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Atom slowing via dispersive optical interactions
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A promising technique of atom slowing is proposed. It is based upon the dispersive interaction of atoms with
optical potential pulses generated by a far-off-resonance standing wave modulated in time. Each pulse reduces
the velocity by a small amount. By repeating the process thousands of times, the velocity can be lowered from
several hundreds of meters per second down to almost zero, over a path as short as 20 cm. In the absence of any
random recoil process, the initial characteristics of the beam are preserved.
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A well-known method to slow down alkali metals or
rare-gas metastable atoms— in most cases in view of trapping
them—is to use a so-called Zeeman slower [1]. The Zeeman
slower is based on the radiation pressure exerted on an
atom beam by a counterpropagating light beam, the velocity-
dependent frequency tuning being controlled thanks to a
spatially inhomogeneous magnetic field. This slower works
satisfactorily for what concerns the access to low velocities
and trapping, but it has the disadvantage of producing
poorly collimated beams of slow atoms (angular aperture of
0.1 rad, velocity dispersion of a few tens of percent) because
of the spontaneous emission. In this article, we propose
to use the dispersive interaction of atoms with comoving
optical pulses generated via far-of-resonance time-modulated
standing waves. In this approach, each optical pulse reduces
the atomic velocity by a small amount. We show below that
by repeating the process thousands of times, the velocity can
be lowered from several hundreds of meters per second down
to nearly zero, over a very short path of a few centimeters.
Because of the absence of random recoil processes, the initial
characteristics of the atomic beam as angular aperture, velocity
dispersion, etc., should be preserved. One indeed shows that
at the end of the slowing process the phase space density is
maintained, contrary to what happens in free space propagation
due to vacuum dispersion.

The approach proposed here bears slight similarities with
the one known as “adiabatic slowing” [2,3]. Adiabatic slowing
has been applied to a wide variety of species, such as hydrogen
atoms, polar and nonpolar molecules [4], and Rydberg atoms
and molecules [5]. In these methods, an external magnetic or
electric field, periodic in space, is pulsed in time in such a way
that the atom (or molecule) experiences a slowing gradient
and nothing else. Low final velocities (a few tens of meters per
second) are accessible, but at the price of rather strong fields
(e.g., B = 5.2 T in Ref. [4]).

In the method proposed here, the nature of the force is quite
different, since it derives from a special potential depending
on both space and time, so-called “comoving” potential, of the
form [6] V (x,t) = S(t) cos [2πx/�], where S(t) is a limited-
range ([0,τ1]) function of time, e.g., S(t) ∝ exp(−t/τ ), and �

is a spatial period. Experimental demonstration of this kind
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of force acting on atoms has been achieved on metastable
hydrogen in a Stern-Gerlach interferometer [6]. As shown
in a previous paper [7] for the case of comoving magnetic
potential, for sufficiently large values of τ1 (τ1 � τ ), this
potential transforms the initial atomic wave function (for a
given value of k) �0 into � = exp[iϕ1(k,t)]�0, where the
phase shift is given by

ϕ1(k,t) = −h̄−1
∫ (t)

0
dt ′ S(t ′) cos

(
2π

h̄k

m�
t ′
)

, (1)

where h̄k is the momentum along x, m is the atomic mass, and
(t) = min{t,τ1}. As a consequence, the motion of the center
of a synchronized wave packet is altered: the group velocity
becomes v = h̄k0/m − [∂t∂kϕ1]k0 , k0 being the center of the
momentum distribution. This effect has been theoretically
investigated at small velocities with metastable argon atoms
Ar*(3P2) to make negative values of v, creating de facto a
negative-index “meta-medium” for matter waves [7]. Actually
expression (1) of the phase shift is obtained using the WKB or
short-wavelength approximation in which the spatial variation
of the potential is assumed to be small at the de Broglie
wavelength scale, i.e., � � λdB. This approximation, largely
valid in all cases considered previously (λdB of a fraction
of a nanometer, � of a few millimeters) becomes a priori
questionable in the situation considered below. Obviously
in a deceleration process leading in principle to the zero
velocity by use of a short spatial period � = λopt/2, where
λopt = 811.5 nm is an optical wavelength, there exists a lower
limit vmin for the velocity v below which a more rigorous
treatment would be needed. However, owing to the very low
value of this limit (vmin = 2.75 cm/s to get � = λdB), such an
effort appears to be useless.

