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Theoretical study of angular-resolved two-photon ionization of H2
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Cross sections and angular distribution parameters of electrons ejected via two-photon ionization of the
hydrogen molecule by linearly and circularly polarized light are computed in the exciting-photon energy range
of 8–14 eV, which covers the first four optical resonant states of the molecule. Photoelectron partial waves in the
continuous spectrum are obtained within the single center method in precise numerical potential of the molecular
ion field. The correlation function technique is used to calculate the two-photon transition matrix element. The
presently computed angular-resolved spectra are in good agreement with the theoretical results available for the
photon energy of 8.854 eV and can be considered as reliable predictions in the respective energy range.
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I. INTRODUCTION

Multiphoton ionization (MPI) of molecules is a well-
established branch of spectroscopy that has a substantial body
of literature (see, e.g., selected reviews [1–6] and references
therein). On the one hand, entirely new states are seen in
MPI spectra of molecules. This provides a more complete
understanding of electronic structure, complementary to that
accessible to single-photon ionization spectroscopy. On the
other hand, MPI spectroscopy provides new tools for revis-
iting known phenomena with higher accuracy and also for
investigating new classes of phenomena in molecules. These
advantages have placed MPI spectroscopy among the most
important experimental tools for studying molecules.

In contrast to a large variety of contemporary experiments
on MPI of molecules, there are much less theoretical works
on the subject, especially if it concerns angular-resolved
studies of molecular MPI. The main difficulties for theoretical
calculations are connected both with the noncentral field
of a molecule and the need to perform summations over
the complete set of intermediate eigenstates, including the
continuous spectrum. In addition, an accurate theoretical
description of the partial electron continuum waves with given
angular momentum quantum numbers is required for studying
MPI angular distributions. Here, standard quantum chemistry
methods [e.g., molecular-orbital linear combination of atomic
orbitals (MO LCAO)] are unfit. Therefore, considerable efforts
have been invested to the development of theoretical methods
and computational approaches for studying MPI of molecules.

To be concise, only a few of the relevant alternative ap-
proaches and applications are mentioned below. In Refs. [7,8],
the Green’s-function approach for the quantum-defect method
was formulated in spheroidal coordinates and applied to study
angular-resolved MPI spectra of H2 and of the H+

2 ion. Another
approach, involving Green’s-function and numerical partial
harmonics for electron orbitals coupled by the molecular non-
central field, was applied in Ref. [9] to study angular-resolved
MPI spectra of H2. A unified R-matrix-Floquet theory with the
standard multicenter electron molecule scattering potential and
single center (SC) atomic multiphoton propagator was utilized
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in Ref. [10] to compute MPI rates of H2. In Refs. [11,12],
MPI spectra of the H+

2 ion were computed by the numerical
Green’s functions in prolate spheroidal coordinates using the
L2-integrable B-spline basis set. Finally, a somewhat similar
B-spline technique was used in Refs. [13,14] to compute MPI
cross sections for differently oriented H2 and H+

2 .
In spite of quite a number of theoretical studies of MPI

of the H2 molecule mentioned above, the angular-resolved
MPI of molecules is still not sufficiently scrutinized. Recently
[15,16], we have developed a powerful computational tool for
ionization and electronic excitation studies of molecules. It is
known as the single center method [17,18], and allows for an
accurate theoretical description of excited discrete and partial
photoelectron wave continuous functions of molecules. It is
especially designed to investigate angular-resolved molecular
ionization processes and was already successfully applied to
study angular distributions of photoelectrons and fluorescent
photons in diatomics [19–22].

In this work we demonstrate that the SC method allows
also a straightforward application to angular-resolved MPI
processes of molecules. For transparency of the presentation,
we formulate the present theory for angular-resolved two-
photon ionization (TPI) of a randomly oriented diatomic
molecule (Sec. II) and consider in Sec. III the well-studied
H2 molecule as an explicit example. We conclude with a brief
summary.

