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Universal bound and scattering properties for two dipoles
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The bound state and low-energy scattering properties of two oriented dipoles are investigated for both bosonic
and fermionic symmetries. Interestingly, a universal scaling emerges for the expectation value of the angular
momentum for deeply bound two-dipole states. This scaling traces to the pendulum motion of two dipoles in
the strong dipole regime. The low-energy scattering phase shifts of two dipoles also show universal behavior.
These universal observations make connections to the scaling laws reported by Wang et al. [Phys. Rev. Lett. 106,
233201 (2011); 107, 233201 (2011)] for three dipoles.
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I. INTRODUCTION

The recent experimental realization of ultracold polar
molecules [1] has attracted tremendous attention because of
their potential future applications in studies of astrophysics,
condensed matter physics, quantum computing, and ultracold
chemistry [2,3]. It also provides great opportunity for studies
of few-body physics due to the long-range, anisotropic nature
of the molecular interactions in the presence of an external
electric field. For polar molecules that have exothermal
reaction paths [4], the high short-range reaction probability
leads to large ultracold reaction rates that have been observed in
experiments and have also been explained by a universal theory
[5–11]. Novel phenomena involving polar molecules [2,3]
are in particular expected from the long-range interactions.
When the molecules are nonreactive, rich resonant features
that are tunable via an external field have been predicted in the
scattering of two molecules in different geometries [12–21].
Interestingly, these resonances are formed with different
mechanisms [15] and therefore occur in an irregular order.

Whereas two-dipole physics has proven to be surprisingly
complicated, the three-dipole physics near two-dipole reso-
nances manifests simple universal behavior for both bosonic
[22] and fermionic [23] dipoles. This is quite counterintuitive
considering that a three-body problem is generally more com-
plicated when compared to a two-body problem. Moreover,
in contrast to the previously known three-body systems where
nonuniversal short-range physics is important even at unitarity
[24], a system with three dipoles at unitarity can be universally
defined by two-dipole physics that is characterized by the
dipole length d� defined as

d� = md2
m

/
2h̄2, (1)

where dm is the magnitude of the electric dipole moment
induced by an external electric field [18] and m is the mass of
a dipole. A close relationship between two- and three-dipole
problems is also manifested in the effective repulsion between
a dipole and a deeply bound dipolar dimer that has been
identified in Refs. [22,23].

In the present work we study universal two-dipole physics
that can be relevant to the three-dipole physics mentioned
above. In particular, the properties of deeply and weakly
bound dipolar states as well as the behavior of the low-energy
scattering phase shifts are discussed for both bosonic and
fermionic dipoles. It will be shown that when the dipolar

interaction is off-resonant, the binding energy of two dipoles
scales like 1/md2

� , and the size of the corresponding state
grows linearly with d�. For deeply bound states, the expectation
value 〈L̂2〉 shows universal

√
d� scaling, where L̂ is the angular

momentum operator. As will be shown, this scaling traces to
the pendulum motion of two dipoles in a strong external field.
Finally, universal scaling behavior will be shown for both the
real part and and the imaginary part of the phase shifts that
characterize elastic scattering and the scattering into different
angular momentum channels, respectively.

This paper is organized as follows. Section II introduces
our model and method for solving the two-dipole problem.
Section III discusses the bound-state properties of the dipoles,
and Sec. IV discusses the scattering properties. Finally, we
summarize our results in Sec. V. Atomic units are used
throughout this work.

II. THEORY

To a good approximation at long range the dipolar
molecules in an external field can be treated as point dipoles
fully oriented along the field direction. The Schrödinger
equation for two dipoles in spherical coordinates is given by[

− 1

m

1

r

d2

dr2
r + L̂2

mr2
+ Vdd

]
ψ = Eψ, (2)

where Vdd is the interaction between two dipoles that are
oriented to the direction of the external field ẑ:

Vdd = 2d�

m

1 − 3(ẑ · r̂)2

r3
f (r). (3)