The above expression of the phase shift [Eq. (1)] implicitly
assumes that the total energy E of state � takes a final value
(at t = τ+

1 ) equal to the initial one in �0 (at t = 0−). In other
words the time-dependent factor exp(−iEt/h̄) is common to
wave functions �0 and �, and it does not appear in the phase
shift ϕ1. Actually this assumption is valid for a potential pulse
tending to zero “adiabatically,” i.e., without any characteristic
time constant smaller or comparable to τ . Indeed in such a case
the only discontinuity in the wave function occurs at t = 0
and the time-dependent Schrödinger equation containing V

holds from t = 0+ to t infinite, leading to expression (1) for
any positive value of t . Since limt→∞ ϕ1 is a constant and
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limt→∞[∂t∂kϕ1]k0 = 0, one obtains asymptotically a “final”
group velocity equal to the incoming one, namely, h̄k0/m.
Since the potential is zero for t < 0 and t infinite, the final
total energy is equal to the initial one. This does not mean that
E remains constant all along the pulse duration. It does not
indeed, as it can be easily verified and as it is expected with a
time-dependent potential. The time dependence of the energy
is entirely contained in ϕ1(k,t).

When the potential is abruptly interrupted at t = τ1, three
time intervals must be considered, in a similar way as separated
spatial intervals are considered in the case of a square potential:
(i) t < 0 (free wave), (ii) 0 < t < τ1 (V is present), and
(iii) t > τ1 (free wave). In the third interval, the phase shift
cannot be a constant, because the final energy E(τ1) is different
from E, the initial energy. Then for t > τ1, the phase shift must
be a linear function of time: ϕ(k,t) = ϕ1(k,τ1) + h̄−1[E −
E(τ1)](t − τ1). This form is readily derived from the continuity
of the phase shift at t = τ1. One obtains instead of Eq. (1), a
more general expression, valid at any time t :

ϕ(k,t) = ϕ1 − S(τ−
1 )

h̄
	(t − τ1)(t − τ1) cos

(
2π

h̄kτ1

m�

)
, (2)

where τ−
1 is a value of t smaller than, and arbitrarily close to,

τ1 and 	 is the Heaviside function: 	(x) = 0 for x < 0 and
	(x) = 1 for x � 0. Both spatial shift −∂kϕ|k0 and velocity
change −∂t∂kϕ|k0 of the wave-packet center, derived from
expression (2), are continuous at t = τ1. Note that, because
of its limited range, S(t) ∝ 	(τ1 − t) exp(−t/τ ). This cancels
any singularity coming from 	(t − τ1) in Eq. (2). This is
illustrated in Fig. 1 where trajectories of the wave-packet center
are shown for various values of τ1. The conditions chosen
for this simulation are typically those leading to negative
refraction, namely, a magnetic field of 500 G, a velocity of
2 m/s, and a spatial period � = 5 mm and τ = 0.37 ms.
Indeed, when successive pulses are considered, it is the
continuity of the velocity at the end of each pulse that will
allow us to use it as the initial velocity for the next pulse
(separated from the preceding one by a “blank” of duration
much smaller than τ1). Therefore the continuity condition is the
key element of the comoving-potential slower operation: each
pulse reduces the velocity by a small but significant amount.
Repeating the process thousands of times, the velocity can
be lowered from several hundreds of meters per second down
to almost zero. In a simulation of a magnetic version of this
slower (� = 5 mm, magnetic field of 800 G), the total path
needed to reach the “zero” velocity is rather long (2.2 m),
however, comparable to that of a standard Zeeman slower.

Other classes of methods of slowing down atoms or
molecules make use of optical forces. In particular, white
light [8] and bichromatic standing waves are able to generate
stimulated forces largely exceeding the spontaneous contri-
butions [9,10]. Owing to these forces, strong decelerations
have been performed over amazingly short distances (a few
centimeters). Deceleration of molecules can be also achieved
by means of the (second order) Stark effect induced, e.g., on
benzene, by an intense (1.6 × 1012 W/cm2) far-of-resonance
pulsed laser beam [11] or by the standard Stark effect induced
on a molecule, such as MgO, possessing a permanent dipole

FIG. 1. (Color online) Calculated trajectories of the wave-packet
center when comoving potential pulses of different durations τ1 are
present. Parameters used in this simulation are such that a negative
refraction is realized (see text): magnetic field 500 G, initial velocity,
2 m/s, spatial period, � = 5 mm and τ = 0.37 ms. At time τ1, both
position and velocity are continuous.

by a pulsed electric field inside a microwave cavity (which can
be used as well as a trap) [12].

