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We present exact solutions of a two-body problem for spin-1/2 fermions with isotropic spin-orbit (SO) coupling
and interacting with an arbitrary short-range potential. We find that in each partial-wave scattering channel, the
parametrization of a two-body wave function at short interparticle distance depends on the scattering amplitudes
of all channels. This reveals the mixed-partial-wave scattering induced by SO couplings. By comparing with
results from a square-well potential, we investigate the validity of original pseudopotential models in the presence
of SO coupling. We find the s-wave pseudopotential provides a good approximation for low-energy solutions
near s-wave resonances, given the length scale of SO coupling much longer than the potential range. However,
near p-wave resonance the p-wave pseudopotential gives low-energy solutions that are qualitatively different
from exact ones, based on which we conclude that the p-wave model can not be applied to the fermion system if
the SO coupling strength is larger or comparable to the Fermi momentum.
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I. INTRODUCTION

The two-body problem takes the most fundamental place
in the process of exploring and understanding many-body
properties. In particular, two-body solutions determine the
essential interaction parameter in the microscopic many-body
Hamiltonian. In the field of dilute ultracold atoms, the two-
body interaction is generally formulated by the zero-range
pseudopotential, provided that it produces the same asymptotic
two-body wave function at a length scale much shorter than
the mean interparticle distance but longer than the range of
realistic potential. The generalized pseudopotentials for all
partial waves were first derived by Huang and Yang [1], and
then improved later by Stock et al. [2]. So far the most popular
pseudopotential is in an s-wave channel described by a single
s-wave scattering length, which can be improved by including
the energy dependence in a self-consistent way [2,3]. Another
popular one is the p-wave pseudopotential, described by the
p-wave scattering volume which generally has strong energy
dependence [4,5].

In view of the great success when applying pseudopotential
models to the homogenous or trapped atomic gases, it is
generally believed that this model will equally apply to other
configurations, such as in the presence of spin-orbit (SO)
coupling. Recently, by sophisticated manipulations of laser
field and magnetic field, the NIST group has successfully
realized an optically synthesized magnetic field for ultracold
neutral atoms [6]. As a result, an effective SO coupling is
generated in the system along one direction. Subsequently
there are several theoretical proposals to realize the sym-
metric Rashba SO coupling [7], and it is conceivable that
an arbitrary-type SO coupling could be achieved in future
experiments. As usual, all existing theoretical studies about the
SO coupled system are carried out in the framework of s-wave
pseudopotential [i.e., using the s-wave scattering length as that
without SO coupling (see recent review [8])]. Based on this
model, the most remarkable effect of symmetric SO coupling
is to support a two-body bound state with an arbitrarily
weak interaction, due to the modified low-energy density of
state [9].

Although pseudopotentials have been justified under con-
finement potentials [2,3,5], it is not obvious that it is still robust
under the single-particle potential as special as SO couplings.
In the two-body scattering process, trapping potentials and
SO couplings have the same effect in mixing different partial
waves, either due to the trap anisotropy [10,11], or due to
the intermediate coupling with spin sector. However, unlike
the trapping potentials, which generally contribute a trivial
constant potential as two particles get close, the SO coupling
intrinsically affects the kinetic term and thus still mix all partial
waves for the two-body wave functions at short interparticle
distance. This nontrivial effect is expected to have important
influence on the validity of original pseudopotentials in the
presence of SO coupling. For instance, an obvious deficiency
of the original s-wave pseudopotential is that this model can
predict arbitrarily the deep bound state with the binding energy
scaled in terms of the SO coupling strength [9]; however,
under a square-well (attractive) interaction potential the true
binding energy must be lower bounded by the potential depth.
Moreover, this discrepancy cannot be amended by taking into
account the energy dependence of the-wave scattering length,
as we shall show later in Sec. IV.

In this paper, we make efforts to exactly solve the two-body
problem with SO coupling for a general short-range interaction
potential, without resorting to pseudopotential models. For
simplicity but without the loss of essence, we have chosen
the isotropic SO coupling and studied in the subspace where
only s-wave and p-wave scatterings are relevant. We show that
the short-range parametrization of the wave function in each
partial-wave channel will additionally rely on the scattering
amplitude of another partial-wave channel, which reflects the
mixed scattering between different orbital channels induced
by SO coupling. The exact form of the wave function obtained
above allows us to solve the two-body problem under a square-
well interacting potential. By comparing with results from
s-wave or p-wave pseudopotentials, we address the validity
of the latter in the presence of isotropic SO coupling. We find
the s-wave pseudopotential provides a good approximation
for the low-energy scattering state and bound-state solutions
near the s-wave resonance, with the correction depending on
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the strength of the SO coupling, the finite range of the potential
and contributions from the p-wave channel. However, near the
p-wave resonance, using the p-wave pseudopotential alone
will lead to results that are qualitatively different from exact
solutions from the square-well potential. We conclude that
the p-wave pseudopotential cannot be applied to the fermion
system if the SO coupling strength is larger or comparable to
the Fermi momentum. We shall address the underlying reasons
for these results.

The rest of the paper is organized as follows. In
Sec. II, we present the exact solution for two spin-1/2
fermions under a general short-range interaction potential and
with isotropic SO coupling. In Sec. III we reduce the exact
solutions to the framework of the original s-wave and p-wave
pseudopotentials. In Sec. IV we present the numerical results
for the two-body problem under the square-well potential,
from which we address the validity of s-wave and p-wave
pseudopotential models. We summarize the paper in the last
section.

