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Evaporation-limited loading of an atomic trap
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Recently, we have experimentally demonstrated a continuous loading mechanism for an optical dipole trap
from a guided atomic beam [M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and T. Pfau, Phys. Rev. Lett.
106, 163002 (2011)]. The observed evolution of the number of atoms and temperature in the trap are consequences
of the unusual trap geometry. In the present paper, we develop a model based on a set of rate equations to describe
the loading dynamics of such a mechanism. We consider the collision statistics in the nonuniform trap potential
that leads to two-dimensional evaporation. The comparison between the resulting computations and experimental
data allows to identify the dominant loss process and suggests ways to enhance the achievable steady-state atom
number. Concerning subsequent evaporative cooling, we find that the possibility of controlling axial and radial
confinement independently allows faster evaporation ramps compared to single beam optical dipole traps.
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I. INTRODUCTION

For almost two decades the standard way of cooling atoms
to ultracold temperatures has been the following: laser cooling
in magnetooptical traps followed by evaporative cooling in
magnetic and optical traps. For many atomic species and es-
pecially molecules, different methods are required since laser
cooling on a closed cycling transition is technically not feasible
[1,2]. In recent years there has been considerable progress
in the generation of slow and internally cold atomic and
molecular beams [3–5], in particular for atoms or molecules
with an electric [6–9] or magnetic [10,11] dipole moment.
A mechanism that allows for a further increase of the beam’s
density [12–19] may hence provide suitable starting conditions
for evaporative [20] or demagnetization cooling [21]. Such a
mechanism can be realized in a purely statistical way [16] or
by scattering a single photon [22] that changes the internal
state from untrapped to trapped.

We have recently demonstrated a loading scheme that is
based on the accumulation of chromium atoms from a contin-
uous flux of guided ultracold atoms [23–25] in a conservative
potential and allows for the fast production of Bose-Einstein
condensates (BECs) [26]. This scheme benefits from the strong
magnetic moment of chromium atoms. It is likely to work also
for other species with a comparably versatile level structure
and strong magnetic moments such as atomic erbium [27] or
dysprosium [28] that have recently gained interest. The scheme
might even be the favorable technique of producing BECs from
such elements since it omits some of the limitations that are
generic to those atoms (e.g., strong dipolar relaxation losses
and light-assisted collisions). In the case of chromium, the
repetition rate has increased from an experimental cycle of
more than a minute [29] to 5 seconds for the production of a
BEC [26].

In earlier work [25] we estimated the transfer efficiency
from the guided beam into the trap from the evaluation of single
particle trajectories. That approach allowed a prediction of the
loading rate and agrees with our measurements. However, we
observe a saturation of the atom number at an unexpectedly
low level. The estimated maximum number of atoms due to
three-body collisions of ground-state atoms or light-assisted

collisions should be an order of magnitude higher than the
observed ones.

In this article, we develop a model based on coupled rate
equations to quantitatively describe the loading mechanism.
With our model we are able to identify elastic two-body
collisions (i.e., evaporation as the limiting mechanism in our
current trap). The model takes the trap potential’s specific
nonuniform geometry into account. Regarding evaporation,
this implies a dimensionality [30] of two. Unlike one- and
three-dimensional geometries [31], this has to our knowledge
not been treated so far.

The paper is organized as follows. In Sec. II we first describe
briefly the experimental procedure used and discussed in detail
in Refs. [23–26]. We develop a rate equation model for the
loading process in Sec. III, and compare numerical simulations
based on the model to our experimental data in Sec. IV.

