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Floquet analysis of real-time wave functions without solving the Floquet equation
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We propose a method to obtain Floquet states—also known as light-induced states—and their quasienergies
from real-time wave functions without solving the Floquet equation. This is useful for the analysis of various
phenomena in time-dependent quantum dynamics if the Hamiltonian is not strictly periodic, as in short laser
pulses, for instance. There, the population of the Floquet states depends on the pulse form and is automatically
contained in the real-time wave function but not in the standard Floquet approach. Several examples in the
area of intense laser-atom interaction are exemplarily discussed: (i) the observation of even harmonics for an
inversion-symmetric potential with a single bound state; (ii) the dependence of the population of Floquet states on
(gauge) transformations and the emergence of an invariant, observable photoelectron spectrum; (iii) the driving of
resonant transitions between dressed states, (i.e., the dressing of dressed states), and (iv) spectral enhancements
at channel closings due to the ponderomotive shift of above-threshold ionization peaks.
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I. INTRODUCTION

The time-dependent Schrödinger equation (TDSE) with
a time-periodic Hamiltonian has solutions which can be
expressed in a time-periodic basis. This basis is referred to
as the Floquet basis, and eigenstates in this basis are the
Floquet states [1–4]. Time-periodic potentials naturally arise
when matter is exposed to laser fields. In this context, Floquet
states are also known as “light-induced states” (LISs) [5],
because they are the new states of the combined system
“target + laser field.” In fact, Floquet theory has been used
to determine, for example, very accurate ionization rates [6,7].
Using so-called R-matrix Floquet theory, the method has
been extended to multielectron systems [8]. Strict periodicity
of the Hamiltonian with the laser period implies physically
that the laser pulse was always on and will be on forever.
Then the problem arises of how the field-free system under
study (e.g., an atom) gets into the laser field in the first
place and how the field-free observables emerge. In fact, the
population of the Floquet states depends on the laser pulse
form. If the (up and down) ramping of the laser field is
adiabatic and the laser frequency is nonresonant we expect the
system to follow just a single Floquet state; namely, the one
which is adiabatically connected to the field-free initial state.
However, for nonadiabatic ramping or resonant interactions,
a superposition of Floquet states is created. An example for
nonadiabatic population of several Floquet states, leading to an
apparent generation of even harmonics in inversion-symmetric
potentials, is given in Sec. III of this paper.

Instead of converting the TDSE into the time-independent
Floquet equation [Eq. (13) below] one may alternatively
solve it directly in real time. In the latter case there are no
assumptions about periodicity or adiabatic ramping and, for
example, the effect of different laser pulse forms can be
studied. However, the direct solution of the TDSE in real
time does not involve the Floquet basis, so that information
about LISs is not directly available. As many interesting
phenomena such as the ac Stark effect, Rabi oscillations, or
stabilization against ionization [9,10] are most conveniently
analyzed in terms of LISs, it is desirable to extract the “Floquet
information” from the real-time wave function “on the fly”

while propagating (or by postprocessing) it, without having to
solve the Floquet equation as well. We present such a method
to analyze nonperturbative, laser-driven quantum dynamics
via the (time-resolved) Floquet information contained in the
corresponding real-time wave function.

The paper is organized as follows: in Sec. II we review
the basics of Floquet theory. In Sec. III we briefly summarize
the general derivation of harmonic generation selection rules
before we present the (at first sight surprising) presence of
peaks at even harmonics of the laser frequency in the case of
an inversion-symmetric potential with only one bound state. In
Sec. IV we introduce our method to obtain the Floquet informa-
tion from the real-time wave function (e.g., the populated states
and their energies) and use them to explain the presence of
hyper-Raman lines at even harmonic frequencies. In Sec. V we
investigate how the population of Floquet states changes under
(gauge) transformations while the Floquet energies and the
observable photoelectron spectra remain invariant. In Sec. VI
time-resolved Floquet spectra of real-time wave functions in
the so-called velocity gauge and in the Kramers-Henneberger
frame of reference are compared. In Sec. VII the channel-
closing phenomenon and related spectral enhancements are
interpreted in terms of Floquet state-crossings. A conclusion
is given in Sec. VIII. In this work we restrict ourselves
to spatially one-dimensional (1D) model Hamiltonians. It is
straightforward to extend the method to higher dimensions,
as indicated in Appendix. Atomic units (a.u.) |e| = me = h̄ =
4πε0 = 1 are used unless noted otherwise.

