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The two-body Coulomb scattering problem is solved using the standard complex-scaling method. The explicit
enforcement of the scattering boundary condition is avoided. Splitting of the scattering wave function based on
the Coulomb modified plane wave is considered. This decomposition leads to a three-dimensional Schrödinger
equation with a source term. Partial-wave expansion is carried out and the asymptotic form of the solution is
determined. This splitting does not lead to simplification of the scattering boundary condition if complex scaling
is invoked. An alternative splitting carried out only on the partial-wave level is introduced and this method is
proven to be very useful. The scattered part of the wave function tends to zero at large interparticle distances.
This property permits easy numerical solution: the scattered part of the wave function can be expanded on a
bound-state-type basis. The method can be applied not only for a pure Coulomb potential but also in the presence
of a short-range interaction.
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I. INTRODUCTION

For many years, the method of complex scaling (CS) has
been an excellent tool to calculate half-life times of resonance
states. CS has been successfully applied in many areas of
quantum physics [1,2] and was extended to collision processes
very early on [3,4]. However, a drawback of standard CS (or
uniform CS) emerged immediately after the introduction of
the method. For scattering problems, the CS procedure can be
applied only for short-range potentials [3,5]. This is indeed
serious since the long-range Coulomb interaction cannot be
neglected in the majority of the problems of atomic and nuclear
physics. Several modifications have been suggested [6–8], but
none of them has gained widespread acceptance. After these
initial applications, the scattering aspects of CS have been
neglected.

The turning point was the work in Ref. [9], where it was
shown that scattering calculations with exterior CS can be
successfully performed for long-range interactions. After this
pioneering work, the exterior CS method has been applied
for a variety of three-body Coulomb problems, even above
the three-body breakup threshold, with great success [10–13].
A comprehensive description of the exterior CS method and
benchmark calculations for the electron-hydrogen scattering
are given in [14]. The exterior CS method has proven to be one
of the most successful numerical methods to deal with collision
processes. However, recently, the exterior CS method has been
under scrutiny since in the method an artificial cutoff in some of
the interaction is used. To solve this problem, a modification
of the original exterior CS method has been suggested and
checked in two-body calculations [15,16]. An extension to the
three-body problem has also been sketched [17].

Recently, it was shown [18] that standard CS can be applied
for scattering problems when a short-range potential is added
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to the pure Coulomb interaction. The method is based on two
potential formalisms. A similar approach has been suggested
also in [19]. In the present paper, we rigorously develop a
method which is equally good for a pure Coulomb interaction
and for the general case too (i.e., a short-range potential is
added to the Coulomb interaction). This approach does not
rely on the two potential formalisms and a dangerous cutoff
will not be introduced.

In the case of a two-body problem, the wave function
depends on the interparticle coordinate r. The scattering
solution of the Schrödinger equation with momentum k is
denoted by ψ+(k,r). This wave function will be called the
three-dimensional (3D) wave function. It is assumed that
the wave function satisfies appropriate scattering boundary
conditions. The aim of the application of any CS method is
to introduce an alternative equation instead of the Schrödinger
equation with simplified boundary conditions. The expectation
is that the solution of this alternative equation is square
integrable, and therefore it can be approximated by bound-
state-type basis functions. In this way, the explicit use of the
complicated scattering asymptotic form of the wave function
can be avoided and the numerical calculation can be simplified.

In contrast to the resonance-state calculation in the scat-
tering problem, CS is not applied directly to the full wave
function. First, a splitting of the total-wave function is carried
out. The full scattering solution is searched for in the form

ψ+(k,r) = φ0(k,r) + ψsc+(k,r), (1)

where φ0(k,r) is a known function. From the Schrödinger
equation for the scattered part of the wave function, the so-
called driven Schrödinger equation (or Schrödinger equation
with a source term)

(E − Ĥ )ψsc+(k,r) = S(k,r) (2)

can be derived. The source term is given by S(k,r) = (Ĥ −
E)φ0(k,r). The Hamiltonian and energy are denoted by Ĥ and
E, respectively.
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We mention that the two-body Coulomb problem with a
source term has been recently thoroughly investigated in [20].
Complicated but exact solutions have been given for very
general sources. Basis functions with a proper two-body
scattering asymptotic have been generated from the exact
solutions and used in the J-matrix method [21]. The driven
Schrödinger equation has been applied for realistic three-body
scattering problems too [22,23]. However, in these works,
CS was not applied and the complicated scattering boundary
conditions were implemented using either the finite-element
method or Sturmian expansion.