II. EXPERIMENTAL SETUP

In the following, we briefly summarize the underlying
mechanism of the loading scheme for convenience [19,26].
Figure 1 shows a schematic illustration of the experimental
setup. We overlap a single beam optical dipole trap (ODT)
on an axis with a continuous beam of 52Cr atoms. Thereby,
about half the flux of atoms in the beam is radially confined in
the optical potential. To dissipate the atoms’ directed kinetic
energy, we place a pair of coils around the focus of the ODT to
create a magnetic field maximum along the atoms direction of
propagation. Since the atoms are initially in a low-field-seeking
substate they are slowed as they approach the magnetic barrier
potential. Close to their classical turning point, an optical
pumping beam transfers the atoms to their absolute ground
state [i.e., a high-field-seeking state which is attracted axially
by the magnetic saddle potential created by the barrier coils
and radially confined by the (ODT)]. We use the following
experimental parameters. The ODT is focused to a waist of
30 μm and operated at a power of 80 W which results in a
potential depth of about 1 mK. Its focus coincides with the
geometric center of the magnetic barrier coils. They have a
diameter of 1 mm, are spaced at a distance of about 1 mm, and
are driven by a current of 1 A. The atomic beam has a velocity
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FIG. 1. (Color online) Schematic illustration of the setup under-
lying the continuous loading mechanism. Atoms are traveling to the
right and are funneled into the radially confining ODT potential.
Axially, the barrier coils create a state-dependent potential that is
switched from a wall to a well by means of the optical pumping
beam.

of 1 m/s. All experimental information presented in this article
is obtained from in-trap and time-of-flight absorption images
taken along the vertical axis.

III. MODELING THE LOADING PROCESS
WITH RATE EQUATIONS

In the following section, we develop a model based on rate
equations to explain the physics of the loading process. We
will later use the model to interpret our experimental data.
Starting from an empty trap, the evolution of the atom number
is proportional to the loading rate L until loss processes that
depend on the atom number become dominant and eventually
an equilibrium state is reached. These considerations lead to
the common rate equation for the evolution of the atom number
N

Ṅ = L − γN − γevN
2, (1)

where γ is the single-body loss rate that includes collisions
with molecules from the background gas and fast impinging
atoms from the guided beam. γev accounts for losses due to
binary collisions between trapped atoms. Since the atoms
are in their electronic ground state and dipolar relaxation
is forbidden due to energy conservation [32], only elastic
two-body collisions can occur in our system. During elastic
collisions selectively hot atoms escape which leads to a net
cooling of the trapped sample. On the one hand, the last term
in Eq. (1) thus also changes the temperature, while, on the
other hand, γev itself strongly depends on the temperature
of the trapped gas. The model described by Eq. (1) hence
needs to be extended to a set of differential equations that
also takes into account the evolution of the temperature.
In the following section we deduce this model from basic
considerations [31,33–35].

A. Two-dimensional evaporation

The physical picture behind evaporation is based on the
distinction between trapped and untrapped momentum states
[31]. A particle initially occupying a trapped state can be
promoted to an untrapped one through collisions with other
particles. We restrict our considerations to the Knudsen regime

(mean free path larger than the size of the cloud), that is, every
particle promoted to an untrapped state escapes.

The dimensionality of evaporation is given by the condition
of truncation in momentum space [30]. Three-dimensional
(3D) evaporation is the simplest case: a particle escapes under
the condition ε > εt , that is, the particle’s total energy ε =
U (�r) + p2/(2m) exceeds the trap depth εt , where U (�r) is the
potential energy at the position �r and p2/(2m) the particle’s
kinetic energy. 3D evaporation occurs in potentials of uniform
depth in all directions (e.g., ideally a single beam ODT or a
magnetic trap with rf knife).

The loading mechanism discussed here is based on the
superposition of an ODT with a magnetic field maximum
[19,26]. Geometric constraints1 imply that the hybrid trap
potential is to a good approximation separable into an axial
(purely magnetic confinement) and a radial part (purely optical
confinement)

U (ρ,z) = U (ρ) + U (z), (2)

where the potential depth in the radial direction ερ is much
smaller than along the axial direction εt,z for typical exper-
imental parameters. Therefore, the criterion of evaporation
is more strict: the particle’s energy in the radial degrees of
freedom must exceed the radial trap depth Uρ(ρ) + p2

ρ > εt,ρ .
This reduces the probability for hot atoms to be removed and
thus evaporation is less efficient. 3D evaporation, however,
can also occur in a nonuniform potential trap due to ergodicity
[36]. Whether or not evaporation can be considered ergodic
depends on whether a particle finds the trap’s exit sufficiently
fast in the time between successive collisions. For the trap
potential discussed here, numerical evaluation of the classical
single particle trajectories shows that the dynamical coupling
between the degrees of freedom is negligible. Surkov [30]
and Pinkse [31] compared one-dimensional (1D) evaporation
and 3D evaporation based on an experiment on magnetically
trapped atomic hydrogen. For the description of the loading
process discussed here, a model considering 2D evaporation
is required.