II. TWO-BODY PROBLEM WITH ISOTROPIC
SPIN-ORBIT COUPLING

In this section we shall solve the two-body scattering
problem for a special case of isotropic SO coupling. Assuming
a general form of a short-range interaction potential [see
Eq. (25)], we obtain the wave function of the scattering
state [Eq. (33)] and analyze its long-range and short-range
asymptotic behaviors. Particularly we show that its short-
range behavior is parametrized by scattering amplitudes in
all relevant partial-wave channels [Eqs. (41) and (42)]. Finally
we present the bound-state solutions which can be deduced
from scattering state solutions via Eq. (43).

We start from the single-particle Hamiltonian of
spin−1/2(↑ , ↓) fermions with isotropic SO coupling (we set
the reduced Planck constant h̄ = 1),

H1 = k2

2m
+ λ

m
k · σ + λ2

2m
, (1)

where k = (kx,ky,kz) and σ = (σx,σy,σz), respectively, denote
the momentum operator and Pauli spin operator; λ is the
strength of SO coupling. The single-particle eigenstate has
two orthogonal branches as

|k(+)〉 = u
(+)
k |k↑〉 + u

(−)
k eiφk |k↓〉,

(2)
|k(−)〉 = −u

(−)
k e−iφk |k↑〉 + u

(+)
k |k↓〉;

with φk = arg(kx + iky), u(±)
k =√

1
2 ± kz

2|k| , and the corresponding

eigenenergy ε
(±)
k = (|k| ± λ)2/(2m) as shown in Fig. 1. Due to

the isotropy of SO coupling, the total angular momentum j =
l + s (s = 1

2σ ) is conserved by H1, giving the highest rotation
symmetry among all types of SO couplings.

ε ε

ε

ε

λ

ε

λ
FIG. 1. (Color online) Single-particle spectrum, ε

(±)
k = (|k| ±

λ)2/(2m), with isotropic SO coupling. For given energy ε0 =
k2

0/(2m), two magnitudes of momentum are available as |k1| and
k2, with k1 = λ − k0, k2 = λ + k0. k0 < λ in (a) and k0 > λ in (b).

The two-particle Hamiltonian can be written as H2 = HK +
Hk, with HK and Hk, respectively, describing the center-of-
mass motion with total momentum K = k1 + k2 and relative
motion with momentum k = (k2 − k1)/2,

HK = K2

4m
+ K

4m
· (I1 ⊗ σ 2 + σ 1 ⊗ I2), (3)

Hk = k2

m
+ k

m
· (I1 ⊗ σ 2 − σ 1 ⊗ I2) + λ2

m
. (4)

With isotropic SO coupling, the total angular momentum for
two particles J = L + S is also conserved, with L = l1 + l2,
S = s1 + s2, respectively, the total orbital angular momentum
and total spin of particle 1 and 2. Moreover, L can be
decomposed as L = Lr + LR, with Lr (LR) the angular
momentum for the relative motion r = r2 − r1 (center-of-mass
R = (r1 + r2)/2). In view of the symmetry of H2, in this
paper we consider the scattering problem in the subspace of
K = 0(LR = 0) and J = Lr + S = 0. (The method presented
below can be generalized to the case of nonzero K or J).

For total K = 0, the scattered wave function only depends
on the relative coordinate r, and is given by the Lippmann-
Schwinger equation [12] as

〈r|�k〉 = 〈
r
∣∣�(0)

k

〉 + ∫
dr′〈r|G(E)|r′〉〈r′|U |�k〉, (5)

where G(E) = 1
E−H2+iδ

is the two-particle Green function, U

is the interaction operator; |�(0)
k 〉 is the incident two-particle

state with relative momentum k, which can be either of the
following three states:

|�(−−)
k 〉 = |k(−), − k(−)〉(−eiφk ), (6)

|�(++)
k 〉 = |k(+), − k(+)〉(−e−iφk ), (7)

|�(−+)
k 〉 = |k(−), − k(+)〉; (8)

in coordinate space they are (we set the volume V = 1 for
normalization)

〈r|�(−−)
k 〉 = 1√

2

{
− i sin(k · r)

[
− k−

k
|↑↑〉 + k+

k
|↓↓〉 + kz

k
(|↑↓〉 + |↓↑〉)

]
+ cos(k · r)(|↑↓〉 − |↓↑〉)

}
, (9)

〈r|�(++)
k 〉〉 = 1√

2

{
i sin(k · r)

[
− k−

k
|↑↑〉 + k+

k
|↓↓〉 + kz

k
(|↑↓〉 + |↓↑〉)

]
+ cos(k · r)(|↑↓〉 − |↓↑〉)

}
, (10)
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〈r|�(−+)
k 〉 = − 1√

2
i sin(k · r)

{(
1 − kz

k

)
e−iφk |↑↑〉 +

(
1 + kz

k

)
eiφk |↓↓〉 + k⊥

k
(|↑↓〉 + |↓↑〉)

}
; (11)

with k = |k|, k⊥ =√
k2
x+k2

y , k±=kx±iky .
Furthermore, the subspace of J = Lr + S = 0 can be

spanned by two orthogonal components as (labeled by
|Lr,S; mL,ms〉)

|J = 0〉0 = |00; 00〉, (12)

|J = 0〉1 = 1√
3

[|11; −1,1〉 + |11; 1,−1〉 − |11; 0,0〉]. (13)