II. THEORY

The process relevant to the present study can be schemati-
cally represented as follows:

H2(�0) + 2γ q(h̄ω) → H+
2 (�1) + e−(ε�mμ). (1)

A randomly orientated hydrogen molecule in its ground
electronic state 1σ 2

g (X 1�+
g ) absorbs two linearly (q = 0) or

circularly (q = ±1) polarized photons of energy ω. The event
results in the molecular ion H+

2 in its ground state 1σ 1
g (X 2�+

g )
and the outgoing photoelectron e− with energy ε, which can
be expanded in the asymptotical region via partial waves (see,
e.g., Ref. [23]) with fixed projections m and μ of the orbital
momentum � and spin s, respectively.

023416-11050-2947/2012/85(2)/023416(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.023416


PH. V. DEMEKHIN, B. M. LAGUTIN, AND I. D. PETROV PHYSICAL REVIEW A 85, 023416 (2012)

We assume for simplicity that either Hund’s coupling
case (a) or (b) applies for the description of the diatomic
molecule [24]. Therefore, an electronic state can be described
by the projection of the total electronic angular momentum
along the molecular axis, � = 	 + �. We also neglect below
the nuclear vibrational and rotational motions during the
electronic transition, which were demonstrated to be of minor
importance for TPI of H2 [7–9]. Thus, the process is described
as a vertical transition at the equilibrium internuclear distance
of the ground electronic state re = 0.74152 Å [25].

A. Differential cross section

The angular distribution of photoelectrons is described by
the well-known formula for the differential TPI cross section
of randomly oriented diatomic molecules [7,9]:

dσq(ω)

d�
= 1

4π

∑
L=0,2,4

A
q

L(ω)PL(cos θ )

= σq(ω)

4π

[
1 + β

q

2 (ω)P2(cos θ ) + β
q

4 (ω)P4(cos θ )
]
.

(2)

Here, θ is the angle between the direction of propagation of
the outgoing electron emitted into the solid angle d� and

the electric-field vector of linearly polarized light (q = 0),
or the direction of propagation of circularly polarized light
(q = ±1); PL are the Legendre polynomials; and the total TPI
cross section σq and the angular distribution parameters β

q

2 and
β

q

4 are defined as σq = A
q

0 , β
q

2 = A
q

2/A
q

0 , and β
q

4 = A
q

4/A
q

0 ,
respectively.

The present approach to derive an analytical expression for
the coefficients A

q

L in Eq. (2) is similar to that reported in
Refs. [19,26]. We chose the quantization axis in the laboratory
frame (z) along the electric-field vector for linearly polarized
light (or along the propagation direction of circularly polarized
light) and in the molecular frame (z′) along the molecular
axis. At first, two exciting photons 2γ q with the polarization
q given in the laboratory frame were transformed into the
molecular frame. Then, the photoelectron partial waves ε�mμ

with the quantum numbers defined in the molecular frame
were transformed into the laboratory frame. Afterward, the
differential cross section was averaged over all orientations
of the molecular axis in the laboratory frame. We also
assume that the spin polarization of the photoelectrons μ is
not resolved in the experiment. All necessary equations for
the transformations and further simplifications can be found
elsewhere [23].

In the length form of the electric dipole transition operator,
the final result for the coefficients A

q

L reads

A
q

L(ω) = 4π2αa2
0ω

g

(
I

I0

) ∑
�0�1

∑
ζ ζ ′μ

(i)�+�′
ei(δ�m−δ�′m′ )

√
(2� + 1)(2�′ + 1)

∑
ML

∑
JMJ

∑
KMK

(2L + 1)

×(2J + 1)(2K + 1)(−1)�
′+L+m+k′+p′

(
� �′ L

0 0 0

) (
� �′ L

−m m′ −ML

)(
1 1 J

q −q 0

)

×
(

1 1 J

p −p′ −MJ

) (
1 1 K

k −k′ −MK

) (
1 1 K

q −q 0

) (
J K L

MJ MK ML

) (
J K L

0 0 0

)

×〈�0|dp′dk′ |�1ε�
′m′μ〉〈�1ε�mμ|dkdp|�0〉, (3)

where g is the statistical weight of the initial electronic state,
α = 1/137.036 is the fine-structure constant, a0 is the Bohr
radius, δ�m is the phase shift of the electron partial wave, I is
the radiation intensity, and I0 = 1.4038 × 1017 W/cm2. The
energy of the photoelectron ε is connected with the photon
energy ω and the ionization potential IP via 2ω = Vion + ε.
The first summation in Eq. (3) must be performed over all
degenerate initial and final-ionic electron states of the diatomic
molecule, and indices ζ and ζ ′ in the second summation run
over all possible quantum numbers ζ = {�mkp}.