B. Collision statistics

In this section, the Ansatz for 1D evaporation treated in
Ref. [31] is extended to the case of a nonuniform potential with
cylindrical symmetry. The most convenient way to describe the
elastic collision of two particles with momenta �p1 and �p2 is to
use center-of-mass coordinates with the average momentum
�p = ( �p1 + �p2)/2 and relative momentum �q = ( �p1 − �p2)/2.
Energy conservation requires the relative momentum’s abso-
lute value q = |�q| = √

q2
x+q2

y+q2
z to be conserved. Assuming

s-wave collisions, a collision thus reorients �q isotropically
on the surface of a sphere with radius q. Furthermore, each
component of the average momentum �p is conserved during
collisions. With the assumption εt,z � εt,ρ and the cylindrical
symmetry of the trap potential [Eq. (2)], particles leave the
trap if their radial momenta pρ after the collision are larger
than the radial escape momentum Qρ .

1The ODT’s Rayleigh length is much larger than the extent of the
coils.
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FIG. 2. (Color online) (Left) The intersection of the surface S of a
sphere with radius q and a long cylinder with radius Qρ geometrically
illustrates the loss criterion for particles. The distance between the
center of the sphere and the cylinders’s axis represents pρ . The
fraction of S that lies outside the cylinder corresponds to the statistical
probability floss of one (or both) atoms to escape the trap. (Right) cut
along the px py plain. Example: The q vector, pointing along the
pz axis before collision, has reoriented into the px py plain and
both particles now occupy an untrapped state. Alternatively, only one
atom would be promoted to an untrapped state if the momenta was
reoriented along the px axis.

Within the center-of-mass coordinates it is merely influ-
enced by two parameters whether a collision redistributes
particles into trapped or untrapped states: q and pρ . q denotes
the relative momentum of the colliding particles, which is
randomly reoriented (azimuthal and polar angles φ, θ ) after
a collision and pρ = √

p2
x+p2

y , the average radial momentum,
respectively. Geometrically, the escape condition thus equals
the intersection of a sphere’s surface (radius q) with an
infinitely long cylinder (radius Qρ) with an offset of pρ as
depicted in Fig. 2. States outside the cylinder are untrapped. It
should be noted that, in contrast to the case of 3D evaporation,
an elastic binary collision in a nonuniform potential can also
lead to the loss of both particles.

Mathematically, Eqs. (3) and (4) express the probability
floss of one (or both) atoms to escape the trap as a function of
the input momenta q and pρ by integration over all possible
reorientations of q

B(pρ,q,θ,φ)

= �
[
Q2

ρ − (q sin θ cos φ − pρ)2 − (q sin θ sin φ)2
]

(3)

floss(pρ,q) = 1

π

∫ π

0

∫ π

0
B(pρ,q,θ,φ) sin θ dθ dφ, (4)

ε̄+
ρ (pρ,q) = 1

2πm

∫ π

0

∫ π

0
B(pρ,q,θ,φ)

× (
q2 sin2 θ − 2qpρ sin θ cos φ + p2

ρ

)
× sin θ dθ dφ, (5)

ε̄+
z (pρ,q) = 1

2πm

∫ π

0

∫ π

0
B(pρ,q,θ,φ)

× (
p2

z + q2 cos2 θ
)

× sin θ dθ dφ, (6)

where B(pρ,q,θ,φ) is the criterion for an atom to leave the
trap. � represents the Heaviside step function. The mean

energy per particle in the radial ε̄+
ρ = ε̄+

x + ε̄+
y and axial ε̄+

z

degrees of freedom after the collision is obtained by integration
over all possible reorientations of momenta as stated by
Eqs. (5) and (6).

C. Thermodynamics

Equations (3) through (6) express the statistical results for
general collisions in the trap as functions of the input momenta
q and pρ . The goal, however, is to write down floss, ε̄+

ρ , and
ε̄+
z depending on temperature. This is achieved by summing

Eqs. (4) through (6) over the statistical distribution of q and
pρ at a given temperature. For a thermodynamic description
of the collision statistics we make the following assumptions.