II. BASIC THEORY

Consider a linearly polarized laser field E(t) of frequency
ω1 in the dipole approximation, polarized along the x direction
and interacting with an electron in some binding potential V .
The Hamiltonian in length gauge reads

Ĥ (t) = Ĥ0 + Ŵ (x,t), Ŵ (x,t) = xE(t), (1)

with

Ĥ0 = −1

2

∂2

∂x2
+ V (x). (2)
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A. Floquet theory

For sufficiently long laser pulses

E(t + T ) = E(t), T = 2π

ω1
, (3)

holds to high accuracy, and thus also Ŵ (t + T ) = Ŵ (t), so
that

Ĥ (t + T ) = Ĥ (t). (4)

The Floquet theorem [1–4] states that, in this case, the TDSE

i
∂

∂t
�(x,t) = Ĥ (t)�(x,t) (5)

has solutions of the form

�(x,t) = e−iεt�(x,t), (6)

�(x,t) being periodic itself,

�(x,t) = �(x,t + T ). (7)

The quantity ε is called the quasienergy or Floquet energy.
The wave functions �(x,t) fulfill the Schrödinger equation

Ĥ(t)�(x,t) = ε�(x,t), (8)

with

Ĥ(t) = Ĥ (t) − i
∂

∂t
. (9)

If ε is an eigenvalue and �(x,t) the corresponding eigenstate,
also

ε′ = ε + mω1, �′(x,t) = eimω1t�(x,t), m ∈ Z (10)

are solutions of (8). Owing to the time periodicity of �(x,t),
we can expand

�(x,t) =
∞∑

n=−∞
ϕn(x)e−inω1t . (11)

For a monochromatic laser field the interaction Hamiltonian
Ŵ (x,t) can be written as

Ŵ (x,t) = Ŵ+(x) exp(iω1t) + Ŵ−(x) exp(−iω1t), (12)

leading to the time-independent Floquet equation

(ε + nh̄ω1 − Ĥ0)ϕn(x) = Ŵ+(x)ϕn+1(x) + Ŵ−(x)ϕn−1(x).

(13)

The index n of the Floquet state is known as the “block index,”
which may be interpreted as the number of photons involved
in the process under study. Hence, the Floquet equation (13)
couples any Floquet block n with its neighboring blocks n ± 1
via absorption or emission of a photon.

In principle, (13) is an infinite-dimensional set of differen-
tial equations. In practice, it is truncated so that nmin � n �
nmax. In obtaining the eigenvalue equation (13), we assumed
strict time periodicity, which physically means that the laser
pulse is always on.

B. Non-Hermitian Floquet Theory

We are interested in systems which, in the field-free
situation, possess besides bound states also a continuum. In
the presence of a laser field, such a system may ionize; that is,
the field-free stationary states are turned into field-dressed,
quasistationary states. The simplest cases of only a few
(field-free) bound states (allowing for resonances) plus a
continuum dressed by laser fields have been discussed in the
literature since long ago (see, e.g., [11] and [12] for a review).
In an actual implementation of Floquet theory, the decay of
quasistationary states needs to be taken into account when
solving (13) by applying Siegert boundary conditions for the
outgoing waves [7], leading to complex Floquet energies

ε = Reε − i
	

2
, (14)

where 	 is the ionization rate. The difference between Reε
and the field-free ε(0) is the ac Stark shift.

C. Finite-grid, finite-pulse TDSE solution

We solve

i
∂

∂t
�#(x,t) = Ĥ (t)�#(x,t) (15)

on a numerical grid of size L (−L
2 < x < L

2 ) for times 0 <

t < tsim with tsim being the total simulation time. The binding
potential V (x) is centered at x = 0. In all cases discussed in
this work we start from the field-free ground state on the grid
�#(x,0) = �

(0)
# (x). The probability density approaching the

grid boundary is absorbed by an imaginary potential.
Our aim in the following will be to analyze �#(x,t) in terms

of Floquet energies and states.

III. HARMONIC GENERATION

In the first example we apply our method to investigate the
origin of apparently even harmonics in an inversion-symmetric
potential with only one bound state.

There are many ways to derive selection rules for harmonic
generation (HG). Most elegant, rigorous, and appropriate for
our purpose is the approach employing dynamical symmetries
[13,14]. Consider the stationary Schrödinger equation

Ĥ0�(x) = E�(x), (16)

with Ĥ0 given by (2). If the potential V is inversion-symmetric,
V (x) = V (−x), the Hamiltonian Ĥ0 is invariant under spatial
inversion as well,

P̂pf (x) = f (−x), P̂ 2
p = 1, P̂ −1

p = P̂p, (17)

[Ĥ0,P̂p] = 0, (18)

so that, for nondegenerate energies E , the eigenstate �(x) is
also an eigenstate of the spatial-inversion operator P̂p . Because
of P̂ 2

p = 1 the eigenvalues can only be ±1 (parity):

P̂p�(x) = ±�(x). (19)

The full Hamiltonian (1) and the Floquet-Hamiltonian
(9) are not invariant under spatial inversion but under the
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dynamical symmetry operation “spatial inversion combined
with a translation in time by half a period,”

[Ĥ (t),P̂pt ] = [Ĥ(t),P̂pt ] = 0, (20)

P̂ptf (x,t) = f (−x,t + π/ω1), P̂ 2
pt = 1, (21)

P̂pt = P̂pP̂t = P̂t P̂p, P̂tf (x,t) = f (x,t + π/ω1). (22)

For nondegenerate ε,

P̂pt�(x,t) = ±�(x,t). (23)

Because of (11) we observe that

P̂pt�(x,t) =
∑

n

(−1)ne−inω1t P̂pϕn(x), (24)

and, with (23), it follows that

P̂pϕn(x) = ±(−1)nϕn(x); (25)

that is, the ϕn(x) have an alternating parity with respect to the
Floquet block index n.