The use of CS in scattering calculations means that the
coordinate r in Eq. (2) is replaced by reiθ , where 0 < θ < π/2.
The boundary condition is simplified if after complex scaling
the scattered part of the wave function goes to zero when the
interparticle distance tends to infinity. It is easy to see that this
property is fulfilled if ψsc+(k,r) contains only an outgoing
spherical wave. In the paper, this property will be investigated
for different splittings of the full wave function.

The organization of the paper is the following. In Sec. II,
the known expressions of the two-body Coulomb scattering
are reviewed. The driven Schrödinger equation is introduced
in Sec. III. The splitting of the total-wave function in Eq. (1) is
carried out on a 3D level; however, the splitting can be carried
out only on a partial-wave (pw) level. Different 3D and pw
splittings will be considered and it will be shown that there
are cases when the 3D and pw splittings are not equivalent.
The Coulomb modified plane wave (CMPW) plays a basic
role in the recent surface integral formalism of the scattering
theory [24,25]. The properties of the 3D splitting based on the
CMPW will be investigated in Sec. IV. A useful pw splitting
from the point of view of CS will be introduced in Sec. V.
Finally, numerical examples will be presented both for the pure
Coulomb case and for a potential having short- and long-range
parts. The conclusions will be given in Sec. VII.

II. EXACT SOLUTIONS OF THE TWO-BODY
COULOMB PROBLEM

First, we collect a few known expressions [26] for the
two-body Coulomb scattering in order to fix the notations. As
usual, we take h̄ = m = e = 1 (where m is the reduced mass);
the energy is E = k2/2 > 0 and the Coulomb potential reads
γ k/r , where γ is the Sommerfeld parameter. We consider
the Schrödinger equation with a pure two-body Coulomb
interaction, (

−1

2
�r + γ k

r
− k2

2

)
ψ(k,r) = 0, (3)

where �r is the Laplace operator. The Coulomb scattering
state

ψ+
c (k,r) = e−πγ/2�(1 + iγ )eikrM(−iγ,1,ikr − ikr) (4)

is a solution of (3). Here, M(a,b,z) is the regular confluent
hypergeometric function [27]. The partial-wave expansion is
given by the well-known form

ψ+
c (k,r) =

∞∑
l=0

(2l + 1)ψ+
l (k,r)Pl(cos ϑ), (5)

where Pl(z) is the Legendre polynomial and ϑ is the angle
between the vectors k and r. The full radial part ψ+

l (k,r)
is expressed with the help of the regular Coulomb function
Fl(k,r) as

ψ+
l (k,r) = 1

kr
il exp(iσl)Fl(k,r). (6)

The explicit formula reads

ψ+
l (k,r) = �(l + 1 + iγ )

�(2l + 2)
e−γπ/2e−ikr (2ikr)l

×M(l + 1 − iγ,2l + 2,2ikr), (7)

and the Coulomb phase shift is defined by e2iσl = �(l + 1 +
iγ )/�(l + 1 − iγ ). The pw components ψ+

l (k,r) satisfy the
radial Schrödinger equation[

− 1

2r

d2

dr2
r + l(l + 1)

2r2
+ γ k

r
− k2

2

]
ψl(k,r) = 0. (8)

The Coulomb scattering function can be split into so-called
incoming and scattered waves [28]. Using the identity 7.2.2.9
in [29], we can write

ψ+
c (k,r) = ψi(k,r) + ψs(k,r), (9)

where

ψi(k,r) = eπγ/2eikrU (−iγ,1,ikr − ikr), (10)

and

ψs(k,r) = eπγ/2 �(1 + iγ )

�(−iγ )
eikrU (1 + iγ,1,ikr − ikr). (11)

The notation U (a,b,z) stands for the irregular confluent hyper-
geometric function [27]. Interestingly, not only ψ+

c (k,r) but
the functions ψi(k,r) and ψs(k,r) satisfy the 3D Schrödinger
equation (3).