(1) The axial and radial degrees of freedom individually
are in quasiequilibrium while different temperatures along the
respective axes are allowed.

(2) The thermal momentum distribution f (p1,z,Tz) of a
single particle along the axial direction is given by a Boltzmann
distribution.

(3) The thermal momentum distribution f (p1,ρ,Tρ) is given
by a truncated Boltzmann distribution [35].

(4) On time average, equipartition of mean kinetic and mean
potential energy is assumed (as for the case of a harmonic
potential).
The first three points are a direct result of the trap’s prolate
symmetry (regarding trapping frequencies and depth) in
combination with the atomic beam. The atoms loaded into the
trap have different temperatures in axial and radial directions.
These assumptions now allow to describe the atomic cloud
with two temperature parameters: Tz and Tρ . Experimentally,
both values can be accessed by time-of-flight images. The
momentum distribution of a single particle within an ideal gas
at equilibrium is given by the Boltzmann distribution

f (px,py,pz) =
(

1

2πmkBT

)3/2

e
− p2

x+p2
y+p2

z

2mkB T . (7)

A gas trapped in a potential with a finite depth can be
approximated by a Boltzmann distribution truncated at the
trap depth εt . It is then convenient to introduce the truncation
parameter η = εt/kBTρ = Q2

ρ/2mkBTρ . To derive the statis-
tical distributions for q and pρ at a given temperature, Eq. (7)
is transformed into the respective coordinate systems, which
leads to (for a derivation see [37])

fpρ
(pρ,Tρ) = n0 pρ e−p2

ρ/mkBTρ , (8)

fq(q,Tρ,Tz) = n′
0 q erf

(
q

√
Tρ − Tz

mkBTzTρ

)
e−q2/mkBTρ . (9)

Figure 3 shows examples of these two thermodynamic dis-
tributions. In Fig. 3(a), fpρ

(pρ,Tρ) is plotted for different
trap parameters η. The distribution is truncated at the escape
momentum Qρ . fq(q,Tρ,Tz) is drawn in Fig. 3(b). The two
curves compare a cross-dimensionally thermalized distribution
(black) with a nonequilibrium one (gray) at an equal mean
energy. We sum over all possible momentum states by
integrating Eq. (4) multiplied by their statistical weights
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FIG. 3. (a) Examples of the statistical distribution of momenta
fpρ

(pρ,Tρ)
∣∣
Tρ=Q2

ρ/2mkBη
given by Eq. (8) for different values of η.

(b) Plots of the statistical distribution of the momenta fq (q,Tρ,Tz)
given by Eq. (9). The black and the gray curves describe particles with
the same mean energy ε. The black curve shows the thermodynamic
equilibrium (Tρ = Tz), while the gray one represents the case where
Tρ < Tz.

Eqs. (8) and (9), respectively. This yields the desired function
for the probability of evaporation2

floss(Tρ,Tz)

= nt

∫ ∞

0

∫ Qρ

0
fpρ

(pρ) fq(q) floss(pρ,q) dpρ dq, (10)

with the renormalizing prefactor nt (Tρ) =
[
∫ Qρ

0 fpρ
(pρ) dpρ]−1. In the same way the distributions

of the kinetic energies (per particle) among the axial and
radial degrees of freedom after a collision are obtained

ε̄+
ρ (Tρ,Tz) = nt

∫ ∞

0

∫ Qρ

0
fpρ

(pρ) fq(q) ε+
ρ (pρ,q) dpρ dq,

(11)

ε̄+
z (Tρ,Tz) = nt

∫ ∞

0

∫ Qρ

0
fpz

(pz) fq(q) ε+
z (pz,q) dpz dq,

(12)

where the integration along pz simply adds a term of (2 −
floss)kBTρ/2. Another consequence of the finite radial trap
depth is that ε̄ρ �= kBTρ (i.e., the mean thermal energy ε̄ρ per
particle is no longer proportional to the temperature parameter
Tρ). This can be easily seen from Fig. 3(a). The mean energy
is thus a function of the temperature parameter and the escape
momentum. Conversion between ε̄ρ and Tρ is done with the
following formula and its numerically evaluated inverse

