5

2.0

Ω

V1

(b)

|t  |00
2

FIG. 3. (Color online) (a) Plot of transmission probability |t0,0|2
as a function of energy of the incident particle for V1 = 0, V2 =
2.0, and ω2 = 2.248. (b) The Floquet eigenphases for the TLM as a
function of V2 for V1 = 0 and ω2 = 2.248. All quantities in atomic
units.
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and E3. The transmission probability, as a function of incident
energy E = �, is shown in Fig. 2(a) for V1 = 2.0. There
are three energies, E = 1.569, E = 2.217, and E = 3.211, at
which the transmission probability goes to zero. In Fig. 2(b) we

plot the location of the transmission probability zeros of |t0,0|2
as a function of radiation field amplitude V1. In Fig. 2(c) we plot
the Floquet eigenvalues for the TLM discussed in Appendix B.
We see that the location of the transmission probability zeros
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FIG. 4. (Color online) Transmission probabilities for (a) |t0,0|2 with (V1 = 0.08,V2 = 0.90), (b) |t1,1|2 with (V1 = 0.08,V2 = 0.90), (c)
|t0,0|2 with (V1 = 0.67,V2 = 0.67), (d) |t1,1|2 with (V1 = 0.67,V2 = 0.67), (e) |t0,0|2 with (V1 = 0.90,V2 = 0.08), and (f) |t1,1|2 with (V1 =
0.90,V2 = 0.08). (g) Plot of Floquet eigenphases of the TLM as radiation amplitudes are turned on and the off as described in Appendix B. All
quantities in atomic units.

023420-6



SCATTERING FROM RADIATION-INDUCED ENTANGLED . . . PHYSICAL REVIEW A 85, 023420 (2012)

is almost identical to the Floquet eigenvalues for the TLM,
namely �B,2 = 1.394, �B,3 = 2.401, and �B,1 = 3.262. The
incident particle is resonating with the Floquet states created
by the matter-field interaction inside the potential well. As the
radiation amplitude V1 → 0, the Floquet eigenphase �1 →
E1 + 3ω1 = 3.06(modulus 3.372), and other two Floquet
eigenphases for the TLM become degenerate and take on
values �2 → E2 + 2ω1 = 1.984 (modulus 3.372) and �3 →
E3 + ω1 = 1.972(modulus 3.372). This degeneracy is lifted as
the radiation field amplitude is increased. In the limit V1 → 0,
two of the transmission zeros become degenerate as well,
indicating that the incident particle is resonating with the
entangle states inside the potential well.

B. Case II: Single-mode scattering for n1 = 0, n2 = 1, V1 = 0,
and ω2 = 2ω = 2.248

We compute the transmission probability |t0,0|2 for an
incident particle with energy 0 � E � ω2 (so E = �). We
consider a single-mode radiation field with frequency ω2 =
2.248 and external field strength V2 = 2.0 (V1 = 0.0). The
radiation field resonates with bound states E1 and E2. The
transmission probability, as a function of incident energy (in
the zeroth channel), is shown in Fig. 3(a). There are three
energies, E = 0.052, E = 0.94, and E = 1.525, at which the
transmission probability goes to zero. In Fig. 3(b) we plot the
Floquet eigenvalues for the TLM (Appendix B) for V2 = 2.
Again we see that the location of the transmission probability
zeros is almost identical to the Floquet eigenvalues of the
bounded system �B,2 = 0.025, �B,3 = 1.131, and �B,1 =
1.406. The incident particle is resonating with the Floquet
states inside the potential well created by the matter-field
interaction.

C. Case III: Two-mode scattering for ω1 = 3ω, ω2 = 2ω,
Vj = V0e−m(t−τ j )2

( j = 1,2), τ1 < τ2, and ω = 1.124

We compute the transmission probability for the case when
the system is driven by two frequencies ω1 = 3ω = 3.372
and ω2 = 2ω = 2.248, where ω = 1.124. The transmission
probabilities |t0,0|2(|t1,1|2) for a particle with incident energy
in the interval 0 � E � ω (ω � E � 2ω) are shown in Fig. 4.
Transmission resonances for external field strengths (V1 =
0.90,V2 = 0.08) are given in Figs. 4(a) and 4(b), transmission
resonances for (V1 = 0.67,V2 = 0.67) are given in Figs. 4(c)
and 4(d), and transmission resonances for (V1 = 0.08,V2 =
0.90) are given in Figs. 4(e) and 4(f). These plots give the
probability that the particle, which is incident in the n = 0 (n =
1) channel, will be transmitted past the scattering potential into
channel n = 0 (n = 1).