Numerically, the HG spectrum ∼ω4|d(ω)|2 is calculated
via the Fourier-transformed dipole moment

d(ω) ∼
∫ tsim

0
dt

∫ L
2

− L
2

dx�∗
# (x,t)x�#(x,t)eiωt . (26)

Assuming that the numerically determined exact wave function
on the grid is well described by just a single Floquet state, using
(6), (11), and (14) yields

d(ω) ∼
∑
nm

∫ L
2

− L
2

ϕ∗
m(x)xϕn(x)dx (27)

×
∫ tsim

0
et{i[ω−ω1(n−m)]−	}dt.

The spatial integral is nonvanishing only if ϕn has the opposite
parity of ϕm; namely,

n − m = 2k + 1, k ∈ Z. (28)

The temporal integral thus leads to peaks centered at frequen-
cies

ω = (2k + 1)ω1, (29)

with widths determined by tsim (frequency-time uncertainty)
and 	 (decay). The selection rule (29) is the well-known
result that an inversion-symmetric target in a linearly polarized
laser field generates odd harmonics only. Note that the
above derivation also holds for multielectron targets because
the electron-electron interaction is also invariant under the
symmetry operations P̂p and P̂pt .

A. Hyper-Raman lines at even harmonics of laser frequency

It is known that HG peaks at positions different from
odd multiples of the fundamental laser frequency ω1 are to
be expected for an inversion-symmetric potential if at least
two Floquet states of opposite parity are populated [15,16].
Physically, the superposition of two Floquet states may amount
to, for example, the absorption of n photons of energy ω1 but
emission of one photon of energy nω1 − 
ε, with 
ε being the
energy difference between initial and final states. This should

FIG. 1. (Color online) Logarithmically scaled HG strength
ω4|d(ω)|2 vs harmonic order and excursion amplitude α̂ = Â/ω1

[ω1 = 1, vector potential A(t) ramped up and down over 4 cycles
and held constant with amplitude Â for 30 cycles]. The numerical
fast-Fourier transform was performed over the pulse duration (i.e.,
tsim = 38 cycles), using a Hanning window.

lead to hyper-Raman lines in the spectra which, however,
are typically weak [16,17]. Nevertheless, if observable, they
appear at even harmonics of the laser frequency in the case of
degeneracy, 
ε = 0.

We consider an electron in the Pöschl-Teller potential

V (x) = − 1

cosh2 x
(30)

and subject to a laser field. The potential (30) supports only
a single bound state �0(x) of energy E0 = −0.5. Hence,
superpositions of field-free bound states are ruled-out. As
a consequence, perturbation theory in the external field can
certainly not predict hyper-Raman lines or even harmonics.
However, Fig. 1 shows the logarithmically scaled HG strength
ω4|d(ω)|2 as obtained from the numerical solution of the
TDSE. The HG strength is plotted vs harmonic order ω/ω1

and the amplitude α̂ of the excursion

α(t) =
∫ t

A(t)dt, (31)

with A(t) being the vector potential of the laser field. The
electric field is given by E(t) = −∂tA(t). Given the vector
potential amplitude Â, the excursion amplitude is α̂ = Â/ω1,
the field amplitude Ê = Âω1. The laser pulse parameters are
specified in the figure caption. One sees that, for sufficiently
strong excursion amplitude α̂, peaks at even harmonics of
the laser frequency appear, too. Picking an even harmonic at
α̂ > 15 (e.g., the 6th) and tracing it back to low α̂ reveals that
the peak splits and rapidly drops in magnitude (e.g., around
α̂ � 2 for the 6th harmonic). In the next section we will use
our real-time Floquet method to show that the appearance of
even harmonics is due to the population of several LISs that
become quasidegenerate as α̂ increases.
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B. Superposition of Floquet states

In the case of a nonadiabatic transfer of the field-free state
to field-dressed states one has to allow for a superposition
of Floquet states in order to represent the exact, numerically
determined wave function on the grid,

�#(x,t) �
∑

β

e−iεβ t�β(x,t) =
∑
βn

e−it(εβ+nω1)ϕβn(x). (32)

Here we assume that the expansion coefficients are included
in �β(x,t) and ϕβn(x). For continuous quasienergies, the sum
over β should be replaced by an integral over ε. The Fourier-
transformed dipole will be

d(ω) ∼
∑
βγnm

∫ L
2

− L
2

ϕ∗
γm(x)xϕβn(x)dx

×
∫ tsim

0
et{i[ω−ω1(n−m)−(Reεβ−Reεγ )]−(	β+	γ )/2}dt. (33)