ε̄ρ(Tρ,Qρ) = nt (Tρ)
∫ Qρ

0

p2
ρ

2m
fpρ

(Tρ, pρ) dpρ. (13)

The obtained floss(Tρ,Tz) is plotted in Fig. 4. One can see
that (for high temperature parameters) on average more than
one particle can be lost after a binary collision. The averaged

2For a bound interval of integration [i.e., a finite radial trap
depth] Eqs. (10) through (12) are not exactly true. The variable
q = √

q2
x +q2

y+q2
z takes values up to infinity, however, only due to its

component q2
z while the radial components are bound to values below

Qρ . This fact is neglected in the following.
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FIG. 4. The function floss(Tρ,Tz) defined in Eq. (10) is plotted
with respect to generalized coordinates. The x axis corresponds to
the truncation parameter. Similarly, the y axis relates the radial trap
depth to the axial temperature.

loss or gain of kinetic energy after one collision can now be
written as the difference between the mean thermal energy
before ε̄ and after a collision ε̄+


ε̄ρ = ε̄+
ρ − ε̄ρ, (14)


ε̄z = ε̄+
z − ε̄z. (15)

The considerations so far and in particular Eqs. (14) and
(15) only include kinetic energy (i.e., they apply to a trap
shape where potential energy can be neglected, as in a box of
finite size and infinitely steep walls). In a harmonic potential,
however, a particle on time average has an equal amount of
kinetic and potential energy ε̄pot = ε̄kin. During an impact,
the kinetic energy εkin = �p2/2m is redistributed among the
colliding particles as described by the model derived above,
while both colliding atoms retain their fraction of potential
energy before the collision. To account for the potential shape,
we assume in the following that only half of a particle’s total
energy can be altered in a single collision event


ε̄ρ = 1
2 ε̄+

ρ + 1
2 (2 − floss)ε̄ρ − ε̄ρ = 1

2 (ε̄+
ρ − floss ε̄ρ),

(16)


ε̄z = 1
2 ε̄+

z + 1
2 (2 − floss) ε̄z − ε̄z = 1

2 (ε̄+
z − floss ε̄z).

(17)

The shape of the potential determines the distribution between
kinetic and potential energy [38] and in this way it is
responsible for the speed of cross-dimensional thermalization.

D. Collision rate

In Sec. III C we derived the statistical outcome of one single
collision. In the following we assume that the evolution of
the trap (considering N , Eρ , and Ez) is determined by the
product of the collision rate and the mean effect of a single
collision.3 The rate at which these events occur is given by

3That is,
∫

floss(pρ,q)σ (q)fq (q) dq ≈ ∫
σ (q)fq (q)dq

× ∫
floss(pρ,q)fq (q) dq. Since the collision rate is a function
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the elastic collision rate �coll which scales with the product
of average density, scattering cross section σ , and the mean
relative velocity.

To obtain the trap’s effective volume for evaporation, the
phase-space distribution of a classical ideal gas at thermal
equilibrium [35]

f (r,p) = n0

(
2πh̄

πmkBT

)
e−[U (r)+p2/2m]/kBT (18)

is integrated over all momentum states that occur in the trap
potential: n(r) = (2πh̄)−1

∫
d3pf (r,p). With the discussed

properties of the potential (separability and nonuniformity)
this leads to

n(r) = n0(1 − e[ερ−Uρ (ρ)]/kBTρ )e−Uρ/kBTρ e−Uz/kBTz . (19)

The effective trap volume Ve of the trapped gas for evaporation
is defined by [33]

Ve ≡ N2∫
n2(�r) d3r

. (20)

For σ , we use the energy-dependent s-wave scattering cross
section in the effective range approximation [39]

σ (k) = 8πa2

k2a2 + (1/2 k2 a re − 1)2
, (21)

with a = 103a0 and the effective range re = 74a0 [40]. a0

denotes the Bohr radius. Contributions of higher-order partial
waves are neglected although they are likely to play a role at
the present temperature range. However, related experimental
or theoretical data are lacking.4

We define the collision parameter γcoll through the relation
[33]

�coll = γcoll N2. (22)

This leads to the definition of the thermally averaged collision
parameter

γcoll(Tρ,Tz) =
∫ ∞

0 2 q σ (2 q) fq(q,Tρ,Tz) dq

m Ve(Tρ,Tz)
. (23)

The relative wave vector k in the scattering cross section
is substituted by the relative momentum coordinate q = h̄k,
where the factor of 2 in front of q stems from the relative mass
μ = m/2.