The partial-wave expansions of the incoming and scattered
parts are given in [28]. Later we will use them, so we quote
the main result of paper [28]. We use a very similar notation
as in [28], however, we have rewritten the Whittaker function
W in terms of U .

The pw expansions of ψi(k,r) and ψs(k,r) are given in the
same form as (5), but the pw components now read

ψi,l(k,r) = ωi,l(k,r) + χl(k,r) (12)

and

ψs,l(k,r) = ωs,l(k,r) − χl(k,r). (13)

We note that our definitions of ωi,l , ωs,l , and χl are constant
times of the original ones [28]. The explicit expressions are
the following:

ωi,l(k,r) = e−ikreγπ/2(−1)l+1(2ikr)l

×U (l + 1 − iγ,2l + 2,2ikr), (14)

ωs,l(k,r) = eikre2iσl+γπ/2(−1)l+1(2ikr)l

×U (l + 1 + iγ,2l + 2, − 2ikr), (15)
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and

χl(k,r) = eikr+γπ/2

2ikr

(−1)l

(2ikr)l
�(2l + 1)

�(l + 1 − iγ )

×
l∑

n=0

(−1)n(iγ − l)n
(−2l)nn!

(2ikr)n. (16)

The equation

ψ+
l (k,r) = ωi,l(k,r) + ωs,l(k,r) (17)

is also proven in [28]. We mention that the splitting (17) simply
follows from (7) if the function M(l + 1 − iγ,2l + 2,2ikr) is
rewritten in terms of the irregular confluent hypergeometric
functions U using equation 7.2.2.9 of [29].

Although the functions ψi(k,r) and ψs(k,r) are solutions of
the 3D Schrödinger equation (3), surprisingly the partial-wave
components ψi,l(k,r) and ψs,l(k,r) do not satisfy the radial
Schrödinger equation (8) (for details see [28]). This property
will be proven to be very important for our method.

By using the asymptotic expansion 13.5.2 of [27], we get
the asymptotic form of the Coulomb scattering wave function
in the well-known form

ψ+
c (k,r) = eikr(kr − kr)iγ

[
1 + O

(
1

kr

)]

+ fc( cos(ϑ))
eikr−iγ ln(2kr)

r

[
1 + O

(
1

kr

)]
,

(18)

where fc( cos(ϑ)) is the Coulomb scattering amplitude. The
function eikr(kr − kr)iγ is called the CMPW.

III. DRIVEN SCHRÖDINGER EQUATION

The scattering solution of the Schrödinger equation is
searched for in the form (1). From the Schrödinger equation (3)
with a simple rearrangement, the driven Schrödinger equation
(or Schrödinger equation with a source term)(

p2

2
+ 1

2
�r − γ k

r

)
ψsc+(k,r) = S(k,r) (19)

can be derived for ψsc+
c (k,r). The source term is given by

S(k,r) =
(

−1

2
�r + γ k

r
− k2

2

)
φ0(k,r). (20)

We mention that the driven Schrödinger equation (19) has been
studied in [20]. For quite general sources, very complicated
analytic solutions can be found [20]. The aim of our paper is
to derive an easy numerical method to solve (19) and, from
the scattered part of the wave function, deduce the scattering
amplitude.

The asymptotic form (18) inspires the following choice for
φ0(k,r):

φ0(k,r) = eikr(kr − kr)iγ . (21)

This splitting is based on the CMPW and it has been used
in [24,25] in order to derive the surface integral formalism of

the scattering theory. By using Descartes coordinates, it is easy
to derive a simple form for the source term,

S(k,r) = γ 2k

r(kr − kr)
eikr(kr − kr)iγ . (22)

We may try to use the splitting based in the incoming
Coulomb wave function, i.e., we make the choice

φ0(k,r) = ψi(k,r), (23)

instead of (21). In this case, we get S(k,r) = 0. This follows
from the fact that the function ψi(k,r) satisfies (3). Here we do
not get a driven Schrödinger equation; ψsc+(k,r) satisfies the
original homogeneous equation (3) and ψsc+(k,r) = ψs(k,r).