The function f (r) = tanh(r/r0)18 cuts off the dipolar interac-
tion around the short-range length scale r0, which avoids an
unphysical collapse of the system in the case of the −1/r3

singularity at the origin. For alkali-metal dipolar molecules
used in ultracold experiments, r0 is determined by the distance
where the short-range van der Waals interaction (∼1/r6) starts
dominating over the dipolar interaction. The ratio d�/r0 that
defines the dipole regime (d�/r0 � 1) and the van der Waals
regime (d�/r0 � 1) can change from 0 at zero external electric
field to more than 103 for fully polarized dipolar molecules [11]

In the presence of anisotropic interactions, an appropriate
angular representation can provide deep physical insight and
quick numerical convergence. An expansion of angular motion
using spherical harmonics that are defined on a numerical

022704-11050-2947/2012/85(2)/022704(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.233201
http://dx.doi.org/10.1103/PhysRevLett.106.233201
http://dx.doi.org/10.1103/PhysRevLett.107.233201
http://dx.doi.org/10.1103/PhysRevA.85.022704


YUJUN WANG AND CHRIS H. GREENE PHYSICAL REVIEW A 85, 022704 (2012)

grid has been used in Ref. [25] to efficiently solve scattering
with anisotropic interactions, including dipoles that are not
aligned. In our study, a simple partial wave expansion (diabatic
representation) is adequate for our study of dipolar scattering
while the adiabatic representation is better suited for the study
of deeply bound dipolar states.

A. Diabatic representation

To solve Eq. (2), it is natural to expand ψ in the basis of
angular momentum eigenstates |lml〉 as

ψml = 1

r

∑
l′

F
ml

l′ (r)|l′ml〉, (4)

where different ml decouple when the quantization axis is
along the direction of the external field. For large r , different
|lml〉 states decouple and physically serve as scattering
channels for two dipoles. In this basis, Eq. (2) reduces to a
set of coupled equations:[

− 1

m

d2

dr2
+ l(l + 1)

mr2

]
F

ml

l (r)

+ d�

mr3

∑
l′

D3(ml ; l,l
′)Fml

l′ (r) = EF
ml

l (r), (5)

where the coupling coefficients D3(ml ; l,l′) are expressed in
terms of 3-j symbols:

D3(ml ; l,l
′)

= (−1)ml+14
√

(2l + 1)(2l′ + 1)

(
l 2 l′
0 0 0

)(
l 2 l′
−ml 0 ml

)
.

(6)

Note that l and l′ are coupled only when |l′ − l| � 2 and
specifically when |l′ − l| = 2 for indistinguishable dipoles that
are considered in the present work.

B. Adiabatic representation

Another way to solve Eq. (2) is to use the adiabatic
representation, as has been implemented in Refs. [15–18].
It has been shown [15–18] that the adiabatic representation
gives better characterization of the various dipolar resonances
[15,17,18], presumably because the adiabatic channels are
less coupled than the angular momentum basis at small
distances. At large distances the adiabatic basis reduces to the
angular momentum basis, so both representations will give the
same scattering matrix. Although these two representations
are physically equivalent, we would like to compare their
efficiencies and use the one that is the most convenient for
our study that involves both analytical and numerical work.

In the adiabatic representation, the two-dipole wave func-
tion is expanded in the adiabatic basis φν as

ψml = 1

r

∑
ν ′

F̃
ml

ν ′ (r)φml

ν ′ (r; �), (7)

where � represents the polar angle θ and the azimuthal angle ϕ,
and ν and ν ′ are the adiabatic channel indices. The adiabatic

channel functions φ
ml

ν ′ are obtained by solving the adiabatic
equation(

L̂2

mr2
+ Vdd

)
φml

ν (r; �) = Uν(r)φml

ν (r; �). (8)

Upon substitution of the adiabatic expansion, Eqs. (7)–(2) also
takes a multichannel form:[

− 1

m

d2

dr2
+ Uν(r)

]
F̃ ml

ν (r)

+ 1

m

∑
ν ′

[
Pν,ν ′

d

dr
+ d

dr
Pν,ν ′

]
F̃

ml

ν ′ (r)

+ 1

m

∑
ν ′

Qν,ν ′ F̃
ml

ν ′ (r) = EF̃ml

ν (r), (9)

but is now characterized by the nonadiabatic couplings Pν,ν ′(r)
and Qν,ν ′(r), defined as

Pν,ν ′(r) =
〈
〈φν | d

dr
|φν ′ 〉

〉
, Qν,ν ′(r) =

〈〈
d

dr
φν

∣∣∣∣ d

dr
φν ′

〉〉
.