Here |J = 0〉0 is the spin-singlet combined with s-wave orbital
channel, and |J = 0〉1 is the spin-triplet combined with p-wave
orbital channel. Now any state projected to J = 0 subspace can
be written as

〈r|�k〉J=0 = ψ0(r)〈
r |J = 0〉0 + ψ1(r)〈
r |J = 0〉1, (14)

with bases

〈
r |J = 0〉0 = Y00(
r )
|↑↓〉 − |↓↑〉√

2
, (15)

〈
r |J = 0〉1 = 1√
3

[Y1,−1(
r )|↑↑〉 + Y11(
r )|↓↓〉

−Y10(
r )
|↑↓〉 + |↓↑〉√

2
], (16)

and wave functions,

ψ0(r) =
∫

d
r 0〈J = 0|
r〉〈r|�k〉; (17)

ψ1(r) =
∫

d
r 1〈J = 0|
r〉〈r|�k〉. (18)

Here 
r denotes the azimuthal angle of relative coordinate
r, and Ylm the spherical harmonics with azimuthal quantum
numbers (l,m). After projected, the eigenstates of H2[ i.e.,
Eqs. (9)–(11), are given by

〈r|�(−−)
k 〉J=0

=
√

4π [j0(kr)〈
r |J = 0〉0 + ij1(kr)〈
r |J = 0〉1], (19)

〈r|�(++)
k 〉J=0

=
√

4π [j0(kr)〈
r |J = 0〉0 − i j1(kr)〈
r |J = 0〉1], (20)

〈r|�(−+)
k 〉J=0 = 0, (21)

with jl(x)(l = 0,1) the spherical Bessel function of lth order.
Particularly, Eq. (21) shows that the (−+) channel is not
involved in the subspace of J = 0.

Due to the single-particle spectrum modified by isotropic
SO coupling (see Fig. 1), the incident state of two particles
with energy E = k2/m can be an arbitrary combination of
plane waves with two different magnitudes of momenta, |k2| =
λ + k and |k1| = |λ − k|. For k < λ,〈

r
∣∣�(0)

k

〉
J=0 = α

〈
r
∣∣�(−−)

k2

〉
J=0 + β

〈
r
∣∣�(−−)

k1

〉
J=0; (22)

and for k > λ,〈
r
∣∣�(0)

k

〉
J=0 = α

〈
r
∣∣�(−−)

k2

〉
J=0 + β

〈
r
∣∣�(++)

k1

〉
J=0, (23)

which both result in (k2 ≡ λ + k, k1 ≡ λ − k)〈
r
∣∣�(0)

k

〉
J=0

=
√

4π{[αj0(k2r) + βj0(k1r)]〈
r |J = 0〉0

+ i[αj1(k2r) + βj1(k1r)]〈
r |J = 0〉1}. (24)

In view of the property of H2, we also project the interaction
U (with range r0) to J = 0 subspace as

〈r|U |�k〉J=0 =
√

4π [F0(r)〈
r |J = 0〉0

+F1(r)〈
r |J = 0〉1], (r < r0), (25)

where F0, F1 denote the scattering amplitude in the s-
wave(Lr = 0) and p-wave(Lr = 1) channel. The Green func-
tion in Eq. (5) is calculated by inserting a complete set of
intermediate states [Eqs. (19) and (20)],

〈r|G|r′〉J=0 = 1

2

∑
k

{ 〈r|�(−−)
k 〉〈�(−−)

k |r′〉
E − 2ε

(−)
k + iδ

+〈r|�(++)
k 〉〈�(++)

k |r′〉
E − 2ε

(+)
k + iδ

}
J=0

. (26)

Here the prefactor 1/2 is to eliminate the double counting of
inserted states.

Combining Eqs. (5) and (24)–(26), we obtain the closed
form of a scattered wave function (for r > r0) in each partial-
wave channel [see Eq. (14)] as

ψ0/
√

4π = αj0(k2r) + Ck2 [n0(k2r) − ij0(k2r)]

+βj0(k1r) + Ck1 [n0(k1r) + ij0(k1r)],

ψ1/(i
√

4π ) = αj1(k2r) + Ck2 [n1(k2r) − ij1(k2r)]

+βj1(k1r) + Ck1 [n1(k1r) + ij1(k1r)], (27)

where (q = k1 or k2)

Cq = q2

2(q − λ)
[f0(q) − if1(q)], (28)

f0(q) = m

∫ r0

0
drr2F0(r)j0(qr), (29)

f1(q) = m

∫ r0

0
drr2F1(r)j1(qr), (30)

and nl(x) (l = 0,1) the spherical Neumann function of lth
order.

We further simplify the complex wave function (27)
by employing the time-reversal symmetry (i.e., [H2,T ] = 0
where T is the time-reversal operator). Therefore we choose
the wave function to be the eigenstate for both H2 and T .
Noting that T 〈
r |J = 0〉0 = 〈
r |J = 0〉0, T 〈
r |J = 0〉1 =
−〈
r |J = 0〉1, the only way to achieve T � = eiθ� is to
assume

Ck2 = −α sin δeiδ, (31)

Ck1 = β sin δeiδ, (32)
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with δ = θ/2. Then up to a prefactor
√

4π cos δeiδ , Eq. (27)
is reduced to

ψ0 = α[j0(k2r) − tan δn0(k2r)]

+β[j0(k1r) + tan δn0(k1r)],

ψ1/i = α[j1(k2r) − tan δn1(k2r)]

+β[j1(k1r) + tan δn1(k1r)]. (33)

To this end we have obtained the exact form of a scattered
wave function for a given short-range potential U (r) defined in
Eq. (25). Equation (33) reveals a unique scattering property in
the presence of isotropic SO coupling [i.e., the wave function
in each partial-wave channel is characterized by two different
momenta (see also Fig. 1) with opposite phase shifts]. Note that
without SO coupling, λ = 0, k2 = −k1 = k, Eq. (33) reduces
to the standard form of s-wave and p-wave scattered wave
functions in free space.