For our purpose, the use of comoving optical potentials in
place of conventional magnetic or electric potentials provides
us with a spatial period reduced by a huge factor (≈103).
In principle such a potential can be generated by a linearly
polarized, far-off-resonance standing light wave modulated in
time and generated by an interferometer (see Fig. 2). For a
Rabi frequency, 
, and a sufficiently large detuning, δω, the
optical potential takes the simple form [13–15]

Vopt(x,t) = 1

2
S(t)

[
1 + cos

(
4π

x

λopt

)]
, (3)

with, e.g., S(t) ≈ h̄
2

δω
exp (−t/τ ) within a definite time in-

terval [0,τ1] and S(t) = 0 elsewhere. The results obtained
using either the spatial dependence in cos2(2πx/λopt) or in
cos(4πx/λopt) are identical to an accuracy better than 10−6,

FIG. 2. (Color online) Scheme of the comoving optical potential
slower. A far-off-resonance, linearly polarized standing wave (λ =
811.5 nm) is produced by a separated-arm interferometer. Light
intensity is modulated in time by a signal S(t) (see text). The atom
beam is introduced with a small inclination through holes drilled in
the mirrors.
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which means that the x-independent part of the potential has
no significant effect on the evolution of the wave function.
For far off resonance and linearly polarized light, the above
expression of Vopt is common to all magnetic sublevels because
these sublevels are shifted by the same amount [16]. As a
consequence the dipolar potential is almost independent of the
atomic spin orientation. It is important to note that an atom
passing through this potential at some velocity v does not
“feel” a unique frequency, but rather two frequencies related
to the two components of the standing wave, Doppler-shifted
by ±ω(v) = ±koptv. At the largest velocity considered
here, 560 m/s, ω(560) = 2π 6.90 × 108 rad/s (690 MHz).
In order to operate “far from resonance,” to avoid spontaneous
emission, we need that the difference between the laser
frequency and the frequencies of these two Doppler-shifted
resonances be large compared to (1 + s)1/2γ = γ

′
(s), the

power-broadened line width, γ being the natural line width
and s the saturation parameter. Actually, we want to get a
magnitude S(0) of the potential, sufficiently high to achieve
the complete slowing over a distance shorter than, e.g.,
20 cm. As we wish also to use a reasonable laser power,
we shall take a moderately large (negative) detuning, δω =
ωL − ω0 = −5ω(560) = 2π 3.45 × 109 rad/s (3.45 GHz).
Such a large detuning can be obtained either by means of
a modulator or (for polarized atoms, as metastable argon
atoms Ar* 3P2 in the Zeeman state M = +2) with a static
magnetic field of 818.1 G. For the simulation, one assumes a
laser intensity of 32 mW/mm2. Then the saturation parameter
s = I/Isat, with Isat = 14 W/m2, is equal to 2 267.3. The
natural width of the transition being γ = 2π 5.8 × 106 rad/s,
the power-broadened width is γ

′ = 2π 2.762 × 108 rad/s,
which leads to the ratio R = δω/γ

′ = 12.49, large compared
to 1. As the velocity v is lowered, ω decreases, tending
to zero at v = 0 m/s. Then either the detuning is kept
constant and the condition R � 1 is better and better verified
or δω is kept equal to 5ω(v) allowing us to reduce the
intensity (as v) as well as γ

′
(as v1/2), but then the ratio R

decreases as v1/2, which implies a lower limit for v (R = 1 at
v = 3.59 m/s).

A series of many pulses separated from each other by a
small amount of time (of the order of 〈τ1〉/100, 〈τ1〉 being
an average over the different pulses) is applied, each of
them (numbered n) providing a small decrease δv(n) of the
velocity (a few mm/s). The duration τ1(n) of each pulse
is adjusted in such a way that the first maximum value of
|δv| is reached at the end of the pulse. In the following
example, λopt = 811.5 nm and τ = 3.7 ns, this duration (in
nanoseconds) obeys the approximate law τ1(n) ≈ 0.23 +
6.40 exp[−v(n)/40] + 0.60 exp[−v(n)/200], where v(n) in
meters per second is the initial velocity for the nth pulse and
the path vτ1 covered by the atom during successive pulses
is roughly a constant (≈0.12 μm). It should be noted that,
despite the pulsed character of light, the building up of the
standing wave presents no difficulty: indeed at the shortest
value of τ1 (0.234 ns) for v = 560 m/s, the length of the
interfering trains of light (Fig. 2) is 12 cm and this length
increases at lower values of v. The velocity decrease per
pulse |δv| increases quasiexponentially from 0.2 mm/s at
v = 560 m/s to 2.9 mm/s at v ≈ 0. To get an almost complete
stopping, a large number of pulses, namely, N = 1 987 500,
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FIG. 3. (Color online) Evolution of the velocity v and the
statistical velocity width vstat (see text) multiplied by 100 as
a function of the total number N of comoving optical potential
pulses. The total length needed to reach the quasizero velocity (for
N = 2 × 106) is 19.3 cm. The laser intensity is 32 mW/mm2 and the
detuning is 3.45 GHz.