From the third, sixth, and last 3j symbols in Eq. (3) it
automatically follows that index L can only be equal to 0, 2, or
4 for any light polarization q. Indices p and k, which describe
the polarizations of the first and second absorbed photons in
the molecular frame (z′ axis), may take any possible values
among 0,±1, and they are not necessarily identical. Therefore,
two-photon ionization of the ground-state 1σg(m = 0) orbital
of H2 results generally in nine possible pathways:

σg(0)
0 ↗

±1 ↘
σu(0)

πu(±1)
↘0

↗∓1
σg(0), (4a)

σg(0)
0 ↗

±1 ↘
σu(0)

πu(±1)
↘±1

↗0
πg(±1), (4b)

σg(0) ±1
−→ πu(±1) ±1

−→ δg(±2). (4c)

Three pathways in the εσg channel (4a) result in identical final
states and superimpose. The same interference occurs for the
two pathways in each of the επg channels (4b). Therefore,
partial TPI cross sections for channels (4a) and (4b) contain
coherent superpositions of the above mentioned pathways,
described by Eq. (3).

B. Two-photon transition matrix element

The TPI matrix element is given in the lowest nonvanishing
order of perturbation theory by

〈�1ε�mμ|dkdp|�0〉 =
∑
R

〈�1ε�mμ|dk|�R〉〈�R|dp|�0〉
ER − E0 − ω

.

(5)
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Summation in Eq. (5) is performed over all possible inter-
mediate electronic states �R with energy ER in the discrete
and continuous spectrum, which is a formidable task since the
dipole transition amplitudes between two continuous states
are diverging. The present approach to compute the matrix
element (5) consists in introducing the so-called single-particle
correlation function (see, e.g., Refs. [27,28]). For the TPI of H2

in its ground electronic state |�0〉 = 1σ 2
g (1�+

g ), the correlation
function is defined by

|�c
p(ω)〉 =

∑
ε

|ελu〉
√

2〈ελu|dp|1σg〉
Vion + ε − ω

, (6)

where Vion + ε stands for the energy difference ER − E0. The
correlation function depends on the photon energy ω and also
on the polarization p of the first photon in the molecular frame.
The symmetry λ of virtual molecular orbital (MO) |ελu〉 is
determined by this polarization via the selection rules for the
dipole transitions: The linear polarization p = 0 results in the
transition to the |εσu〉 orbital, and circular polarization p =
±1 results in the transition to the |επu〉 one. These virtual
orbitals form singlet intermediate states |�R〉 = 1σ 1

g εσ 1
u (1�+

u )

or 1σ 1
g επ1

u (1�u), respectively. The factor
√

2 in Eq. (6) arises
from the antisymmetrization of the singlet state |�R〉.

The matrix element (5) can now be computed according to

〈�1ε�mμ|dkdp|�0〉 = 〈ε�m|dk

∣∣�c
p

〉
. (7)

By introducing the one-particle Hamiltonian for an optically
exited electron, h|ελu〉 = ε|ελu〉, and implying the resolution
of the identity,

∑
ε |ελu〉〈ελu| = 1, we arrive at the following

inhomogeneous equation for the correlation function:

[h + Vion − ω]
∣∣�c

p(ω)
〉 =

∑
ε

|ελu〉
√

2〈ελu|dp|1σg〉

=
√

2 dp|1σg〉. (8)

Because of the inhomogeneous character of Eq. (8) it can be
solved at any photon energy ω. In the present work, we are in-
terested in the below-threshold TPI (i.e., ω < Vion). Therefore,
the correlation function (6) has a discrete-type localization
(see also Fig. 4), and, except those photon energies which
exactly correspond to the positions of optical resonances ωR =
ER − E0, the dipole integral (7) does not diverge [27,28].
The correlation function technique is somewhat similar to
the commonly applied Green’s-function approach (see, e.g,
Refs. [7–9]).