If we want to derive the pw form of the driven Schrödinger
equation (19), we have to have the pw expansions of the source
term,

S(k,r) =
∞∑
l=0

(2l + 1)Sl(k,r)Pl( cos(ϑ)), (24)

and of φ0(k,r),

φ0(k,r) =
∞∑
l=0

(2l + 1)φ0,l(k,r)Pl( cos(ϑ)). (25)

By using the operator identity [30]

�r = 1

r

d2

dr2
r − L̂2

r2
, (26)

where L̂2 is the square of the orbital angular momentum
operator, we can derive the partial-wave form of the driven
Schrödinger equation (19) as[

k2

2
+ 1

2r

d2

dr2
r − l(l + 1)

2r2
− γ k

r

]
ψsc+

l (k,r) = Sl(k,r),

(27)

where

ψsc+(k,r) =
∞∑
l=0

(2l + 1)ψsc+
l (k,r)Pl( cos(ϑ)). (28)

Later, it will prove to be very useful if we make the splitting
of the scattering wave function not in the 3D form (1), but on
the pw level. We take the pw component of the scattering wave
function in the form

ψ+
l (k,r) = φ̃0,l(k,r) + ψ̃sc+

l (k,r), (29)

where φ̃0,l(k,r) is a fixed known function and ψ̃sc+
l (k,r) is

considered as an unknown function. From the partial-wave
Schrödinger equation, we get the nonhomogeneous differential
equation[

k2

2
+ 1

2r

d2

dr2
r − l(l + 1)

2r2
− γ k

r

]
ψ̃sc+

l (k,r) = S̃l(k,r),

(30)

where

S̃l(k,r) =
[
− 1

2r

d2

dr2
r + l(l + 1)

2r2
+ γ k

r
− k2

2

]
φ̃0,l(k,r).

(31)
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If we take φ̃0,l(k,r) identical to the partial-wave component
of φ0(k,r), i.e., φ̃0,l(k,r) = φ0,l(k,r), then the source terms
Sl(k,r) and S̃l(k,r) are identical if in Eq. (20) the action
of the Laplace operator can be given in the form (26). This
replacement, however, is valid only for those functions which
are finite at r = 0 (see [30], p. 496).

In the case of splitting based on (23), the function ψi(k,r)
is not finite at r = 0. In this circumstance, the 3D splitting
and the pw level splitting are different. We have already seen
that the 3D splitting based on (23) does not lead to a driven
Schrödinger equation. However, if we make the pw splitting

ψ+
l (k,r) = ψi,l(k,r) + ψ̃sc+

l (k,r), (32)

i.e., we take φ̃0,l(k,r) = ψi,l(k,r), then we get a driven radial
Schrödinger equation. The direct calculation of (31) gives the
following source term:

S̃l(k,r) = eikr+γπ/2

2r2�(−iγ )
. (33)

Interestingly, the source term is independent from l. The
derivation of (33) is given in Appendix A.

IV. PARTIAL-WAVE EXPANSION AND
ASYMPTOTIC FORMS

The pw expansion of ψi(k,r) is given in [28] and we
have reviewed it earlier. We now determine the corresponding
expansion of the CMPW. The pw expansion of the CMPW is
written in the standard form

eikr(kr − kr)iγ =
∞∑
l=0

(2l + 1)τl(k,r)Pl( cos(ϑ)), (34)

and the radial functions are given by the integral

τl(k,r) = 1

2
(kr)iγ

∫ 1

−1
eikrx(1 − x)iγ Pl(x)dx. (35)

A compact expression for the pw component of the CMPW
can be given for arbitrary l. Using (35) and the integral 2.17.5.6
in [29], we get

τl(k,r) = (−iγ )l
(1 + iγ )l+1

(2kr)iγ eikr
2F2(1 + iγ,

1 + iγ ; l + 2 + iγ,1 + iγ − l; −2ikr), (36)

where (a)n is the Pochhammer symbol.
For the application of complex scaling, we have to know the

asymptotic behavior of the scattered part of the wave function,
ψsc+

l (k,r). Here we derive formulas valid at large r values.
With the help of the expression 13.5.2 from [27], we get the
following asymptotic expansions valid at r → ∞:

ωi,l(k,r) ∼ e−ikr (2kr)iγ

2ikr
(−1)l+1

∞∑
n=0

al
i,n

1

(2ikr)n
(37)

and

ωs,l(k,r) ∼ eikr (2kr)−iγ

2ikr
e2iσl

∞∑
n=0

al
s,n

1

(2ikr)n
. (38)

The expansion coefficients are given by al
i,n = (−1)n(l + 1 −

iγ )n(−l − iγ )n/n! and al
s,n = (l + 1 + iγ )n(−l + iγ )n/n!.