The scattered wave function [Eq. (33)] has the following
asymptotic behaviors at the long range and short range of
interparticle distances. As kr → ∞, the long-range behavior
is (up to a prefactor

√
4πeiδ)

ψ0 = α
sin(k2r + δ)

k2r
+ β

sin(k1r − δ)

k1r
, (34)

ψ1/i = α
sin(k2r − π/2 + δ)

k2r
+ β

sin(k1r − π/2 − δ)

k1r
. (35)

At short-range r0 < r  1/k, we have (up to a prefactor√
4π cos δeiδ)

ψ0 = α + β +
(

α

k2
− β

k1

)
tan δ

r
, (36)

ψ1/i = αk2 + βk1

3
r +

(
α

k2
2

− β

k2
1

)
tan δ

r2
. (37)

For simplicity, we consider the limit of zero-range potential
[i.e., assuming Fi(r) ≡ δ(r)

4πr2 F i(r → 0) (i = 0,1) in Eq. (25)].
Further according to Eqs. (29) and (30) we introduce

f 0 = m

4π
F 0(r → 0), f 1 = m

4π

rF 1(r → 0)

3

∣∣∣∣
r→0

, (38)

which gives f0(q) = f 0, f1(q) = qf 1(q = k2 or k1). Equa-
tions (28), (31), and (32) then relate f 0 and f 1 to α,β,δ as

f 0 = sin δeiδ

(
αk1

k2
2

− βk2

k2
1

)
, (39)

if 1 = sin δeiδ

(
α

k2
2

− β

k2
1

)
. (40)

Thus the short-range behavior [Eqs. (36) and (37)] can be
expressed in terms of f 0,f 1 as (up to a prefactor 4π cot δ)

ψ0 = if 1

(
k3

1 + k3
2

) − f 0

(
k2

1 + k2
2

)
k2 − k1

+ (if 1(k1 + k2) − f 0)
tan δ

r
; (41)

ψ1/i = if 1

(
k4

1 + k4
2

) − f 0

(
k3

1 + k3
2

)
3(k2 − k1)

r + if 1
tan δ

r2
. (42)

These results show that with SO coupling, the short-range
parametrization of the wave function in each partial-wave

channel will additionally depend on scattering amplitude of
another partial-wave channel. This directly reflects the spin-
mediated mixed scattering between different orbital (partial-
wave) channels, as is one of the most dramatic features of the
SO coupled system.

At the end of this section, we study the bound-state
solution with energy E = −κ2/m < 0. The bound state is
given by the poles of scattering amplitudes (f̄0,f̄1 → ∞),
which corresponds to the following transformation from the
scattering state [2]:

k → iκ, δ → −i∞. (43)

Using Eq. (43), the bound-state wave function can be deduced
from Eq. (33); its long-range and short-range behaviors can
be deduced from Eqs. (34) and (35) and Eqs. (36) and (37),
respectively.

III. PSEUDOPOTENTIAL MODEL IN INDIVIDUAL
PARTIAL-WAVE CHANNEL

The pseudopotential model formulated in a given partial-
wave channel is based on two assumptions. First, the in-
teraction only acts on this particular channel. Second, the
short-range behavior of the wave function in this channel
is still determined by the same scattering parameter as that
in the absence of SO coupling. The second assumption is
based on a general belief as follows. If the range of the
interacting potential (r0) is much shorter than any length scale
in the system, as interparticle distance approaches r → r+

0 , all
other potentials are negligible in this limit and the asymptotic
behavior of two-body wave function is unchanged. The validity
of pseudopotentials has been verified in trapped systems in
Refs. [2,3,5]. In the following we reduce the exact solutions
obtained in Sec. II to the framework of s-wave and p-wave
pseudopotential models.

A. s-wave pseudopotential

The s-wave pseudopotential corresponds to assuming
F 1 = 0,f 1 = 0; by mapping the short-range behavior of ψ0

[Eq. (41)] to 1/r − 1/as with as the s-wave scattering length
in free space, we obtain the phase shift as

tan δ = −as

λ2 + k2

k
. (44)

For scattering state, at low energies, tan δ = −asλ
2/k

giving the effective one-dimensional (1D) coupling g1D =
2asλ

2/m, which is supported by the modified low-energy
density of states (DOS) by isotropic SO couplings (see also
Ref. [9]); at high energies, Eq. (44) reduces to tan δ = −kas

as in three-dimensional (3D) free space.
The equation for the bound-state solution is obtained from

Eq. (44) via transformations as Eq. (43),

− 1

as

κ = λ2 − κ2, (45)

which reproduces the result obtained by the s-wave T-matrix
approach [9]. Equation (45) results in a bound-state solution
for arbitrarily weak interaction, which is a direct consequence
of the effective 1D DOS at low energies.