(10)

The double brackets in the above definition indicate integration
over the angles �.

In the asymptotic region (r � d�), the adiabatic channel
functions φν can be calculated perturbatively from |lml〉,
which allows us to analytically derive the asymptotic form
of the nonadiabatic couplings. To calculate the leading order
of the nonadiabatic couplings Pν,ν ′ for channels ν and ν ′
that asymptotically approach the diabatic channels (lν,ml) and
(lν ′ ,ml), respectively, the following expansion of the channels
functions is required:

φν =
ν ′∑

n=ν

ην
n|lnml〉. (11)

The expansion coefficients ην
n are obtained by |n − ν|th order

perturbation theory:

ην
n = Cν

n (d�/r)|n−ν| , (12)

where

Cν
n =

n−ν∓1∏
k=0

D3(ml ; lν + 2k,lν + 2k ± 2)

lν(lν + 1) − (lν + 2k ± 2)(lν + 2k ± 2 + 1)
,

(13)
Cν

ν = 1.

In the above expression the upper sign is taken when n > ν,
and the lower signis taken when n < ν. The leading order term
in the asymptotic expansion of Pν,ν ′ is then calculated as

Pν,ν ′ 
 − d
|ν−ν ′ |
�

r |ν−ν ′|+1

ν ′∓1∑
n=ν

|ν ′ − n|Cν
nCν ′

n . (14)

Here the upper and lower signs are taken for ν ′ > ν and ν ′ < ν,
respectively.

Deriving the leading order expression for Qν,ν ′ requires an
expansion of φν with two more terms:

φν =
ν ′±1∑

n=ν∓1

ην
n|lnml〉, (15)
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FIG. 1. (Color online) Number of channels required for converg-
ing the dipolar bound states within 1% in the diabatic (spherical
harmonic) and the adiabatic representations.

where the upper and lower signs are taken for ν ′ > ν and
ν ′ < ν, respectively. This expansion gives, for ν ′ = ν,

Qν,ν 
 d2
�

r4

[(
Cν

ν−1

)2 + (
Cν

ν+1

)2]
; (16)

for |ν ′ − ν| = 1,

Qν,ν ′ 
 d3
�

r5

{
2
(
Cν

ν±1C
ν ′
ν ′±2 + Cν

ν∓2C
ν ′
ν ′∓1

)
− [(

Cν
ν±1

)2
Cν ′

ν ′±1 + (
Cν ′

ν ′∓1

)2
Cν

ν∓1

]}
; (17)

and for |ν ′ − ν| � 2,

Qν,ν ′ 
 d
|ν−ν ′ |+2
�

r |ν−ν ′|+4

ν ′∓1∑
n=ν±1

|(n − ν)(n − ν ′)|Cν
n±1C

ν ′
n∓1. (18)

In all the above expressions for Qν,ν ′ , the upper and lower
signs are taken for ν ′ > ν and ν ′ < ν, respectively. All the
above asymptotic behavior for the nonadiabatic couplings has
been verified by our numerical calculations.

C. Comparison of diabatic and adiabatic representations

In the following we give a brief comparison of the diabatic
and adiabatic representations concerning their convergence
with the number of channels. Figure 1 shows the convergence
pattern for the energies of the ground state and the highest
excited state with respect to the number of channels as d�

increases. Generally, the adiabatic representation converges
more quickly, and particularly for deeply lying states it gives
better convergence for larger d�. For high-lying states more
channels are required in order to reach convergence for larger
d� in both representations.

The quick convergence of the adiabatic representation for
the deeply-bound dipolar states makes it most advantageous in
our analytical study of these states in Sec. III A. For studies of
the weakly bound states or scattering, however, the adiabatic
potentials and nonadiabatic couplings for high-lying channels
at small distances (r � d�) cannot be analytically determined
and require numerical diagonalization. Therefore even though
the adiabatic representation gives faster convergence it does

not provide significantly better performance, and we will use
the diabatic representation since it can be more easily gener-
ated in calculations of weakly bound states and scattering.