These asymptotic forms show that with the help of the splitting
(17), the incoming and outgoing spherical waves are clearly
separated in the pw Coulomb scattering wave function.

In order to derive an asymptotic expansion of τl(k,r),
we express (36) in terms of Meijer’s G function. By using
5.11.1(2) from [31], we get

τl(k,r) = eikr (2kr)iγ (−1)l

×G
1,2
2,3

(
2ikr

∣∣∣∣−iγ, −iγ

0, −1 − iγ − l, l − iγ

)
. (39)

We are interested in the asymptotic behavior after CS is carried
out, i.e., r is replaced by reiθ and 0 < θ < π . We give the
asymptotic expansion valid in this case. By considering the
expression 6.5.32 from [27], we can derive

τl(k,reiθ ) ∼ e−ikreiθ

2ikreiθ
(2kreiθ )iγ (−1)l+1

∞∑
n=0

dl
n(−2)n

(2ikreiθ )n
, (40)

where the expansion coefficients satisfy the recursion

4(n + 1)dl
n+1 = 2[2n2 − n(2iγ − 1) − l2 − l − iγ ]dl

n

−n(n − l − iγ − 1)(n + l − iγ )dl
n−1,

(41)

and dl
0 = 1.

Since the pw components are related to each other by the
simple relation

ψ+
l (k,r) = τl(k,r) + ψsc+

l (k,r), (42)

and we have the splitting (17), we can write

ψsc+
l (k,r) = [ωi,l(k,r) − τl(k,r)] + ωs,l(k,r). (43)

We notice that the last term in (43), ωs,l(k,r), asymptotically
contains only an outgoing spherical wave [see Eq. (38)],
so the applicability of CS is determined by the behav-
ior of ωi,l(k,reiθ ) − τl(k,reiθ ) at r → ∞. Fortunately, the
asymptotic expansions of the functions ωi,l(k,r) and τl(k,r)
are carried out using the same asymptotic sequence of
functions {e−ikr (2kr)iγ (−1)l+1/(2ikr)n, n = 0,1,2, . . .}, so
we can simply add and subtract the asymptotic expansions as
required [32]. Using (37) and (40), we can write the following
asymptotic expansion:

[ωi,l(k,reiθ ) − τl(k,reiθ )] ∼ e−ikreiθ

2ikreiθ
(2kreiθ )iγ (−1)l+1

×
∞∑

n=0

al
i,n − dl

n(−2)n

(2ikreiθ )n
. (44)

Let us now investigate (44). We realize that al
i,0 − dl

0 = 0.
This means that in leading order, ψsc+

l (k,reiθ ) does not
contain a complex-scaled incoming spherical wave. However,
in higher orders, ψsc+

l (k,reiθ ) does contain a complex-scaled
“generalized” incoming spherical wave (e−ikr /rn, n > 1). This
means that the complex-scaled scattered part of the wave
function ψsc+

l (k,reiθ ) does not tend to zero as r → ∞.
This finding is demonstrated in Fig. 1. Both the left-hand

side and the right-hand side of (44) are displayed. From the
asymptotic expansion only, the next-to-leading order term is
considered (the leading-order term is zero). The real part of the
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R
e[

ω
i,0

(k
,r

eiθ
) 

- 
τ(

k,
re

iθ
)]

exact
asymptotic expansion

FIG. 1. The function ωi,0(k,r) − τ0(k,r) and the next-to-leading
order term of its asymptotic expansion (44) are complex scaled using
θ = 0.1. Only the real parts are displayed. The momentum is k = 3,
the Sommerfeld parameter is γ = 1/3, and l = 0. The solid line
denotes the exact values and the dashed line corresponds to the
asymptotic expansion (44).

function ωi,0(k,reiθ ) − τ0(k,reiθ ) first starts to oscillate with
decreasing order of amplitude; however, at larger r values, the
presence of the terms of the form e−ikreiθ

/(reiθ )n dominates
and the amplitude of the oscillation becomes larger and larger.