C. Molecular wave functions

The occupied molecular orbitals were computed within
the MO LCAO approach, whereas the single center method
[15,16,19] with precise numerical molecular-field potentials
was applied in order to compute both the correlation functions
and the mutually orthogonal observable incoming partial
photoelectron waves. According to the SC method the MO of a
diatomic molecule is represented as an expansion by spherical
harmonics, Y�m(θ,ϕ), with respect to the center:

�nm(x,y,z) =
∑

�

Pn�m(r)

r
Y�m(θ,ϕ), (9)

where Pn�m(r) stands for the radial parts of the partial
harmonics in the SC expansion. The radial parts Pn�m(r) of
the photoelectron MO satisfy the following system of coupled
differential Hartree-Fock equations [15,16]:

∑
�′

{[
−1

2

d2

dr2
+ �(� + 1)

2r2
− εnm

]
δ��′ + V ne

��′ (r)

+V ee
��′(r)

}
Pn�′m(r) = 0. (10)

In the system of Eqs. (10) the following designations are
used: εnm is the one-electron energy in atomic units, V ne

��′ (r)
is the potential describing nuclear-electron interaction, and
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FIG. 1. (Color online) Two-photon ionization of H2 by linearly
polarized light. Shown are the (a) total cross sections σ 0(ω)/I and the
photoelectron angular distribution parameters (c) β0

2 (ω) and (d) β0
4 (ω)

computed in the length (open circles) and velocity (solid curves)
gauges. Theoretical results from Ref. [9] obtained at the photon
energy of 8.854 eV are depicted by open squares. Partial cross sections
(b) are shown in the length gauge only. Note the two different energy
scales below and above 13.5 eV. At the exact positions of the optical
resonances (indicated by vertical lines), the presently computed cross
sections diverge, since the TPI matrix element (5) does not account for
lifetimes of the resonances [see discussion in the text before Eq. (11)].
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V ee
��′ (r) is the potential describing direct and exchange elec-

trostatic Coulomb interactions of the photoelectron with the
ionic core. These potentials were calculated using the LCAO of
the ground-state MOs deconvolved as Eq. (9). The method for
numerically solving the system of integrodifferential Eqs. (10)
in the discrete and continuous spectrum is described in detail
in Ref. [16].

III. RESULTS AND DISCUSSIONS

The present calculations have been performed in the
length and velocity form of the electric dipole transition
operator. The experimental vertical ionization potential of
the H2 molecule, Vion = 15.43 eV [29], was used in the
calculations. The angular-resolved TPI spectra of H2 computed
for linearly and circularly polarized exciting radiation are
depicted in Figs. 1 and 2, respectively. The exciting-photon
energy interval chosen for the present calculations covers the
four lowest optical resonant states of the molecule accessible
by the first photon from the ground electronic state, i.e.,
the 1σ 1

g 1σ 1
u (B 1�+

u ), 1σ 1
g 1π1

u (C 1�u), 1σ 1
g 2σ 1

u (B ′ 1�+
u ), and

1σ 1
g 2π1

u (D 1�u) resonances [25].
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FIG. 2. (Color online) Two-photon ionization of H2 by circularly
polarized light. See notations in Fig. 1.
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FIG. 3. (Color online) Two-photon ionization of H2 by linearly
polarized light. Solid curve: present results from Fig. 1 in velocity
form. Broken curve: theoretical results from Ref. [14] in velocity
form. The generalized cross section from Ref. [14] was converted in
cm4/W units as described in the text and, for a better comparison,
shifted by −0.85 eV.

In Figs. 1 and 2, the absolute total and partial TPI cross
sections normalized to the radiation intensity (i.e., σq(ω)/I )
are collected in panels (a) and (b), respectively, whereas the
angular distribution parameters β2(ω) and β4(ω) are depicted
in panels (c) and (d), respectively. The cross sections and
angular distribution parameters computed in the length (open
circles) and velocity (solid curves) form of the electric dipole
transition operator are very close to each other, which indicates
a reliability of the present calculation. The present results are
also in excellent agreement with the single theoretical result
from Ref. [9] obtained at ω = 8.854 eV in the length gauge
(open squares).