022705-4



MIXED-PARTIAL-WAVE SCATTERING WITH SPIN-ORBIT . . . PHYSICAL REVIEW A 85, 022705 (2012)

B. p-wave pseudopotential

The p-wave pseudopotential corresponds to F 0 = 0,f 0 =
0, and δ is determined by mapping the short-range behavior of
ψ1 [Eq. (42)] to r/3 − vp/r2, with vp the p-wave scattering
volume in free space. We obtain

tan δ = −vp

λ4 + 6λ2k2 + k4

k
. (46)

Without SO coupling (λ = 0), it reproduces the original free
space result as tan δ = −vpk3.

For scattering state at low energies, tan δ = −vp
λ4

k
again

giving δ(k = 0) = π/2; at high energies, it recovers the free
space result.

For the bound state, by transformation as Eq. (43) we obtain
from Eq. (46) that

− 1

vp

κ = λ4 − 6λ2κ2 + κ4. (47)

We see that for arbitrarily weak p-wave interaction vp → 0−,
Eq. (47) gives a shallow bound state as κ = −vpλ4.

IV. SCATTERING UNDER A SQUARE-WELL POTENTIAL
AND VALIDITY OF PSEUDOPOTENTIALS

In this section we present the scattering state and bound-
state solutions under a square-well interaction potential. By
comparing these solutions with those from individual s-wave
and p-wave pseudopotential models, we shall address the
validity of pseudopotentials in the presence of isotropic SO
coupling. In Appendix A we show more details about partial-
wave scattering under the square-well potential without SO
coupling, and in Appendix B we derive the equations for
two-body solutions with isotropic SO coupling.

A. Results

We consider a square-well potential with depth V0(< 0) at
interparticle distance r < r0 and with depth zero otherwise.
The interaction strength is uniquely characterized by a di-
mensionless parameter as qr0, with q = √−mV0. Without
SO coupling, Eq. (A4) shows that by increasing qr0, a
sequence of s-wave resonances(with phase shift δs = π/2)
occur at qr0/π = n + 1/2 and p-wave resonances(δp = π/2)
at qr0/π = n + 1 (n = 0,1,2 . . .). A bound state emerges
whenever across a scattering resonance.

Next we solve the two-body problem in the presence of
isotropic SO coupling. Based on exact solutions in Sec. II, the
wave functions inside the potential (r < r0) in orbital s-wave
and p-wave channels are

ψ0 = j0(q2r) + tj0(q1r),
(48)

ψ1/i = j1(q2r) + tj1(q1r);

with q2 = λ + √
m(E − V0), q1 = λ − √

m(E − V0). Outside
the potential (r > r0), the wave functions are given by Eq. (33)
for the scattering state (E = k2/m > 0), or by the transformed
form [through Eq. (43)] for bound state (E = −κ2/m < 0).

Using the continuity properties of ψ0, ψ1 and their first-
order derivatives at the boundary r = r0, one can solve all the
unknown parameters {t, α, β, δ} for the scattering state and

{t,α,β,κ} for the bound state. In Appendix B we present the
equations for these solutions. Next we show numerical results
for the scattering state and bound state in turn.

1. Scattering state

For given energy E = k2/m > 0, we obtain two phase shift
solutions, δ1 with f̄0 � f̄1 and δ2 with f̄1 � f̄0, analogous
to s-wave and p-wave phase shifts without SO coupling. For
fixed SO coupling λr0 = 0.2, we show in Fig. 2(a) the solution
of δ1 near the first s-wave resonance and in Fig. 2(b) the
solution of δ2 near the first p-wave resonance. Independently,
we obtain δ1 from Eq. (44) using s-wave scattering length (as)
with effective-range corrections [see Eq. (A3), l = 0], and δ2

from Eq. (46) using p-wave scattering length (ap ≡ vp/r2
0 )

with effective-range corrections [Eq. (A3), l = 1]. In Fig. 2,
these results are shown (by orange dashed lines) to compare
with exact solutions (black circles).

For the solution δ1 near s-wave resonance, Figure 2(a)
shows that it can be approximately fit by the s-wave model
within kr0 < 0.5. Particularly at k = 0, δ1 = π/2 is consistent
with the s-wave prediction [Eq. (44)] due to the 1D feature of
the low-energy DOS. However, there is still a small deviation
between these two solutions at finite k, due to the interplay
between SO coupling, p-wave contribution, and the finite
potential range. To investigate these effects in detail, we
further study the modified effective scattering length aeff in the
s-wave channel, which is defined by ψ0(r) → 1/r − 1/aeff(k)
at r0 < r  1/k. Practically aeff(k) can be extracted from the
asymptotic wave function (41) by diagonalizing Eq. (B1) in
Appendix B. Figure 3(a) shows how aeff(k) evolves with k for
each given SO coupling, which can also be expressed in the
form of effective-range correction,

1

aeff(k)
= 1

aeff
− 1

2
reffk

2. (49)

One can see that with increased SO couplings, the effective
range reff almost stays unchanged while 1/aeff become smaller

FIG. 2. (Color online) Phase shifts of scattering states in a
square-well potential with isotropic SO coupling strength λr0 = 0.2.
Exact solutions are shown (black circles) in comparison with results
from pseudopotential models with effective-range corrections [see
Eq. (A3)] (orange dashed lines). (a) δ1 near s-wave resonance with
(from bottom to top) qr0/π = 0.25(as < 0),0.5(as = ∞),0.7(as >