is needed (see Fig. 3). Nevertheless this large number does
not mean a very long distance since the velocity is lowered
from 560 m/s down to “zero” (within the limits defined
previously) over a distance of about 19.3 cm. This is much
shorter than the distance needed with the Zeeman slower
or adiabatic slowing and is comparable to that used in bi-
chromatic deceleration. It could be reduced by a factor of
about 2 by using doubled laser intensity (60 mW/mm2). The
total time employed by an atom to be stopped, i.e., the total
duration of the pulse sequence, is 6.07 ms. Then the complete
process can be repeated at a rate of about 164 times per
second.

An important characteristic of the decelerator is its effect
on the atomic wave-packet spatial width. This width, δx(t),
has been calculated as a function of time using the following
expression of the wave function:

�(x,t) =
∫ +∞

−∞
dk

√
ρ(k)ei[kx− h̄k2

2m
t+ϕ(x,t)], (4)

where ρ(k) is a Gaussian distribution centered at k0 =
3.14 × 1011 m−1 (group velocity of 560 m/s), the standard
deviation of which is δk = 0.002k0. Under such conditions
the initial width is δx(0) = 0.635 nm. In this calculation we
have used the concept of “effective” time developed in a
previous paper [17]. In this paper it has been shown that
the comoving potentials are able to transiently narrow the
wave packet, compensating for the free-propagation natural
spreading. In the present case this effect is very small at the
beginning of the deceleration process but becomes more and
more important as the velocity decreases. The result is shown
in Fig. 4 (upper part). It is seen that δx progressively deviates
from the free-propagation width δx0(t) to rejoin the initial
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FIG. 4. (Color online) (Upper part) Evolution of the spatial width
δx of the wave packet as a function of time. Upper curve: Free
evolution (no potential); lower curve: the potential is present. The
initial width [δx0(0) = 0.635 nm] corresponds to a relative dispersion
δk/k = 0.2 % in the momentum space. (Lower part) Evolution (in
log10 scale) as a function of time of densities in phase space (k,x),
defined as ρps0 = (δkδx0)−1 for free propagation and ρps = (δkδx)−1

when the potential is present. Note that ρps0 corresponds as well to
the separable free coordinates y and z.

width at the end of the process. From Eq. (4), one readily
derives the Wigner function:

W (x,K,t) = 1

2π

∫ +∞

−∞
dξ�∗

(
x− ξ

2
,t

)
e−iKξ�

(
x + ξ

2
,t

)
,

W (x,K,t) =
∫ +∞

−∞
dk

√
ρ(k)ρ(2K − k) (5)

×ei[2(k−K)x− 2h̄K(k−K)t
m

+ϕ(k,t)−ϕ(2K−k,t)].

Then the momentum distribution is

wk(k,t) =
∫ +∞

−∞
dxW (x,K,t) ≡ ρ(k). (6)

It is time invariant because the potential affects the wave
function via a pure (real) phase shift. Finally the width in
k remains equal to δk0 whereas the spatial width δx evolves as
described above. Consequently the density in phase space (k,x)
defined by ρps = (δkδx)−1 first decreases then increases up to
its initial value, whereas this density ρps0 for free propagation
monotonously decreases (see Fig. 4, lower part). Note that
ρps0 directly gives the phase-space density related to y and z

coordinates, which are separable from x. We also examined
this question from a statistical viewpoint, considering an
ensemble of initial velocities around v0 = 560 m/s [with
relative width vstat(0)/v0 = ±0.2%] and positions (with
width xstat = ±0.7 nm). As seen in Fig. 3, vstat(t) is almost
a constant, except at the very end of the process where it
drops down to zero, contrarily to a strong increase observed
at higher velocity, typically v0 > 565 m/s, a value that can
be considered as an upper bound of velocities that could be
decelerated. xstat first increases and then decreases leading
to a phase-space density rather similar to ρps.

In this article, we have proposed an approach to atom
beam deceleration based on dispersive optical forces. Atom
stopping should be almost achieved on short distances. The
absence of spontaneous emission processes should allow
preservation of the transverse coherence properties of the
initial beam. It is especially applicable to narrow supersonic
beams, like metastable rare-gas atom beams [18], and provides
ultra-low-velocity beams for coherent atom optics and atomic
interferometry. It is also a promising technique applicable to
slowing down molecules since any optical pumping toward
molecular levels (other than those interacting with light) is
absent.
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