Again, in order for the spatial integral to not vanish, the
parity of ϕβn and ϕγm must be different. However, now this
can be the case not only for n − m = 2k + 1, but also for
n − m = 2k if the parity of, for example, ϕβ0 is opposite to that
of ϕγ 0. Hence, one expects the above-mentioned hyper-Raman
peaks at

ω = kω1 + 
ε, k ∈ Z, (34)

where 
ε = Reεβ − Reεγ is the difference between the real
parts of the two Floquet quasienergies involved. Thus, in order
to observe even harmonics at exactly ω = 2kω1 a degeneracy
Reεβ = Reεγ is required. Such a degeneracy between the
(field-dressed) initial state and another one of opposite parity
is also likely to populate the latter one.

IV. FLOQUET-STATE ANALYSIS OF REAL-TIME
WAVE FUNCTIONS

The extraction of Floquet information contained in the real-
time wave function is useful to analyze any feature of interest
in HG spectra. We start with the determination of the (real part
of the) quasienergy of the populated Floquet states. Once these
energies are known, the corresponding Floquet states can be
obtained. The method is similar to the one proposed in [18]
for field-free dynamics.

The numerical solution of the time-dependent Schrödinger
equation in real time yields �#(x,t). Upon multiplication of
(32) by an even or odd test function q±(x), spatial integration,
and Fourier transformation from the time to the energy domain,

Q±(E) =
∑
βn

∫ t2

t1

e−it(εβ+nω1−E)dt

∫ L
2

− L
2

q±(x)ϕβn(x)dx,

(35)

with 0 � t1 < t2 � tsim, one can extract from the peak posi-
tions in |Q±(E)|2 the real part of the Floquet energies

ReEβn = Reεβ + nω1 (36)

belonging to even or odd Floquet states ϕβn, respectively. The
even test function is, for example, simply unity for all −L

2 <

x < L
2 , the odd test function may be chosen to be 1 for x > 0

and −1 for x < 0. The purpose of these test functions is to
extract the even- and odd-parity Floquet states separately. Of
course, only the energies of the populated (and thus relevant)
Floquet states ϕβn are obtained in this way.

The imaginary part 	β/2 of εβ contributes to the width of
the peaks in |Q±(E)|2. However, in our finite-time, finite-grid
TDSE simulations the width of the peaks in |Q±(E)|2 also
depend on the integration time t2 − t1 and the grid-size because
of the absorbing grid boundaries. Only for a flat-top laser pulse
and a very long simulation time would a stationary absorption
rate at the grid boundaries be established, and 	β could be
determined from the peak width. This, however, is exactly the
regime where the standard Floquet approach should be applied.
We focus here on aspects of our method complementary to the
conventional Floquet method, in particular its applicability to
finite pulses and time-resolved studies.

If we multiply the wave function (32) by exp(itE) (with
E real) and integrate over time, mainly the Floquet state
ϕE for which the phase is stationary (i.e., E = Reεβ + nω1)
“survives,”

ϕE (x) ∼
∫ t2

t1

eitE�#(x,t)dt. (37)

The integration time t2 − t1 has to be sufficiently long in order
to cover many temporal oscillations of the wave function.

Starting from the ground state in the potential (30),
we solved the TDSE for a high-frequency laser field of
vector potential A(t) = −Â(t) sin ω1t for ω1 = 4 and Â(t) a
trapezoidal pulse shape with linear up and down ramps over 4
cycles and 1200 cycles constant amplitude Â [denoted in the
form (4, 1200, 4) in the following]. Figure 2 shows

R = |Q+|2 + |Q−|2 (38)

[with the time-integral in (35) performed over the entire pulse]
as a contour plot vs the excursion amplitude α̂ = Â/ω1 and
energy E for an energy interval within the zeroth Floquet block

FIG. 2. (Color online) Logarithmic plot of R = |Q+|2 + |Q−|2
vs energy E and excursion amplitude α̂ = Â/ω1, showing the
quasienergies of the (populated) field-dressed states. The laser
frequency was ω1 = 4. The pulse shape was trapezoidal (4, 1200, 4)
in the vector potential of amplitude Â. For each α̂ the maximum in R

was renormalized to unity.
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FIG. 3. Field-dressed ground-state wave function ϕ̃0n for α̂ = 4.
(a) Floquet block n = 0, (b) n = −1.

n = 0. Plotting |Q+|2 and |Q−|2 individually allows us to
distinguish the parity of the states (labeled “even” or “odd”
in Fig. 2). For α̂ → 0 only the field-free state at E = −0.5
remains. However, with increasing excursion amplitude α̂,
light-induced quasibound states emerge, which are populated
due to the finite rise time of the laser field. From the populations
(see color coding) one infers that, around α̂ = 6, besides
the field-dressed ground state the second-excited field-dressed
state is more populated than the first excited. For increasing α̂,
the field-dressed ground state and the field-dressed first-excited
state become almost degenerate so that 
ε → 0 in (34),
explaining the peaks at even harmonics of the laser frequency
due to hyper-Raman scattering.