E. Rate equations

Together the considerations from the previous paragraphs
result in the following set of coupled differential equations:

Ṅ = L − γN − γcoll(Tr,Tz) floss(Tr,Tz)N
2, (24)

of the relative momentum between colliding particles, like the
statistical result of one collision floss, ε̄+

ρ , and ε̄+
z [defined in

Eqs. (4) through (6)], this assumption strictly is only true in thermal
equilibrium.

4For chromium, σ is known in the purely s-wave temperature range
below 10−4 K [46] and has been measured above 10−2 K [47]. For the
window in between, however, neither theoretical nor experimental
data are available.

Ėρ = ε̄L,ρL − γ ε̄ρN − γcoll(Tρ,Tz)[ε̄
+
ρ (Tr,Tz)

− floss(Tr,Tz) ε̄ρ]N2, (25)

Ėz = ε̄L,zL − γ ε̄zN − γcoll(Tρ,Tz)[ε̄
+
z (Tr,Tz)

− floss(Tr,Tz) ε̄z]N
2, (26)

with

Tz = 2εz

kB

= 2Ez

NkB

, (27)

Tρ = Tρ(ερ) = Tρ

(
Eρ

N

)
, (28)

where Eq. (28) is the inverse function of Eq. (13). Eρ and Ez

are the total kinetic energies in the radial and axial degrees
of freedom, respectively. The first terms on the right-hand
side of Eqs. (24) through (26) describe the loading process.
Particles are inserted into the trap at a loading rate L, a mean
kinetic energy of ε̄L,z axially and ε̄L,ρ radially. Single-body
loss processes such as background gas collisions and fast
atoms from the beam are covered by the second terms with
the respective coefficient γ . Finally, the last terms account for
binary elastic collisions among trapped atoms. They include
plain evaporation and cross-dimensional thermalization within
the model developed in this section.

IV. EXPERIMENT

A. Loading process

Figure 5(a) shows the evolution of the atom number,
temperature, and PSD during the loading process. At time
t = 0, the optical pumping beam is switched on and thereby
the loading process starts. Experimental data extracted from
in-trap absorption images (squares, triangles, and circles) are
compared to the model developed in Sec. III. The theoretical
curves (solid lines) are based on the numerical integration
of Eq. (24). The set of coupled differential equations require
three starting values: N0, Eρ,0, and Ez,0. Since the loading
process starts from an empty trap, these parameters are all
zero. Furthermore, the equations contain the parameters γ ,
ε̄L,ρ , ε̄L,z, and L. γ is estimated from decay measurements of
the fully loaded trap in presence of the atomic beam. It lies
well above 1 s and therefore does not play a role for the loading
process under typical experimental conditions. The remaining
parameters are directly deduced from the respective experi-
mental data, within their respective experimental uncertainty.
L is obtained from a slope of N (t) in the initial stage. ε̄L,ρ

and ε̄L,ρ correspond to the temperature parameters Tρ and Tz

(within their experimental uncertainties) of the cloud before
collisions play a role.

One can see that during the first 50 ms of loading, the
atom number increases at a constant rate. A linear fit yields
a loading rate of 5.8 × 106 atoms/s, which corresponds to a
loading efficiency of 10–15 % with respect to the flux in the
atomic beam. After about 100 ms N saturates around N =
5 × 105 atoms. As also shown in Fig. 5(a), the temperature
decreases during the loading process.
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FIG. 5. (Color online) Evolution of the number of atoms N , the temperature parameters (Tρ and Tz), and the PSD during (a) the loading
process and successive plain evaporation after (b) tload = 100 ms and (c) tload = 1 s. Data are extracted from in-trap absorption images (squares,
triangles, and circles), while the solid lines show computations according to the model developed in Sec. III. Displayed error bars result from
an estimated uncertainty in the magnification of the imaging system of 10%.