We have a very unfortunate result: if we use the 3D splitting
based on the CMPW, then the scattered part of the wave
function asymptotically contains both incoming and outgoing
spherical waves. This fact prevents the application of complex
scaling.

V. COMPLEX SCALING AND SCATTERING STATES

In the previous section, we have established that the splitting
of the wave function based on the CMPW, i.e., choice (21),
is useless from the point of view of CS. Now we turn to
the splitting (32), which is carried out on the pw level. The
scattered part of the wave function is given by

ψ̃sc+
l (k,r) = ωs,l(k,r) − χl(k,r). (45)

This equation follows from (12), (17), and (32). The asymp-
totic form (38) and the expression (16) for χl(k,r) show that
the scattered part of the wave function now contains only an
outgoing spherical wave and so complex scaling can be safely
applied. From (16) and (38), we get, in leading order,

ψ̃sc+
l (k,r) = e2iσl

eikr (2kr)−iγ

2ikr

[
1 + O

(
1

|2ikr|
)]

− eikr+γπ/2

2ikr

(−1)l�(2l + 1)

�(l + 1 − iγ )

×
[

(iγ − l)l
�(2l + 1)

+ O

(
1

|2ikr|
)]

. (46)

Let us make a variable transformation and replace r with
reiθ in the partial-wave driven Schrödinger equation (27), and
furthermore introduce a new function with the definition

ψ̃sc+
l,θ (k,r) = ei3θ/2ψ̃sc+

l (k,reiθ ), (47)

where θ is an arbitrary fixed real number. A simple calculation
gives the equation[

k2

2
+ e−2iθ 1

2r

d2

dr2
r − e−2iθ l(l + 1)

2r2
− e−iθ γ k

r

]
ψ̃sc+

l,θ (k,r)

= S̃l,θ (k,r), (48)

where the complex-scaled source term is defined by

S̃l,θ (k,r) = ei3θ/2S̃l(k,reiθ ). (49)

The advantage of the complex-scaled driven Schrödinger
equation (48) is that its solution behaves very simply asymp-
totically. If the scaling angle satisfies the condition 0 < θ < π ,
then from (46) it follows that

lim
r→∞ ψ̃sc+

l,θ (k,r) = 0. (50)

From the asymptotic form (46), we can establish the following
local representation of the partial-wave Coulomb S matrix:

e2iσl ≈ (2kreiθ )iγ
[
e−ikreiθ

2ikre−iθ/2ψ̃sc+
l,θ (k,r)

+ eγπ/2(−1)l(iγ − l)l
�(l + 1 − iγ )

]
, r → ∞. (51)

The local representation of the phase shift given in [15] is
different from (51) since the splittings of the scattering wave
function are distinct.

The function ψ̃sc+
l (k,r) is not regular at r = 0. However,

the validity of the limit

lim
r→0

rl+1ψ̃sc+
l (k,r) = 0 (52)

can be easily demonstrated. Details are given in Appendix B.
In order to give a simple boundary condition at r = 0,
we make the transformation hsc+

l,θ (k,r) = rl+1ψ̃sc+
l,θ (k,r). This

transformation leads to a regular function at r = 0. For the
new function, we get the differential equation(

k2

2
+ e−2iθ 1

2

d2

dr2
− e−2iθ l

r

d

dr
− e−iθ γ k

r

)
hsc+

l,θ (k,r)

= rl+1S̃l,θ (k,r). (53)

The price we pay for the simplification at r = 0 is the
appearance of a first-order derivative in the equation.