Using (37) we extracted field-dressed states. Figure 3 shows
the field-dressed ground state for the Floquet blocks n = 0 (a)
and n = −1 (b) for α̂ = 4. The integration time was again
the pulse duration. Equation (37) in general yields a complex
wave function ϕE = ϕ̃Ee

iθ . The plots in Fig. 3 show the real
wave function ϕ̃E . It is seen that the parity indeed changes
as one decreases n by one. For n = 0 and α̂ = 0 the ground
state must be even. Hence, for n = −1 it is odd, in accordance
with (25).

It is known that, if the laser frequency is tuned around
resonances, field-dressed states originating from different
Floquet blocks (and corresponding to the coupled field-free
states) display avoided crossings. These crossings have been
shown to be related to localization, and to chaos in the
corresponding classical system [19]. The separation of the two
dressed states involved corresponds to the Rabi frequency and
is proportional to the field strength of the driving laser. We will
now show that the same is observed for transitions between

FIG. 4. (Color online) R vs energy E and second-laser frequency
ω̃ for first-laser excursion α̂ = 2.5 and second-laser field strength

amplitude ˜̂E = 0.01.

already-dressed states; that is, we use a laser of frequency ω1

to dress the system and a second, weaker laser, of frequency ω̃

to induce transitions between dressed states. The second laser
will dress the already-dressed system [20], and the “dressed2”
states (or two-color-dressed states) should display avoided
crossings as the frequency ω̃ is tuned around the energy gap
of two dressed states.

From Fig. 2 one infers that, for an excursion amplitude α̂ =
2.5, the energy difference between the field-dressed ground
state and the field-dressed first excited state is Reε1 − Reε0 �
0.155. Hence, we tune the frequency ω̃ of the second laser
around this energy difference. The pulse envelope was the same
for both lasers, and the electric field amplitude of the second
laser was ˜̂E = 0.01 = ˜̂Aω̃ = ˜̂αω̃2 for all ω̃. Figure 4 shows
results for the Floquet energy spectrum R vs energy and ω̃ for
α̂ = 2.5. If the two frequencies ω1 and ω̃ are incommensurate,
the Hamiltonian is not periodic at all. However, our approach
does not require periodicity, and we expect a Floquet analysis
to be meaningful as long as the two-color Hamiltonian is
approximately periodic; namely, in T̃ = 2π/ω̃ because ω1 	
ω̃. In fact, the avoided crossings of Reε0 with Reε1 − ω̃ and
of Reε0 + ω̃ with Reε1 around ω̃ = 0.155 are clearly visible
in Fig. 4.

V. TRANSFORMATIONS

We consider transformations Ĝ(t) which are periodic in
time and reduce to unity as the laser field goes to zero,

Ĝ(t + T ) = Ĝ(t), Ĝ(t)|α,E,A=0 = 1̂. (39)

Now, since each Floquet state �β fulfills (8),

Ĝ(t)Ĥ(t)Ĝ−1(t)Ĝ(t)|�β(t)〉 = Ĥ′(t)|�′
β(t)〉 = εβ |�′

β(t)〉,
(40)

where Ĥ′(t) = Ĝ(t)Ĥ(t)Ĝ−1(t) is the transformed Floquet-
Hamiltonian and |�′

β(t)〉 = Ĝ(t)|�β(t)〉 is the transformed
Floquet state. The quasienergy εβ is not affected by the
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transformation, and |�′
β(t)〉 is also periodic because of (39),

so that with (11)∑
n

e−inω1t |ϕ′
βn〉 =

∑
nm

e−i(n+m)ω1t Ĝm|ϕβn〉, (41)

where Ĝ(t) = ∑
m e−imω1t Ĝm, and thus

|ϕ′
β�〉 =

∑
n

Ĝ�−n|ϕβn〉. (42)

We now specialize on transformations Ĝ that commute with
the dynamical symmetry operation P̂pt ,

[Ĝ(t),P̂pt ] = 0. (43)

Examples are gauge transformations, for example, for the
transformation from the velocity gauge, where

Ŵ (t) = p̂A(t) + 1
2A2(t), (44)

to the length gauge, one has

GLG(t) = exp [ixA(t)] . (45)

Another example is the Pauli-Fierz or Kramers-Henneberger
(KH) transformation, which is not a gauge transformation
(although one frequently finds the term “KH gauge” in the
literature). If we start from the velocity gauge interaction (44)
the KH transformation reads

ĜKH(t) = exp

[
i

2

∫ t

∞
A2(t ′)dt ′ + iα(t)p̂

]
. (46)

This amounts to a translation in position space by the free
electron excursion α(t) (31) and a purely time-dependent
contact transformation. The KH Floquet-Hamiltonian is

Ĥ′(t) = ĤKH(t) = 1

2
p̂2 + V [x + α(t)] − i

∂

∂t
. (47)