III. BOUND STATE PROPERTIES

A. Deeply bound states

In the presence of a strong external field, dipoles in a deeply
bound state tend to align themselves in the linear configuration
where the dipolar potential, Eq. (3), is angularly minimal. For
small polar angles θ , Eq. (3) can be approximated by

Vdd ≈ 2d�

m

−2 + 3θ2

r3
, (19)

which corresponds to a harmonic potential in the θ direction
with a trapping frequency of ω =

√
24d�/m2r and a zero-point

angle given by

θ0 =
√

2

mω
= 6−1/4

(
d�

r

)−1/4

. (20)

As d� increases, two dipoles in a deeply bound state become
more angularly localized and undergo pendulum motion within
an angle roughly determined by θ0. The expectation value of
the angular momentum 〈L̂2〉 is therefore expected to grow
with d�.

In view of the connection between 〈L̂2〉 and the barrier
in the collision of a dipole and a dipolar dimer [22,23], the
following studies the scaling of 〈L̂2〉 with d�. The adiabatic
approximation of the two-dipole solution, Eq. (7), takes the
following form:

ψml

n,ν = 1

r
F̃ ml

n,ν(r)φml

ν (r; �), (21)

where n indicates the approximate quantum number for the
radial motion. The angular wave function φml

ν for the harmonic
potential, Eq. (19), can be directly written down in terms of
the associated Laguerre polynomials Lα

n(x):

φml

ν =
√

2

θ2
0

�(ν + 1)

�(ν + |ml| + 1)

(
θ

θ0

)|ml |
L|ml |

ν

(
θ2

θ2
0

)

× e
− 1

2
θ2

θ2
0

1√
2π

eimlϕ. (22)

By using the approximate angular momentum operator for
θ � 1:

L̂2 ≈ −1

θ

∂

∂θ
θ

∂

∂θ
− 1

θ2

∂2

∂ϕ2
, (23)

〈L̂2〉 can be determined as

〈L̂2〉 ≈
√

d�(2ν+|ml|+1)
√

6

〈
F̃ ml

n,ν

r

∣∣∣∣ 1√
r

∣∣∣∣ F̃ ml
n,ν

r

〉
. (24)

Since for deeply bound states the radial wave fuction F̃ ml
n,ν is

localized around r � r0, the radial integral should scale with
1/

√
r0 and 〈L̂2〉 is expected to obey the following scaling

〈L̂2〉 ∝
√

d�

r0
(2ν + |ml| + 1). (25)
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FIG. 2. (Color online) The scaled angular momentum expecta-
tion value 〈L̂2〉/(d�/r0)1/2 for bosonic dipoles (a) and fermionic
dipoles (b).

It is interesting to note that this scaling is independent of the
identical particle symmetry. This can be simply understood
from the angular localization of a pendulum wave function
that makes the exchange effect negligible.

Figure 2 shows the angular momentum expectation value
〈L̂2〉 calculated numerically. The quick changes in 〈L̂2〉 at
small d� are related to the transition of the dipolar states from
a single angular momentum character to a pendulum character.
The angular and radial excitations for the corresponding
dipolar states can be seen from the wave functions shown in
Fig. 3. The equally spaced 〈L̂2〉 from numerical calculations
suggests the validity of the approximated scaling in Eq. (25).
The radial excitations n introduce splittings on top of the

FIG. 3. (Color online) The cuts of the deeply bound two-dipole
wave function along the x-z plane for bosons. Different angular
and radial excitations (|ml |,ν,n) are shown: (a) (0,0,0), (b) (1,0,0),
(c) (0,1,0), (d) (0,0,1), (e) (1,0,1), and (f) (0,1,1). The dipole length
d� = 600r0 for all these wave functions.
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from the avoided crossings between states with different angular
momentum character.

scaling given by Eq. (25), but such splittings become finer with
a sharper short-range cutoff function f (r) as both expected
from Eq. (24) and verified by our numerical calculations.