From the earlier considerations presented, it is obvious that
the method based on the splitting (32) can be extended to
the case when a short-range interaction Vs(r) is added to the
pure Coulomb interaction. In this case, the inhomogeneous
differential equation (53) is replaced by[

k2

2
+ e−2iθ 1

2

d2

dr2
− e−2iθ l

r

d

dr
− e−iθ γ k

r
− Vs(re

iθ )

]
×hsc+

l,θ (k,r) = rl+1Stot
l,θ (k,r), (54)

where the new source term reads

Stot
l,θ (k,r) = S̃l,θ (k,r) + ei3θ/2ψi,l(k,reiθ )Vs(re

iθ ). (55)

022702-5



I. HORNYAK AND A. T. KRUPPA PHYSICAL REVIEW A 85, 022702 (2012)

VI. NUMERICAL RESULTS

The differential equations (53) or (54) have to be solved
with the boundary conditions

hsc+
l,θ (k,0) = 0 (56)

and

lim
r→∞ hsc+

l,θ (k,r) = 0. (57)

In numerical calculations instead of (57), the boundary
condition

hsc+
l,θ (k,R) = 0 (58)

can be used. Here, R is a positive and otherwise arbitrary
large number. The boundary condition (58) is, of course, an
approximation, and how the result depends on R has to be
investigated. The value of R should be in the asymptotic region
where (46) is satisfied.

The finite-element method is chosen as a numerical tech-
nique for the solution of Eqs. (53) or (54). The method and
the basis functions used in any elements are described in [33].
The same method was used also in [15]. For the presented
calculations, equally spaced finite elements of length 1 are
taken. The degree of the Lobatto shape functions [33] is
denoted by N , and the same N value is used at each element.
The θ parameter of the CS was chosen to 0.1 radian.

First, the pure Coulomb case is considered, i.e., the potential
is given by 1/r . In this case, the numerical result can be
compared to the known analytical solution. The momentum
is k = 3 and the considered orbital angular momentum is
l = 0. The phase shift is calculated with the help of the local
representation (51). In this equation, for ψ̃sc+

l,θ (k,r), either
the exact solution or the approximate one determined by the
finite-element method can be used. In the second example, the
potential 7.5r2 exp(−r) is added to the previous pure Coulomb
term. The very same two cases were studied in [15], where
a different splitting of the wave function and the exterior
complex-scaling method were used.

The upper panel of Fig. 2 shows the results of the
calculations carried out using a pure Coulomb potential. In this
case, the exact solution (dashed black line) can be compared to
the numerical ones. In the finite-element method, the boundary
condition (58) is imposed at two different R values (R = 250
and 1000). We note that for r > R, the finite-element solution
is not defined. The boundary condition should be set at infinity
[see (57)], but a finite R value is taken, so it can be expected
that the numerical solution is not accurate enough around the
point where the boundary condition is set up. This can be
clearly seen in Fig. 2. If we choose R = 250, then there is
an oscillation with a large amplitude around r = 250. If the
boundary condition is set up at a larger R value, then the
oscillatory region is pushed out around this value. In Fig. 2,
the oscillatory region moved from r = 250 to r = 1000 simply
by changing the value of the parameter R from R = 250 to
R = 1000. The effect of the boundary condition is noticeable.
However, if this edge effect is not considered, then the local
representation of the phase shift is practically constant on a
huge region. This is a useful feature since it helps to determine
a unique value of the phase shift of the numerical calculation. In
contrast, the local approximation of the phase shift in [15] tends

200 400 600 800 1000
-0.18

-0.178

-0.176

ph
as

e 
sh

if
t exact

R=250
R=1000

200 400 600 800 1000
r

0.9

0.92

0.94

0.96

ph
as

e 
sh

if
t

Coulomb

Coulomb + short range

FIG. 2. (Color online) The local representation of the phase shift
for a pure Coulomb potential (upper panel) and for the general case
when a short-range potential is added to the Coulomb term (lower
panel). In the first case, the exact solution (dashed black line) is
also displayed. For the numerical solution, the boundary condition
is imposed at R = 250 [red (dark gray) line] and R = 1000 [green
(light gray) line]. A detailed discussion is given in the text.

to the exact value by a persistent oscillation with decreasing
order of amplitude.