As a consequence of (43),

P̂pt |�′
β(t)〉 = Ĝ(t)P̂pt |�β(t)〉 = ±|�′

β(t)〉, (48)

with the eigenvalue ±1 the same as for P̂pt |�β(t)〉 =
±|�β(t)〉. One also finds Ĝm = (−1)mP̂pĜmP̂p and
P̂p|ϕ′

β�〉 = ±(−1)�|ϕ′
β�〉; that is, the transformed (primed)

states have the same symmetry as the original states.
Figure 5 shows the KH and the velocity gauge probability

density for the excursion amplitude α̂ = 10. The target energy
was E = −0.08 where, in Fig. 2, the almost-degenerate
ground- and first-excited-state energies for α̂ = 10 are located.
The KH probability density fits to the KH potential

VKH(x) = 1

2π

∫ 2π

0
V [x + α̂ sin τ ]dτ, (49)

shown in the lower panel. The actual calculation was per-
formed for ω1 = 4 and a trapezoidal (10, 1180, 10) pulse. The
target energy E in (37) is scanned through the energy region
of interest, and the Floquet energy is hit when the value of the
integral is maximum. If one uses the same integration time for
different E , the integral

NE =
∫ L

2

− L
2

|ϕE (x)|2dx (50)

FIG. 5. (Color online) (a) KH and the velocity-gauge probability
density for the excursion amplitude α̂ = 10 and target energy E =
−0.08. (b) Corresponding KH potential.

is a relative measure for the population of the respective
Floquet state in the actual pulse.

The Floquet energies are invariant under the transforma-
tions Ĝ(t) while both the Floquet states |ϕβn〉 and their
populations are not. In particular, in the high-frequency limit
one expects that only the eigenstates in the KH potential (49)
matter [9]. These states correspond to the Floquet energies
in the Floquet block n = 0. Hence, the energy spectrum in
the KH frame is expected to be much more localized around
n = 0 than in velocity gauge. This is confirmed by Fig. 6.
Instead of using the even or odd test functions in (35) and
spatial integration we analyzed the wave function �#(x,t) at
xtest = 2; that is, we calculated

Q′(E) =
∑
βn

∫ t2

t1

e−it(εβ+nω1−E)dtϕβn(xtest). (51)

This avoids the transformation of the entire wave function
to the KH frame and yields similar results as long as one
chooses xtest in a region where the wave function is sizable
and both odd and even parity wave functions contribute (for
xtest = 0 only contributions from even Floquet states would be
visible). Figure 6 confirms that, for transformations of the type
(39), the populations of Floquet states in different frames (or
gauges) are different while the Floquet energies are the same.
The latter, dressed levels could be probed with a second laser
[21]. Of course, any gauge or frame dependence should vanish
when field-free observables, such as photoelectron spectra, are
considered.
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FIG. 6. Floquet spectra for α̂ = 10, ω1 = 4, and a (10, 1180, 10)
pulse in (a) velocity gauge [with the A2(t)/2 term transformed away]
and (b) in the KH frame. In the KH frame the n = 0 Floquet
block dominates while in velocity gauge the population is broadly
distributed over many Floquet blocks.

VI. PHOTOELECTRON SPECTRA

Without the laser field the continuum states of the Pöschl-
Teller potential have energies E > 0. With the laser field all
continuum and bound states are contained in each Floquet
block so that overlaps of dressed bound states from one block
with continua from other blocks with lower n are possible.
However, we expect the dressed bound states of the n = 0
block to dominate since they are the main ones being populated
during the switching on of the laser. Let us first discuss the
case where ω1 > min Reεβ , i.e., a single photon is sufficient
for ionization. Then the dressed bound state in Floquet block n

with energy Reεβ + nω1 overlaps with continuum states of all
the Floquet blocks m < n. In particular, Reεβ + nω1 overlaps
with the continuum state of energy εp of the zeroth Floquet
block, where p indicates the asymptotic momentum of this
continuum state.

We will now turn to the question of how the manifold
of mixtures of bound and continuum Floquet states converts
to an observable photoelectron spectrum when the pulse is
switched off. Figure 7 shows a time-resolved Floquet spectrum
in velocity gauge for a Ncyc = 100-cycle-sin2 pulse

A(t) = Â sin2

(
ω1t

2Ncyc

)
sin ω1t, (52)

FIG. 7. (Color online) Time-resolved Floquet spectra for a 100-
cycle-sin2 pulse of amplitude α̂ = Â/ω1 = 10, ω1 = 4, xtest = 2 (i.e.,
“inside” the potential), and a time window of width tw = t2 − t1 = 50.
The vertical line indicates the end of the pulse. Panel (b) is a close up
of the energy region around ε

(0)
0 = −0.5 in (a). The calculation was

performed in the velocity gauge [with the A2(t)/2 term transformed
away].