0). (b) δ2 near p-wave resonance with (from bottom to top) qr0/π =
0.9(ap < 0),0.99(ap < 0),1(ap = ∞),1.02(ap > 0).
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FIG. 3. (Color online) (a) Inverse of effective scattering lengths
[aeff (k)] as functions of k for different SO couplings λr0 =
0,0.1,0.2,0.3 (from top to bottom). The potential depth is qr0/π =
0.25. (b) Inverse of zero-energy scattering lengths (aeff ) as functions of
λ at different qr0/π = 0.25,0.5,0.7(from bottom to top). The lines are
fits to Eq. (50) with C = −2.10,−1.00,−0.58 (from bottom to top).

indicating weaker interactions. The deviations of 1/aeff from
1/as directly manifest the effect of SO coupling and mixed
scattering of the s-wave channel with the p-wave channel.
Moreover the mixing can also be seen from the additional
dependence of ψ0 on the p-wave scattering amplitude in
Eq. (41). In Fig. 3(b) we show the zero-energy value 1/aeff

as a function of λr0 for several different potential depths. At
λr0  1, 1/aeff can be well fit by

r0

aeff
= r0

as

+ C(λr0)2, (50)

where the dimensionless parameter C only depends on the
properties of the potential, or the actual interaction strengths
in the s-wave and p-wave channels. In Fig. 4, C is shown
as a function of r0/as (together with ap/as) near the first
s-wave resonance. In the weak interaction limit, |V0| → 0 and
as,ap → 0−, C change linearly with r0/as , indicating aeff −
as ∝ −(λr0)2 in this limit. For the typical parameter regime in
the present experiment [6], λ is determined by the wave vector
of the laser which is much smaller than the cutoff momentum
of realistic potential. In this case, the condition λr0  1 gives
negligible correction to aeff near s-wave resonances.

For the solution δ2 near p-wave resonance, however, it
behaves qualitatively different from that obtained entirely in
the framework of the p-wave pseudopotential model, as shown
by Fig. 2(b). Obviously, the exact solution shows the initial
value δ2(k = 0) = 0 or π , depending on whether or not there
is a two-body bound state (see next section); while the p-wave
model always predicts δ2(k = 0) = π/2 according to Eq. (46).
We have checked that in the limit of λr0  1, the exact solution
of δ2 at k  1/r0 essentially follows the free space result
(given by tan δ2 = −vpk3) with δ2 ∼ 0 or π ; while the p-
wave model gives a narrow momentum window as 0 < k < λ

when δ2(k) evolves from π/2 to the exact result. This dramatic
difference indicates that even near the p-wave resonance, the
p-wave pseudopotential alone cannot be applied to the fermion
system if λ is larger or comparable to the Fermi momentum.
We shall analyze the reason for the breakdown of the p-wave
model to scattering state solutions in the discussion section.

FIG. 4. (Color online) C in Eq. (50) as functions of r0/as near
and across the first s-wave resonance (qr0 < π ) in the square-well
potential. The red dashed line is the linear fit in the weak interaction
limit as C = −1.073 + 0.275r0/as . Inset shows the ratio of p-wave
to s-wave scattering length, where the gray (light) lines denote the
s-wave resonance.

2. Bound state

The bound-state solution E = −κ2/m < 0 is given by the
transformed matrix equation |Ab| = 0 (see Appendix B). By
setting κ = 0 in the matrix equation we determine the critical
potential depth |V0|c, which is responsible for the emergence
of a new bound state, by

j0(q2r0)j1(q1r0) = j0(q1r0)j1(q2r0), (51)

with q2 = λ + qc,q1 = λ − qc and qc = √
m|V0|c. The solu-

tion of qc is shown in Fig. 5. As λ approaches zero, one branch
of solution (solid line) is given by j1(qcr0) = 0 or as = 0; the
other branch (dashed line) is given by j0(qcr0) = 0 or ap = ∞.
For the first branch, when increasing λ the lowest solution
will stay at qcr0 = 0 or as = 0−, while the other solutions
increase resulting in deeper potential depths. For the second

FIG. 5. Critical potential depth (qcr0/π ) for the emergence of
each new bound state as a function of isotropic SO coupling strength.
When λr0 → 0, the solid lines approach qcr0/π = 0,1.430,2.459, . . .

with as = 0; the dashed lines approach qcr0/π = 1,2, . . . with ap =
∞ (see text).
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FIG. 6. (Color online) Bound state solutions (solid lines) in the
square-well potential as functions of the potential depths, in com-
parison with results from s-wave (a) and p-wave (b) pseudopotential
models. The SO coupling is λr0 = 0.2. In (a), we have used s-wave
scattering length without (green circles) or with (black triangles)
energy dependence. In (b), we use the energy-dependent p-wave
scattering length (blue triangles).

branch, when increasing λ all solutions of qc will decrease,
implying that weaker interaction is required to support the
new bound state near p-wave resonance. In all, we see that
only the lowest solution of the first branch is consistent with
the prediction from the s-wave pseudopotential model [see
Eq. (45)], but none of the other solutions. The discrepancies
here are attributed to the mixed scattering between s-wave and
p-wave channels induced by the isotropic SO coupling.

As shown in Fig. 6 with fixed λr0 = 0.2, a sequence of
bound states will develop when the potential depths increase
above critical |V0|c. For comparison, we also present the results
from s-wave and p-wave pseudopotential models, using the
scattering length with or without energy dependence. (For the
bound state, the energy-dependent scattering length is deter-
mined from Eqs. (A2) and (A4) but with k replaced by iκ [2].)