B. Plain evaporation

As a benchmark of the loading scheme it is interesting to
validate the agreement between the model and experimental
data under different conditions (i.e., after the loading process
is terminated and thus L = 0). In Eqs. (24) to (26) the first
terms on the right-hand side vanish. γ is smaller than during
the loading process. Since the atomic beam is switched off, the
1/e lifetime is now solely limited by background pressure to
30 s. The remaining starting conditions for the simulation are
N0, Eρ,0, and Ez,0. These are obtained from measurements that
are taken directly after the loading process has been terminated.

Figures 5(b) and 5(c) show the temporal evolution of the
trap directly after the loading process has been stopped with a
preceding tload = 100 ms [Fig. 5(b)] and tload = 1 s [Fig. 5(c)],

respectively. Data collected during plain evaporation are
compared to the model developed in Sec. III. The plots in
the top row show the evolution of the atom number, while
below the respective temperature measurement is displayed.
The plots cover the first 2 s, which is the experimentally most
relevant time frame. To emphasize the dynamics at small and
large time scales, the insets have an extended x axis up to 30 s
and a double logarithmic scale.

From the evolution of N in Figs. 5(b) and 5(c), one can see a
fast decay during the first 500 ms that can be attributed to plain
evaporation before eventually, the decay becomes exponential.
As expected, the initial fast decay is more pronounced in
Fig. 5(b), where the trapped atoms have a higher mean energy
compared to Fig. 5(c). Concerning temperature, one observes
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Tρ and Tz equilibrate within about 50 ms, as well as a
decreasing mean temperature throughout plain evaporation.
Despite the atom losses, the PSD is increasing by about
one order of magnitude during plain evaporation, which
indicates that evaporative cooling due to elastic collisions is
the dominant process.

C. Limitations to the loading process

As can be seen from Fig. 5, the number of atoms saturates
after a trap loading time of less than 200 ms. It would be
favorable to prolong the loading phase and reach a higher
equilibrium atom number Nmax. Therefore, in the following,
we investigate the mechanism that is responsible for the
saturation of N . The good agreement between experimental
data and simulations suggests plain evaporation to be the
dominant loss process. No other losses are included into the
model, apart from single-body losses, which are yet on another
time scale. Figure 6(a) shows simulations and experimental
data of the loading process with different loading rates. We
experimentally reduce L by decreasing the flux of Cr atoms
between our effusion cell and the magneto-optical trap (MOT).
The measured loading rate is then used in the respective
simulations, while all other parameters remain the same.
When an elastic two-body loss process such as evaporation
constitutes the dominant source of loss, the stationary solution
of the simplified rate equation for the atom number Eq. (1) is
of the following form (i.e., γevN � γ ):

Nmax =
√

L

γev
. (29)

Nmax is plotted as a function of L in Fig. 4(b). Both simulations
and experimental data agree with the behavior described by
Eq. (29). It might seem counterintuitive that elastic collisions
between trapped atoms can actually limit Nmax. Atoms are
loaded into the trap with a mean energy corresponding to
η ≈ 2. The mechanism can therefore be understood in the
context of the continuous heating rate imposed by the loaded
atoms and the cooling rate due to evaporation. An equilibrium
temperature develops where γcoll(Tr,Tz)floss(Tr,Tz) = γ2 =
const. The key to increasing Nmax is therefore a reduction
of floss. One way to achieve this is to increase the radial
trap depth (e.g., by a higher ODT power). Simultaneously
increasing the ODT’s waist maintains the trap frequencies and
thus avoids additional radial heating. Our computations predict
that loading the trap at η = 3 results in gain by a factor of 2
in Nmax compared to the current experimental parameters (at
equal L). At the same time, the steady-state PSD improves by
more than a factor of 7.