Scattering resonances occur in both incident channels.
When the particle is incident in the zeroth channel the
resonances are weak for the cases with (V1 = 0.90,V2 = 0.08)
and (V1 = 0.67,V2 = 0.67). The transmission probability does
not go to zero. When the particle is incident in the first
channel, the resonances are strong in terms of transmission
zeros. However, when (V1 = 0.08,V2 = 0.90) transmission
resonances are strong for a particle incident in the zeroth
channel but weak for first channel scattering. In Fig. 4(c)
the resonances occur at energies E = 0.675, E = 0.843, and
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FIG. 5. (Color online) (a) Plot of time dependence of radiation
“pulses” applied to the TLM. (b) Evolution of probability in the state
|ψ(t)〉 of the TLM as the radiation pulses are turned on and then off.
All quantities in atomic units.

E = 1.028 for the zeroth channel and in Fig. 4(d) they occur
at E = 0.675 + ω, E = 0.843 + ω, and E = 1.028 + ω.

In Fig. 4(g) we show the variation in the three Floquet
eigenvalues of the TLM (Appendix B) as the amplitudes of the
radiation fields are turned on and off in a Gaussian manner [see
Fig. 5(a)]. The location of the scattering resonances shown in
Figs. 4(b)–4(e) coincide with the Floquet eigenvalues of the
TLM. We see that, again, the incident particle scatters from
the Floquet states created in the potential well by the radiation
field. These values agree well with the Floquet energies in
Fig. 4(b) at 0.626,0.848,and1.087.

V. CONCLUSION

We have derived the Floquet scattering matrix for a particle
incident on a potential well whose depth oscillates in time
by a localized multimode radiation field. We have shown that
the particle can act as a probe of the Floquet eigenstates of
the oscillating system. Internal states, such as bound states for
the radiation free system, are destabilized by the radiation and
can be entangled by it. These entangled states form quasibound
states that resonate with the incident particle and dramatically
affect its scattering behavior.
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APPENDIX A

Introduce the function

Iq,
(s1,s2,s3,s4)

= 1

2π

∫ 2π

0
dθei(q−
)θ es1ik
aes2iag(θ)es3if (θ)es4ik
h(θ), (A1)

where θ = ωt , si = ±1 (for i = 1, 2, 3, 4), and

g(θ ) = V1 sin(n1θ )

h̄n1ω
+ V2 sin(n2θ )

h̄n2ω
,

h(θ ) = V1 cos(n1θ )

μn2
1ω

2
+ V2 cos(n2θ )

μn2
2ω

2
, (A2)

f (θ ) = − 1

2μh̄

{
V 2

1 sin(2n1θ )

4n3
1ω

3
+ V 2

2 sin(2n2θ )

4n3
2ω

3

+ V1V2 sin[(n1 + n2)θ ]

n1n2(n1 + n2)ω3
− V1V2 sin[(n1 − n2)θ ]

n1n2(n1 − n2)ω3

}
.

Then

Mq,
 = Iq,
(+, − , − ,−), Nq,
 = Iq,
(−, − , − ,+),
(A3)

Rq,
 = Iq,
(−, + , − ,−), and Sq,
 = Iq,
(+, + , − ,+).

Similarly, introduce the function

Jq,
 = 1

2π

∫ 2π

0
dθei(q−
)θ [s0k
 − g(θ )]

× es1ik
aes2iag(θ)es3if (θ)es4ik
h(θ). (A4)

Then

Pq,
 = Jq,
(+, + , − , − ,−),

Qq,
 = Jq,
(−, − , − , − ,+),
(A5)

Uq,
 = Jq,
(+, − , + , − ,−),

andVq,
 = Jq,
(−, + , + , − ,+).

APPENDIX B: THREE-LEVEL MODEL (TLM)

In the presence of radiation, the three bound states form a
basis for computing the three Floquet states inside the potential
well. In this Appendix we neglect the continuum and compute
the evolution of the system governed by Eq. (2), using the
bound state energy eigenstates |E1〉, |E2〉, and |E3〉 as the basis.
Then |ψ(t)〉 = ∑3

n=1 ψn(t)|En〉 and the Schrödinger equation
takes the form of a 3 × 3 matrix equation

dψn(t)

dt
= −i Enψn(t) − i [V1cos(ω1t) + V2cos(ω2t)]

×
3∑

m=1

〈En|x|Em〉ψm(t), (B1)

where ψn(t) = 〈En|ψ(t)〉 is the probability amplitude to find
the system in the nth energy level (n = 1, 2, 3) at time t . The
solutions to these equations can be written in the form

ψn(t) =
3∑

α=1

An,αe−i�B,α t 〈En|φα(t)〉, (B2)

where �B,α is the Floquet eigenphase, An,α = 〈φα(0)|ψ(0)〉,
and |φα(t)〉 is the αth (α = 1, 2, 3) Floquet eigenstate. The
state of the system at time t = T is given by

ψn(T ) =
3∑

α=1

3∑
m=1

e−i�B,αT 〈En|φα(0)〉〈φα(0)|Em〉ψm(0).