In Fig. 3, the presently computed total cross section for TPI
by linearly polarized light is compared with the theoretical
results from Ref. [14]. In order to convert the generalized
cross section depicted in Fig. 6(a) of Ref. [14] in cm4s1 units,
the latter was divided by the photon energy ω measured in
Joule units (27.2114 eV = 4.3597 × 10−18 J). In addition, it
was shifted in energy by −0.85 eV for a better comparison.
An overall qualitative agreement between the two computed
cross sections is seen from Fig. 3, but a noticeable quantitative
difference exists. The latter disagreement could be connected
with different theoretical approaches applied.

At the exact energy positions ωR = ER − E0 of the optical
resonances |R〉, the presently computed cross sections diverge
(see Figs. 1 and 2). This is because the energy detuning ER −
E0 − ωR in the denominator of the TPI amplitude [Eq. (5)]
becomes zero. As a consequence, the correlation function (6)
diverges. In the present theoretical formulation (second order
of the perturbation theory), the exciting radiation is assumed
to be perfectly monochromatized, and all intermediate optical
resonances are treated as stationary states. In a more accurate
treatment, optical resonances are transient with the lifetimes
given by their radiative decay and also by the strong-field
ionization [30]. In addition, they are broadened by a bandwidth
of the exciting photons.

In order to incorporate the latter processes in the theory,
one has to introduce the total width of the optical resonance
�R and to modify the energy denominator of Eq. (5) by an
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TABLE I. Parameters f
q

R [Eq. (12)] computed for the TPI of H2 via a given intermediate resonant state |R〉 in cm4/WE2
h units, where

Eh = 1 a.u. of energy. The presently computed one-electron energy εR of the excited orbital, the resonant photon energy ωR = Vion + εR (where
Vion = 15.43 eV [29]), and the experimental [25] energy position of the resonances Eexpt are also indicated.

|R〉 εR (eV) ωR (eV) Eexpt (eV) f 0
R (length) f 0

R (velocity) f 1
R (length) f 1

R (velocity)

1σu −3.767 11.663 11.369 0.214×10−35 0.226×10−35 0.205×10−35 0.209×10−35

1πu −3.229 12.201 12.410 0.388×10−36 0.553×10−36 0.444×10−36 0.572×10−36

2σu −1.635 13.795 13.842 0.700×10−37 0.674×10−37 0.669×10−37 0.625×10−37

2πu −1.465 13.965 14.124 0.174×10−37 0.229×10−37 0.193×10−37 0.237×10−37

additional imaginary term + i
2�R (see, e.g., Refs. [30,31]). In

the vicinity of a transient intermediate resonance |R〉, the TPI
cross section can be parameterized by

σq(ω)

I
= f

q

R

(ωR − ω)2 + (�R/2)2
. (11)

Parameters f
q

R in the numerator of Eq. (11) can be ob-
tained from Eq. (3) by setting L = 0 and replacing the TPI
matrix element 〈�1ε�mμ|dkdp|�0〉 by the product of two
matrix elements for the excitation of the energy-selected
optical resonance 〈R|dp|�0〉 and its subsequent ionization
〈�1ε�mμ|dk|R〉. After simplifications, an explicit expression
for f

q

R reads

f
q

R = 4π2αa2
0ω

gI0

∑
�0�1

∑
�mμ

∑
kp

∑
k′p′

∑
J

(−1)k
′+p(2J + 1)

(
1 1 J

p −p′ k − k′

)(
1 1 J

k −k′ p − p′

)

×
(

1 1 J

q −q 0

)2

〈�0|dp′ |R〉〈R|dk′ |�1ε�mμ〉〈�1ε�mμ|dk|R〉〈R|dp|�0〉. (12)

The parameters f
q

R computed within the SC method for
the TPI of H2 via the optical resonant states |R〉 are listed
in Table I in cm4/WE2

h units. Computed SC one-electron
energies εR of the excited resonant states and the resonant
photon energies ωR = Vion + εR are also indicated in columns
2 and 3 of Table I. One can see that the presently computed
energy positions of the optical resonances ωR are in a good
agreement with the experimental energies Eexpt from Ref. [25]
(cf. columns 3 and 4). Using the presently computed values
of f

q

R and ωR from Table I, one can obtain [via Eq. (11)] the
theoretical cross sections in the vicinity of |R〉 for any known
total width of the optical resonance �R .