D. Forced evaporation

Plain evaporation as described by the model developed in
Sec. III quickly slows down with increasing η. To maintain
evaporative cooling, the trap depth has thus to be continuously
lowered (forced evaporation). In our case, we realize this by
decreasing the ODT’s power. There is a large range of literature
on evaporative cooling in magnetic traps [30,31,34,41] or in
optical dipole traps [42,43]. The hybrid magnetic and optical
trap geometry, as a prerequisite of the continuous loading
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FIG. 6. (Color online) (a) The temporal evolution of the atom
number is plotted for data corresponding to different loading rates
L. The squares represent experimental data and are compared to
simulations (solid line), which merely differ in the loading rate L that
is measured directly from the initial slope of the experimental data.
(b) The squares show the equilibrium atom number Nmax measured
after a long tload with respect to the corresponding loading rate L. The
diamonds connected by a solid line show Nmax from the simulations.

process, combines advantages of either trap type. On the
one hand, the high-field seeking absolute ground state can be
trapped, while on the other hand, the trap weakens the typical
problem of a single beam ODT: the decreasing collision rate
as a result of the coupling between the trapping frequencies
and trap depth. Here, the axial confinement is maintained
throughout the evaporation ramp by the magnetic field, while
merely the radial trapping frequency is lowered. To extend
the model described above for forced evaporation, we have to
consider the work exerted on the trapped gas as a result of the
variation of the radial trap shape [31]

Eext = NkBT

Ve(Tρ,Tz)

(
∂Ve

∂PODT

)
dPODT

dt
. (30)
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FIG. 7. (a) Experimentally determined ramp of the ODT power
that is used to produce a BEC. At t = 0 the loading process is
stopped and followed by plain and forced evaporation as indicated.
(b) Evolution of the PSD as a function of the atom number during
evaporation. The squares are data points that are measured during
the evaporation ramp. The error bars result from fit uncertainties and
systematic errors as the magnification of the imaging system. The
solid line represents a simulation of the forced evaporation process
according to the classical model discussed in the text.

Spilling [41] (i.e., the loss of trapped states due to changes
in the potential shape) can be neglected for our experimental
conditions (η ≈ 7 during the ramp).

Figure 7(a) shows the experimentally optimized ramp of
the ODT power for forced evaporative cooling. It consists of
one plain evaporation segment starting at t = 0 and subse-
quently five segments with linearly decreasing ODT power.
In Fig. 7(b), the evolution of the PSD is shown with respect
to N . The squares show data taken during the evaporation

ramp, while the solid line indicates the respective prediction
according to model of the rate equations. It should be noted,
however, that these do not consider quantum statistical effects.
After forced evaporative cooling, we reach a BEC with
N ≈ 104 atoms in an overall time of 4.5 s.

V. CONCLUSION

In conclusion, we have developed a model based on a the
set of coupled rate equations which is capable of modeling
continuous loading schemes for an ODT from a beam of
atoms [19,26]. Due to the nonuniform trap geometry and
the simultaneous appearance of loading and evaporation, the
dynamics of the thermodynamical properties of the trapped
cloud are far more complicated than in previously modeled
systems. As a direct result of the implementation of the loading
scheme, the dimensionality of evaporation [30] is two for the
nonuniform trap geometry discussed here.

We have shown that numerical simulations of the loading
process, plain, and forced evaporation agree quantitatively well
with experimental data. In experiments as well as in numerical
simulations we observe the onset of saturation at an atom
number of about 5 × 105 after loading the trap for 100 ms.
The model allows identifying elastic binary collisions as the
limiting process within our current experimental conditions.
It is important to remark that the system is not yet limited by
light assisted collisions mediated by (re)absorbed pump-light
photons. Larger steady state densities can therefore be reached
through a higher trap parameter η of the atoms loaded into the
trap. This may be realized by means of a radially colder beam
or a higher radial trap depth.

Furthermore, we have shown that the specific trap geometry
has good properties for successive evaporative cooling since
the axial trap frequency is independent from the trap depth.
In combination, the loading mechanism followed by forced
evaporation in the hybrid magnetic and optical trap allows
producing a Cr BEC within less than 5 s, which is significantly
faster than previously published [44,45] experiments on Cr
atoms.

The demonstrated loading mechanism may as well be
applicable to atoms where a closed cycling transition for laser
cooling is not available, or for molecules which can except for
a few cases not be laser cooled due to their complex level
structure. Thereby, good starting conditions for successive
evaporative cooling can be reached, circumventing the need
for laser cooling on a closed cycling transition given the atomic
or molecular species can be prepared in a cold and slow beam.
It may also serve as a continuous source of ultracold matter
that may constitute a step toward a continuous-wave atom
laser.
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