(B3)

The Floquet evolution matrix is then given by

Un,m(T ) =
3∑

α=1

e−i�B,αT 〈En|φα(0)〉〈φα(0)|Em〉 (B4)

and is a unitary matrix. The matrix Un,m(T ) evolves the
system forward in time by one period of the driving field. The
nth column of Un,m(T ) is obtained by integrating Eq. (B1)
with initial condition ψm(0) = 1 for m = n and ψm(0) = 0
for m �=n. The αth eigenvalue of Un,m(T ) is e−i�B,αT so
�B,α = i ln(e−i�B,αT )/T . Below we consider three different
cases for the driving field.

1. Case I: Single-mode driving for n1 = 1, n2 = 0, V2 = 0, and
ω1 = 3.372

The single-mode driving field resonates with energy levels
E2 and E3. A plot of the Floquet eigenvalues �B,α (defined
modulus ω1 = 3.372) as a function of the amplitude of the
driving V1 is given in Fig. 2(c). In the limit V1→0, �B,1 =
E1 + 3ω1 = −7.02 + 3×3.372 = 3.096. The curves �B,2 and
�B,3 in the limit V1→0 become degenerate and are entangled
combinations of the energy levels |E2〉 and |E3〉. Note that
�B,2 = E2 + 2ω1 = −4.76 + 2×3.372 = 1.984 and �B,3 =
E3 + ω1 = −1.4 + 1×3.372 = 1.972.

2. Case II: Single-mode driving for n1 = 0, n2 = 1, V1 = 0, and
ω2 = 2.248

The single-mode driving field resonates with energy levels
E1 and E2. A plot of the Floquet eigenvalues �B,α (defined
modulus ω2 = 2.248) as a function of the amplitude of the
driving V2 is given in Fig. 3(b). In the limit V2→0, �B,3 =
E3 + 1ω2 = −1.4 + 1×2.248 = 0.848. The curves �B,1 and
�B,2 in the limit V2→0 become degenerate and are entangled
combinations of the energy levels |E1〉 and |E2〉. Note that
�B,1 = E1 + 4ω2 = −7.02 + 4×2.248 = 1.984 and �B,2 =
E2 + ω2 = −4.76 + 3×2.248 = 1.972.

3. Case III: Two-mode driving for ω1 = 3ω, ω2 = 2ω,
Vj = V0e−m(t−τ j )2

(with j = 1, 2 and τ1 < τ2), and ω = 1.124

We drive the system with two sequential and slightly
overlapping Gaussian shaped adiabatic pulses. The pulses
[shown in Fig. 5(a)] can be considered adiabatic if the period
of their carrier frequencies is much shorter than the duration
of the pulses. In Eq. (B1) we replace V1 and V2 by V1(t) =
V0e

−m(t−τ1)2
and V2(t) = V0e

−m(t−τ2)2
, respectively, where τj

(τ1 < τ2) are the times when the pulses are at their maximum
values. The first (second) pulse, with carrier frequency 2ω

(3ω), resonates (approximately) with levels E2 and E3 (E1

and E2).
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Since the pulses are adiabatic, we can follow the evolution
of the Floquet eigenphases and eigenstates as the pulses
interact with the three-level system [15–19]. We divide the
pulses into time windows and compute the Floquet eigenvalues
and eigenstates for each time window with V1(t) and V2(t) held
fixed to their value at the center of the time window. Floquet
eigenstates of neighboring time windows will be approxi-
mately orthogonal, so we can continuously follow the changes
in the Floquet eigenvalues during the time that the pulses
act on the system. The Floquet eigenvalues (defined modulus
ω = 1.124) are shown in Fig. 4(d) as a function of time.

Near t = 0, the Floquet eigenstate |φ1〉 is predominantly
composed of the energy state |E1〉 with the Floquet
eigenphase �B,1 = E1 + 7ω = −7.02 + 7×1.124 =
0.86(modulus 1.124). The eigenstates |φ2〉 and |φ3〉
are symmetric and antisymmetric, respectively,
superpositions of states |E2〉 and |E3〉 with the Floquet
eigenphases �B,2 = E2 + 5ω = −4.76 + 5×1.124 =

0.86(modulus 1.124) and �B,3 = E3 + 2ω = −1.4 +
2×1.124 = 0.843(modulus 1.124), respectively. As time
approaches t = 100, where there is a three-way avoided
crossing among the three Floquet eigenphases, the eigenstates
change their character. After the three-way avoided crossing,
|φ1〉 has exchanged its support from the energy state |E1〉
to support from energy state |E3〉, and |φ2〉 and |φ3〉 have
changed their character from superpositions of |E2〉 ± |E3〉 to
superpositions of |E1〉 ± |E2〉.

If we start the system in energy state |E1〉, so that
|ψ(−∞)〉 = |E1〉, then after the pulses have passed, the system
will have been transferred to energy state |E3〉 with almost
100% certainty. This process in shown in Fig. 5(b), where
we solve the Schrödinger equation (B1) for |ψ(t)〉 and show
the values of |〈En|ψ(t)〉|2 as the pulses pass through the
system. Because of the avoided crossing near t = 100, the
entire population gets shifted from state |E1〉 to state |E3〉 in a
traditional STIRAP process [11–19].
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