for 0 < t < Ncyc2π/ω1 and zero otherwise. The other pulse
parameters are given in the figure caption, and xtest = 2 (i.e.,
“inside” the potential) and a time window of width tw = t2 −
t1 = 50 were chosen for (51). The time on the horizontal axis is
t1 so that the spectrum for times t1 > 100T = 157.1 (indicated
by the vertical black line) shows field-free states; that is,

Q(0)(E,t1) =
∫ t1+tw

t1

eiE t�#(xtest,t)dt

=
∑

β

ϕ
(0)
β (xtest)

∫ t1+tw

t1

e
−it

(
ε

(0)
β −E

)
dt. (53)

Figure 7(a) shows that, while the pulse is on, the population is
distributed over many Floquet blocks. As the pulse is switched
off, all the Floquet populations for n �= 0 disappear, and only
the ground-state population inside the potential with energy
ε

(0)
0 remains. This is because we analyzed the spectrum at

the position xtest = 2. Contributions to the wave function
corresponding to electrons in the continuum, traveling with
an asymptotic momentum p, decay at xtest = 2. Figure 7(b)
shows a close-up of the region around ε

(0)
0 . With increasing

amplitude of the laser pulse the dominant Floquet population
shifts adiabatically from the field-free value ε

(0)
0 = −0.5 to the
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FIG. 8. (Color online) Same as in Fig. 7 but for xtest = 471.3.

ground-state energy of the KH potential ε
(KH)
0 � −0.09 (see

Fig. 2 for α̂ = 10) and back. Note that, although the calculation
was performed in velocity gauge, the KH ground-state energy
is relevant here because the Floquet quasienergies are frame
and gauge independent.

Figure 8 shows the same analysis for xtest = 471.3 (i.e.,
“far away” from the atom) so that it takes some time until
probability density arrives there; namely, around t = 100.
It is interesting to observe that, in the velocity gauge, this
“arrival time” during the pulse is independent of the energy.
As the laser pulse is switched off at t = 157.1 many Floquet
channels close. However, because electrons are still on their
way from the atom to the “virtual detector” at xtest = 471.3 we
are able to “measure” the field-free photoelectron spectrum
of the electrons emitted in that direction. The time that these
free electrons need to pass the virtual detector decreases with
increasing energy, as is seen in Fig. 8 where the width of
the traces for t > 157.1 decreases with increasing energy.
The five traces visible are separated by ω1 and correspond to
above-threshold-ionization (ATI) peaks (see, e.g., the review
[22] or [23]). They are quite broad in energy because of
the change of the ionization potential (from the field-free
value to the KH value and back). Their figure-eight shape
in the contour plot of Fig. 8 is a peculiarity of the sin2

pulse shape.
Figure 9 shows the corresponding result obtained in the

KH frame. We see that, in the KH frame, only those states
are populated in the laser field which actually contribute to
the final field-free spectrum. This is because the KH potential
at xtest = 471.3 is almost identical to the field-free potential
so that outgoing electrons are not affected anymore by the
oscillating KH binding potential. It is also seen in Fig. 9 that
the most energetic electrons arrive earlier at xtest, unlike the
velocity-gauge result in Fig. 8.

VII. CHANNEL CLOSINGS

So far, we studied mainly high-frequency phenomena where
the Floquet blocks are well separated on the atomic energy
scale because the laser frequency exceeds the ground-state

FIG. 9. (Color online) Same as Fig. 8 but in the KH frame.

ionization potential. However, there are plenty of interesting,
nonperturbative phenomena occurring at low frequencies
where the ponderomotive energy Up = Ê2/(4ω2

1) can be
large at currently available laser intensities Ê2. Examples are
tunneling ionization and high-order ATI due to rescattering
of electrons [23,24]. In this section we choose the so-called
“channel closing” (see [25] and references therein) as a
low-frequency phenomenon to illustrate our method.

The TDSE was solved for a trapezoidal pulse of frequency
ω1 = 0.08. On the energy scale of the ionization potential
the Floquet blocks are packed much closer in this case,
meaning that many photons are necessary for ionization.
In Fig. 10 we plot the Floquet energy spectrum R in a
certain range of excursion amplitude α̂ = Ê/ω2

1 and energy
E around the field-free continuum threshold (other relevant
parameters given in the figure caption). The calculation was
performed in the velocity gauge using again the potential (30).
There is a clear downshift of all the populated Floquet levels
with increasing laser amplitude. This ac Stark shift is also

FIG. 10. (Color online) Logarithmic plot of R = |Q+|2 + |Q−|2
vs energy E and excursion amplitude α̂, showing the (populated)
field-dressed states for ω1 = 0.08 and a trapezoidal (4, 40, 4) pulse.
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FIG. 11. (Color online) Photoelectron spectra around 5Up with
the same parameters as in Fig. 10. (a) Nonmonotonic behavior of
the yield (open squares α̂ = 13.0, solid squares 13.3, circles 13.55,
triangles 13.8). (b) Same for an odd channel closing, showing a
monotonic behavior of the yield with increasing intensity (triangles
α = 11.8, circles 11.55, open squares α = 11.3).