B. Weakly bound states

For weakly bound states, we first discuss the properties
of such states away from a dipole-dipole resonance. These
properties are important in determining the scaling laws
for three-dipole recombination [22] and possibly also for
the vibrational relaxation of a weakly bound dipolar dimer
in an off-resonant situation. To this end, we introduce the
characteristic size rc and the characteristic energy Ec for the
weakly bound dipolar states as the expectation value of r and
the energy, respectively, for the state that is right below a
zero-energy bound state.

Figure 4 shows numerically calculated rc and Ec as d�

increases. In all cases it is shown that rc ∝ d� and Ec ∝ 1/md2
� .

These scalings contrast interestingly with the deeply bound
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FIG. 5. (Color online) The scaling behavior of the binding energy
Eb with d� and V

ml

l near p-wave resonances for fermionic dipoles.
The dipole length d� is tuned to have one or two bound states (BS)
for ml = 0 and ml = 1.
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states, where the sizes of the states shrink to r0 and the energies
grow deeper linearly with d�.

Near a dipole-dipole resonance where a zero-energy bound
state is formed, the binding energy of a weakly bound state is
closely related to the low-energy expansion of the scattering
phase shift. In the presence of the s-wave contribution (ml = 0
for bosons) the binding energy Eb can be written in terms
of the s-wave scattering length a

ml

l=0 as Eb ≈ 1/m(aml

l=0)2 by
finding the pole in the scattering amplitude [26]. When s-wave
contribution is absent, searching for a pole in the scattering am-
plitude is not straightforward due to an anomalous low-energy
expansion of the phase shifts [see Eq. (30)]. Nevertheless,
near a p-wave resonance for fermions we have numerically
identified that Eb ∝ d�/V

ml

l=1, where the scattering volume V
ml

l

diverges near a p-wave resonance. As shown in Fig. 5, the
proportionality constant in the scaling of Eb depends on ml

but is independent of the short-range interaction details as the
number of bound states changes.

IV. LOW-ENERGY SCATTERING PROPERTIES

In previous studies of two-dipole elastic scattering [12–21],
the behavior of the scattering cross sections has been studied
quite extensively. Our goal here, however, is to study the two-
dipole scattering by examining the low-energy expansion of
the phase shifts. Of particular interest are the phase shifts from
the lowest partial wave, which is the most sensitive to the
dipole-dipole resonances at zero energy.

In the present case where the angular momentum is not
conserved, we define the phase shifts δ

ml

l from the diagonal
scattering matrix elements S

ml

l,l :

δ
ml

l = ln
(
S

ml

l,l

)/
2i. (26)

In the presence of couplings between different partial waves,
δ

ml

l acquires an imaginary part that characterizes off-diagonal
scattering amplitudes. The real part of δ

ml

l controls the elastic
scattering. While dipole-dipole scattering is multichannel,
some insights into the low-energy expansion for Re[δml

l (k)]
can be gained from the single-channel scattering with a 1/r3

potential [27–29]: Re[δml

l (k)] ∼ −a
ml

l k, where k = √
mE is

the scattering wave number.
The effective range expansion for short-range potentials

[30,31] has the following low-energy expansion of the phase
shift:

δl(k) = −ak − V k3 + O(k5), (27)

where the power of k increases by 2 for consecutive terms. For
dipolar scattering, however, our numerical study shows that
the phase shifts are in expansions with increments of k for all
partial waves:

Re
[
δ

ml

l (k)
] = −a

ml

l k − b
ml

l k2 − V
ml

l k3 + O(k4). (28)

Our discussion here is restricted up to the term that starts
showing nonuniversal behavior. As has been shown in previous
works [12–18], the scattering length a

ml

l shows nonuniversal
resonant behavior for l = 0. We have further verified that
in this case the resonant behavior persists in all higher
terms. For fermionic dipoles, our numerical study shows
nonuniversal resonant behavior starting from V

ml

l=1, while b
ml

l=1
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FIG. 6. (Color online) (a) The d� dependence of the coefficient
b

ml

l in the low-energy expansion of Re[δml

l (k)]. (b) The d� dependence
of the scattering volume V

ml

l .

remains universal. Nonuniversal resonant behavior is therefore
expected to start from the term of k2l0+1 for only l = l0, where
l0 is the lowest partial wave allowed for a given symmetry. For
the terms lower than k2l0+1 the coefficients are expected to be
universally determined by d�.