Figure 6(a) shows that the s-wave model using s-wave
scattering length without (as) or with [as(E)] energy depen-
dence both give good approximations to low-energy solutions
near s-wave resonance, but deviate a lot from exact solutions
for deep bound states. In general, we find that using as(E)
provides more accurate results than using as in a large energy
range; particularly, in the limit of zero SO coupling, using
as(E) will give the exact bound-state solutions [2]. For fixed
potential depth, the deviation of s-wave results from exact
solutions increases with the SO coupling strength, as shown
in Figs. 7(a1) and 7(a2). Moreover, Figs. 6(a) and 7 show that
the s-wave models using as(E) always predict deeper bound
states than real solutions, which is consistent with Eq. (50)

FIG. 7. (Color online) (a1) and (a2) Bound state solutions in a
square-well potential as functions of isotropic SO coupling strengths
at potential depths qr0/π = 0.25[(a1), as < 0] and 0.7[(a2), as > 0],
in comparison with results using s-wave scattering length without
(red dashed line) or with (green dot line) energy dependence.
(b) Relative deviations between exact solutions and results from the
s-wave pseudopotential model, at the same potential depths as in
(a1) and (a2). For s-wave pseudopotential, we use s-wave scattering
length without (′×′) or with (′+′) energy dependence.

and also Fig. 3 that the presence of SO coupling reduces the
effective interaction parameter for low-energy states.

In Fig. 7(b), we further plot the relative deviations, �κ/κ ,
as functions of SO coupling strengths at different potential
depths. It shows that �κ/κ increases more rapidly for deep
bound states than that for shallow ones. As also mentioned
in Sec. I, the s-wave model [even using the energy-dependent
as(E)] is quite questionable when applied to deep molecules.
As shown in Fig. 8, the energy of the bound state is
always lower bounded by the potential depth V0 (i.e., κ < q).
However, the s-wave model will produce unphysically deep
molecules with κ > q. In this case, the s-wave model alone
will not work and one must take into account the effect mixed
scattering with p-wave channel due to SO couplings.

In Fig. 6(b) we show the comparison with results from
the p-wave pseudopotential model. According to the p-wave
model (see Sec. III B), the bound state exists for an arbitrarily
weak interaction in the presence of isotropic SO coupling.
This is qualitatively different from the exact solution under
the square-well potential, where each emergence of a new
bound state requires a potential depth beyond the critical value
(as shown by red lines in Fig. 5). In the limit of λr0  1, the
critical depths continuously approach qcr0/π = 1,2, . . . as in
free space. The breakdown of the p-wave model to bound-state
solutions will be discussed in the following section.

B. Discussion

Through the last subsection, we have shown that the
SO coupling has different effects on the validity of
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FIG. 8. (Color online) Bound state solutions as functions of
isotropic SO coupling strengths for given potential depth qr0/π =
0.4, in comparison with results using s-wave scattering length without
(pink circles) or with (black triangles) energy dependence. The orange
dashed line denotes the lower bound as κ = q.

pseudopotentials in s-wave and p-wave channels. In the
limit of λr0  1, the s-wave pseudopotential model provides
good approximations to the low-energy scattering state and
bound-state solutions near s-wave resonances. For example, it
predicts correctly the initial phase shift as δ1(k = 0) = π/2 for
scattering state, and a bound-state solution for arbitrarily weak
attraction as → 0−. However, near p-wave resonances the
p-wave pseudopotential will produce qualitatively different
results compared with exact solutions. For example, in the limit
of λr0  1, the exact solutions approach free space results [i.e.,
δ2(k = 0) = 0 or π ], and each bound state emerges when vp

goes across a resonance at certain critical potential depth; on
the contrary, the p-wave model predicts δ2(k = 0) = π/2 and
a bound state for any weak p-wave interaction vp → 0−.

Here we analyze the reason why the s-wave pseudopotential
is approximately valid for SO coupled system while p-wave
is not. This can be explained from the correspondence
between the assumptions of pseudopotential models and
the resulted short-range behavior of wave functions. For
s-wave pseudopotential (f̄0 �= 0, f̄1 = 0), the resulted wave
function does not show 1/r2 singularity in the p-wave channel,
which is consistent with the assumption of zero scattering
amplitude in Eq. (25). However, the p-wave pseudopotential
(f̄0 = 0, f̄1 �= 0) will induce an additional singularity in the s-
wave channel [i.e., ψ0(r) → 2λ[ λ2+3k2

2k
+ tan δ

r
] as r → 0]. This

in turn requires that the interaction operator U also generate
scattering amplitude in the s-wave channel, contradictory with
the initial assumption that f̄0 = 0 in Eq. (25). This paradox
also implies that any weak f̄0 will have dramatic interference
with the p-wave sector and lead to qualitatively different
results from those using pseudopotential entirely in the p-wave
channel.

The results presented in this section tell us that the original
pseudopotentials formulated in the absence of SO coupling
do not necessarily apply to the case with SO coupling. The
pseudopotential model will certainly breakdown if the results
obtained are inconsistent with initial assumptions of this
model. In this case, an appropriate interaction model should be
constructed in order to rightly incorporate mixed scatterings

between different partial-wave channels, which is out of the
scope of this paper.