Let us now turn to the computed angular distribution
parameters β

q

2 (ω) and β
q

4 (ω) depicted in panels (c) and (d) of
Figs. 1 and 2. In contrast to the cross sections, the parameters
show no dramatic changes in the close proximities of the
optical resonances (indicated by vertical lines). However,
their exciting-photon energy dependencies exhibit prominent
resonant features in the vicinities of minima in the total
cross section. This is because the β parameters are inversely
proportional to the cross section, i.e., β

q

L ∼ (σq)−1, and small
changes in the cross section around its minimum cause large
changes in the angular distribution [32].

The minima in the cross section appear as the result of a
destructive interference of the amplitudes for the ionization
via two neighboring intermediate resonances. Therefore,
these minima and, as a consequence, resonant features in
β parameters, are located in between the resonances (see
Figs. 1 and 2). As also seen from panels (b) of the figures,
the destructive interference is manifested differently in the

partial cross sections for the channels (4a)–(4c). For the επg

and εδg channels these minima are significantly deeper than
those for the εσg channel. The resonant features in the angular
distribution parameters provide a very sensitive tool to study
interplay between the partial ionization channels (4) around
the minima in the cross sections.

Finally, in Fig. 4 we show by solid curves several SC partial
harmonics of the correlation function (6) computed at ω =
11.6625 eV, which is very close but does not coincide with the
energy for the first optical resonance 1σ 1

g 1σ 1
u (B 1�+

u ) (ωR =

0 5 10 15 20
0.0

0.2

0.4

r (a.u.) 

 =1           

 =3 (×20) 

 =5 (×30) 

 =7 (×40) 

R
ad

ia
l p
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ts

 (
a.

u.
)

1σ
u

Ψc

0
(ω)

FIG. 4. (Color online) Wave function of the 1σu excited electron
(open symbols) and the correlation function (solid curves) computed
in the vicinity of the first optical resonance at ω = 11.6625 eV (the
energy detuning from the resonance amounts to −0.5 meV). The
latter is normalized to unity. Note that higher partial harmonics are
shown on enhanced scales indicated by factors ×K .
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11.663 eV, see Table I). The norm of the function was set to
one. The respective partial harmonics of the SC expansion of
the 1σu MO are also presented in the figure by open symbols.
As was expected and also seen from Fig. 4, this normalized cor-
relation function coincides with the wave function of the 1σu-
excited electron. As was already mentioned in Sec. II B, solu-
tions of the inhomogeneous Eq. (8) for any ω < Vion belong to
the discrete spectrum of the one-electron Hamiltonian h, and,
thus, they are localized in space. By its definition [Eq. (6)],
the correlation function is inversely proportional to the energy
detuning �c

p(ω) ∼ (ER − E0 − ω)−1 and is diverging at the
exact position of the resonance. In order to eliminate this
divergence, one has to account for the transient character of the
optical resonance by introducing the imaginary term + i

2�R in
the energy denominator of Eq. (6) and also in the left-hand
side of Eq. (8).

IV. CONCLUSIONS

Two-photon ionization of the H2 molecule is studied
theoretically in the exciting-photon energy range of 8–
14 eV. The theoretical approach is based on the combination
of the single center method, for accurate computation of dis-
crete molecular orbitals and continuous partial photoelectron

waves, and the correlation function technique, to evalu-
ate numerically the two-photon transition matrix elements.
Thereby, it is especially designed to study angular-resolved
two-photon ionization spectra of diatomic molecules. The
method also allows a straightforward extension to multipho-
ton ionization processes of diatomic and also polyatomic
molecules.

Cross sections and angular distribution parameters for
the two-photon ionization of H2 by linearly and circularly
polarized radiation computed in the length and velocity
forms of the electric dipole transition operator are very
close to each other, and they also agree well with the
other available theoretical results. Our calculations predict
strong exciting-photon energy dependencies of the angular
distribution parameters in the vicinities of minima in the total
cross section in between two neighboring optical resonances.
We note that the nuclear dynamics during the ionization
process, neglected in the present calculations, will result
in a slight broadening of the presently computed spectra.
Computed exciting-photon energy dependencies of the cross
sections and angular distribution parameters provide reliable
benchmarks for available computational approaches and for
further angular-resolved multiphoton ionization experiments
on the hydrogen molecule.
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