For l > 0, Bohn et al. [16] have analytically derived a
universal expression for the T matrix to the leading order in k;
the results can be readily used to give the following expression
for a

ml

l ,

a
ml

l = d�

D3(ml ; l,l)

2l(l + 1)
. (29)

Next we study the scaling behavior of b
ml

l and the scattering
volume V

ml

l by numerical calculations. The universality is
tested by adding an isotropic short-range interaction Viso =
V0sech2(r/r0). Figure 6(a) shows the d� dependence of a few
b

ml

l with different V0. It is clearly seen that b
ml

l follows a
d2

� scaling behavior that is independent of V0. An exception
for this universal behavior is b

ml=0
l=0 , where the nonuniversal

resonant behavior already begins in the lower term a
ml=0
l=0 . Nev-

ertheless, b
ml=0
l=0 is found to follow a universal d2

� background
scaling with nonuniversal resonant features on top. Table I lists
some numerically determined scaling coefficients.

The study of scattering volume is more challenging due to
the difficulty to numerically fit Eq. (30) to the third order
accurately. Our numerical study shows that the scattering
volume V

|ml |
l follows a d3

� scaling in general. For l = 1,
the lowest partial wave allowed for fermionic scattering,
nonuniversal resonant features are expected for V

|ml |
l=1 . Nev-

ertheless, a universal d3
� background scaling can be identified

TABLE I. The numerically calculated universal scaling for the
phase-shift expansion coefficient b

ml

l for a few symmetries.

ml l b
ml

l (units of d2
� )

0 1 −2.60 × 10−1

0 2 2.56 × 10−2

0 3 2.30 × 10−3

1 1 −8.32 × 10−2

1 2 −5.70 × 10−3

1 3 1.27 × 10−3
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from Fig. 6(b). The positions of the resonant features clearly
depend on the short-range interaction as tuned by V0, but the
background scaling remains unaltered.

Finally we discuss the low-energy expansion for the
imaginary part for the phase shift Im[δml

l (k)]. The following
expansion,

Im
[
δ

ml

l (k)
] = −c

ml

l k2 + O(k3), (30)

is found from our numerical calculations, indicating a
vanishing imaginary part in the scattering length when kd� �
1. By using the unitary constraint on the diagonal element of
the S matrix to leading order, c

ml

l can be determined as

c
ml

l = −d2
�

12

{[
D3(ml ; l,l − 2)

l(l + 1)

]2

+
[
D3(ml ; l,l + 2)

(l + 1)(l + 2)

]2}
(31)

for all partial waves.

V. SUMMARY

To summarize, we have studied the universal properties for
two dipoles. The long-range, anisotropic dipolar interaction

brings rich, universal physics that has key implications for
the universal three-dipole physics. This is shown particularly
for both the deeply bound and the weakly bound sides of
the dipolar spectrum. For the deeply bound dipolar states,
the pendulum motion between the dipoles gives rise to a
universal growth in the expectation value of the angular
momentum, which produces a centrifugal barrier between a
dipole and a dipolar dimer [22,23]. For the weakly bound
states, general scalings of the binding energy and the size
of the states are identified, despite the complicated level
crossings for states with different angular momentum char-
acters. Finally, the low-energy scattering phase shifts for two
dipoles are predominantly determined by the dipole length,
with some nonuniversal ingredients that give rise to resonant
features.

ACKNOWLEDGMENTS

This work is supported in part by the AFOSR-MURI and
by the National Science Foundation. We thank J. P. D’Incao
and J. L. Bohn for stimulating discussions.

[1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er,
B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S.
Jin, and J. Ye, Science 322, 231 (2008); S. Ospelkaus, K. K. Ni,
G. Quemener, B. Neyenhuis, D. Wang, M. H. G. de Miranda, J. L.
Bohn, J. Ye, and D. S. Jin, Phys. Rev. Lett. 104, 030402 (2010);
Johann G. Danzl, Manfred J. Mark, Elmar Haller, Mattias
Gustavsson, Russell Hart, Jesus Aldegunde, Jeremy M. Hutson,
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