V. SUMMARY

In this paper, we exactly solve the two-body problem of
spin-1/2 fermions with isotropic SO coupling under a general
short-range interaction potential, and investigate the validity
of s-wave and p-wave pseudopotentials formulated in the
absence of SO couplings. Our main results are summarized
as follows:

(1) In the presence of isotropic SO coupling, the two-body
scattered wave function exhibits exotic dependencies on the
momentum and phase shift [Eq. (33)]. In each partial-wave
channel the wave function at a short interparticle distance is
parametrized by scattering amplitudes of all coupled scattering
channels [Eqs. (41)and (42)]. This feature reveals the mixed
scattering between different partial waves that is induced by
the SO coupling.

(2) Under the conditions that the length scale of SO coupling
is much longer than the range of the potential (λr0  1) and
near s-wave resonances, the s-wave pseudopotential gives a
good approximation to the low-energy solutions, with the
correction depending on the strength of SO coupling, the finite
range of the potential, and contributions from other coupled
partial waves.

(3) Near the p-wave resonance, the p-wave pseudopoten-
tial model gives low-energy solutions that are qualitatively
different from the exact ones from the square-well potential.
The p-wave model alone cannot be applied to the fermion
system when the SO coupling strength is larger or comparable
to the Fermi momentum. Its breakdown is attributed to the
inconsistent treatment between the assumption of the p-wave
pseudopotential and the resulted short-range singularities of
the wave function in the s-wave channel.

Although above results are obtained for the special type
of isotropic SO coupling, they reveal the generic scattering
properties modified by the coupling between spin and orbit.
We therefore expect these results have strong implications to
other systems with a general type of SO coupling.
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APPENDIX A: FREE-SPACE SCATTERING LENGTHS
UNDER A SQUARE-WELL POTENTIAL

Far away from the range (r0) of the potential, the
scattered wave function in the lth partial-wave channel
reads

ψl(r) = jl(kr) − tan δlnl(kr), (A1)
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where δl is the phase shift which give the scattering length
(with energy dependence) as

al(k) = − 1

r2l
0

tan δl

k2l+1
. (A2)

In the limit of kr0  1, the effective-range expansion gives

1

al(k)
= 1

al

− 1

2
rlk

2, (A3)

with al the zero-energy scattering length and rl the effective
range.

For a square-well potential with depth V0(< 0) and range
r0, in the following we scale all lengths (al,rl) in the unit
of r0 and all momenta (k,p) of 1/r0; for instance, ã = a/r0,
k̃ = ka0. We define two functions as j l(x) = x−ljl(x), nl(x) =
xl+1nl(x), modified, respectively, from the spherical Bessel
and Neumann functions. We then have

tan δl

k̃2l+1
= j l−1(p̃)j l(k̃) − j l−1(k̃)j l(p̃)

j l−1(p̃)nl(k̃) − nl−1(k̃)j l(p̃)
, (A4)

with k = √
mE, p = √

m(E − V0). Note that for l = 0, we
have j−1 = −n0, n−1 = j0. The zero-energy scattering length
and effective range are given by (q = √−mV0),

ãl = − 1

(2l − 1)!!(2l + 1)!!

jl+1(q̃)

jl−1(q̃)
, (A5)

r̃l = (2l − 1)!!(2l + 1)!!

{
− 1

2l − 1
+ 2l + 1

q̃2

jl−1(q̃)

jl+1(q̃)

− 1

2l + 3

(
jl−1(q̃)

jl+1(q̃)

)2 }
. (A6)

APPENDIX B: SCATTERING UNDER A SQUARE-WELL
POTENTIAL WITH ISOTROPIC SO COUPLING

Using the continuity properties of ψ0, ψ1 and their first-
order derivatives at the potential boundary r = r0, we obtain
four coupled equations which can be expressed in a matrix
form. For convenience, we scale all momenta in units of 1/r0

as k̃ = ka0.
For scattering state (E = k2/m > 0), the matrix equation

is A(1,t,α,β)T = 0 with the matrix,

A =

⎛
⎜⎜⎜⎝

j0(̃q2) j0(̃q1) j0(̃k2) − tan δn0(̃k2) j0(̃k1) + tan δn0(̃k1)

q̃2j1(̃q2) q̃1j1(̃q1) k̃2(j1(̃k2) − tan δn1(̃k2)) k̃1(j1(̃k1) + tan δn1(̃k1))

j1(̃q2) j1(̃q1) j1(̃k2) − tan δn1(̃k2) j1(̃k1) + tan δn1(̃k1)

q̃2j0(̃q2) q̃1j0(̃q1) k̃2(j0(̃k2) − tan δn0(̃k2)) k̃1(j0(̃k1) + tan δn0(̃k1))

⎞
⎟⎟⎟⎠ , (B1)

where we have used j ′
0(x) = −j1(x), j ′

1(x) = − 2
x
j1(x) +

j0(x) to simplify the equations. k = √
mE, q = √−mV0;

k2 = λ + k, k1 = λ − k; q2 = λ +
√

k2 + q2, q1 = λ −√
k2 + q2.
The zero determinant |A| = 0 gives rise to two solutions

of phase shift δ. When λ = 0, these two solutions are,
respectively, resulted from two decoupled equations, and

reproduce the well-known s-wave and p-wave phase shifts
in free space as given by Eq. (A4).

For bound state, the equations can be obtained straightfor-
wardly by transformations [see Eq. (43)] from the equations
of scattering state. The binding energy E = −κ2/m < 0 can
be determined from the resulted matrix equation |Ab| = 0.
When λ = 0, the binding energies, respectively, reproduce
the s-wave and p-wave results without SO coupling.
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