referred to as the “ponderomotive shift” because the effective
ionization potential is increased by Up. In fact, the energy in
the photoelectron spectrum is given by

E = p2

2
= nh̄ω1 − (|E0| + Up) (54)

(provided the ac Stark shift of the initial state is negligible,
which for atomic ground states at long wavelengths is often
the case). E0 is the initial electron energy and n is the number
of photons absorbed. In order to reach the continuum at all
n > (|E0| + Up)/(h̄ω1) photons have to be absorbed. As the
intensity, and thus Up, is increased, more and more photons are
needed for ionization. When n photons are no longer sufficient
but n + 1 photons are needed, the n-photon channel closing
occurs. In the plot shown in Fig. 10 a channel closing manifests
itself as a crossing of a Floquet quasienergy and the continuum
threshold. Now, the interesting feature in Fig. 10 is the
zero-energy LIS. Such LISs were also observed in Ref. [26],
where their connection with experimentally observed enhance-
ments in the photoelectron spectra at high energies [27] was
established. The parity of both states involved in the crossing in

Fig. 10 is even, and it is known that, depending on the parity of
the states, channel closings affect the photoelectron spectrum
differently [26,28].

In our model, for the first even channel closing, eight
photons are needed. According to (54), it is expected at
α̂ = 9.354, which indeed is close to where the crossing is
observed in Fig. 10. The small discrepancy is because of
the ac Stark shift of the initial state, neglected in (54). One
would expect that channel closings only affect low-energy
electrons because the kinetic energy of the electrons whose
channel is about to close is low. Hence, as the intensity
is increased the yield of ATI peaks at energies, say, >5Up

should increase monotonically as well. However, near even-
photon channel closings there is a marked increase in the
photoelectron yield at high energies [25,26,28]. Instead, when
in odd-photon channel closings the odd-parity LIS crosses
the zero-energy LIS, and such enhancements are absent. The
first odd-photon channel closing occurs around α̂ = 11.55,
the next even-photon channel closing occurs around α̂ =
13.55. The photoelectron spectra obtained using our Floquet
method confirm the presence and absence of enhancements
at even and odd channel closings, respectively, as shown
in Fig. 11.

VIII. CONCLUSIONS

We described a method for obtaining Floquet information
from real-time wave functions. In this approach, it is not
necessary to assume strict periodicity. In fact, it is possible
to follow the time-resolved Floquet quasienergies as they
shift during a laser pulse. Moreover, the populations of the
Floquet states can be determined so that, especially, cases
where superpositions of Floquet states play a role can be
identified. The usefulness of the method was illustrated by
several examples employing the one-dimensional Pöschl-
Teller potential with only a single field-free bound state. In
particular, we discussed the origin of peaks at even harmonics
of the laser frequency in an inversion-symmetric potential,
avoided crossings of dressed already field-dressed states
induced by a second laser, the properties of Floquet states under
time-periodic transformations, the emergence of invariant,
observable photoelectron spectra after the laser pulse, and
photoelectron enhancements at channel closings. The method
is straightforwardly extendable to three dimensions. We think
the method is most useful for researchers running codes to
solve the time-dependent Schrödinger equation in real time.
By saving the wave function at selected spatial positions
as a function of time during the interaction with the laser
field, the analysis in terms of light-induced states can be
easily performed a posteriori. The application of the method
to correlated multielectron systems may be very fruitful,
because the understanding of field-dressed, multiply excited
or autoionizing states is still poor.
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APPENDIX: EXTENSION TO THREE DIMENSIONS

The method of Floquet analysis described in this work is
easily extendable to higher-dimensional systems. For example,
for hydrogenic systems in three dimensions (3D), one could
follow the evolution of Floquet states with different orbital
angular momentum quantum numbers l. Instead of (6) we
have

�(r,θ,φ,t) = e−iεt�(r,θ,φ,t), (A1)

with [compare to (11)]

�(r,θ,φ,t) =
∑

n

ϕn(r,θ,φ)e−inω1t . (A2)

The operator P̂pt [compare to (21)] acts according to

P̂ptf (r,t) = f

(
−r,t + π

ω1

)
, (A3)

and (24) becomes

P̂pt�(r,θ,φ,t)

=
∑

n

(−1)n exp(−inω1t)P̂pϕn(r,θ,φ). (A4)

If we expand the ϕn(r,θ,φ) in spherical harmonics,

ϕn(r,θ,φ) = Rnl(r)Ylm(θ,φ), (A5)

we find, using

P̂pYlm(θ,φ) = Ylm(π − θ,π + φ) = (−1)lYlm(θ,φ), (A6)

that

P̂pϕn(r,θ,φ) = (−1)n+lϕn(r,θ,φ), (A7)

the analog of (25). Note that n is the Floquet block index here,
not the principal quantum number. After these considerations
it is straightforward to extend the Floquet analysis of real-time
wave functions described in this work to 3D.
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