The lower panel of Fig. 2 shows the results when the
short-range potential is added to the Coulomb interaction. This
modification does not change the previous observations. The
lower panel of Fig. 2 clearly demonstrates each of the previous
conclusions. The position of the boundary condition influences
the value of the phase shift only around the point r = R. The
phase shift calculated by the expression (51) is practically
independent from the value of r . We note that apart from the
oscillatory region around r = 250, the two numerical solutions

50 100 150 200 250
r

-0.179

-0.1785

-0.178

-0.1775

-0.177

ph
as

e 
sh

if
t

exact
N=10
N=50
N=100

FIG. 3. (Color online) The local representation of the phase
shift for a pure Coulomb potential. In the numerical solution, the
boundary condition is imposed at R = 250. The exact solution and
the numerical ones are displayed. In the numerical calculations, the
number of the Lobatto shape functions (N ) is varied.
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-0.1782

-0.1781

-0.178

ph
as

e 
sh

if
t

r=25
r=50
r=250
r=550

FIG. 4. The local representation of the phase shift for a pure
Coulomb potential as a function of the complex-scaling parameter.
Four different r values are considered and, in the local representation
of the phase shift, the exact wave function is used.

corresponding to the choices R = 250 and R = 1000 coincide
in the region 50 < r < 250. In this region, in Fig. 2 the red
(dark gray) and green (light gray) lines are indistinguishable
on the used scale.

The calculations displayed in Fig. 2 have been carried
out using 50 Lobatto shape functions on each element. We
investigate the dependence of the local representation of the
phase shift on the number of Lobatto functions used in the
finite-element method. The boundary condition (58) is set up
at R = 250. The results are depicted in Fig. 3. Apart from
the region around r = 250, the exact phase shift is reproduced
with three-digit accuracy with N = 50. The calculation with
N = 100 very well reproduces the exact solution (where
four-digit agreement is reached almost everywhere).

It remains to be checked how the complex-scaling param-
eter θ influences the calculated phase shift. Figure 4 displays
the local representation of the phase shift as the function of the
complex-scaling parameter. Four different r values are used.
In these calculations, the exact wave function is used in (51).
If the value of r is in the asymptotic region (e.g., r = 550),
then the calculated phase shift is independent from the value
of the complex-scaling parameter. For smaller r values, it is
advantageous to use a larger θ value to get better agreement
with the exact phase shift.

VII. SUMMARY

We have rigorously shown that the two-body scattering
problem of the pure Coulomb interaction can be solved
using the standard complex-scaling method. This is achieved
without using any cutoff of the long-range interaction. The
intricate scattering boundary condition is greatly simplified
and so the numerical solution can be plainly achieved. It is
obvious that the suggested driven Schrödinger equation can
be solved by the use of the exterior complex-scaling method
too. The advocated splitting of the total-wave function works
for general circumstances. It can be applied not only for a
pure Coulomb force, but also short-range interactions can be
added to the Coulomb potential. We found that the splitting
based on the Coulomb modified plane wave does not lead to

simplification of the boundary condition from the point of view
of complex scaling.
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APPENDIX A

In the case of the splitting (32), according to (31), the source
term reads

S̃l(k,r) =
[
− 1

2r

d2

dr2
r + l(l + 1)

2r2
+ γ k

r
− k2

2

]
× [ωi,l(k,r) + χl(k,r)]. (A1)

Since ωi,l(k,r) is just the Coulomb Jost solution [26,28], the
contribution from ωi,l(k,r) to the source is zero. By introducing
a new variable z = 2ikr and rewriting the summation in (16),
we have

S̃l(k,r) =
[
−k2

2
+ 2k2

z

d2

dz2
z − 2k2l(l + 1)

z2
+ 2iγ k2

z

]
χl(z),

(A2)

where

χl(z) = eγπ/2

�(1 − iγ )

ez/2

z

l∑
n=0

(l + 1)n(−l)n(1)n
(1 − iγ )n

z−n

n!
. (A3)

A direct calculation gives

S̃l(k,r) = 2k2eγπ/2

�(1 − iγ )

ez/2

z2

l∑
n=0

(l + 1)n(−l)n
(1 − iγ )n

×
[
iγ − n + n(n + 1) − l(l + 1)

z

]
z−n. (A4)

Rearranging the summation, we get

S̃l(k,r) = 2k2eγπ/2

�(1 − iγ )

ez/2

z2

×
{

iγ +
l−1∑
n=0

[
(l + 1)n(−l)n

(1 − iγ )n
[n(n + 1) − l(l + 1)]

+ (iγ − n − 1)
(l + 1)n+1(−l)n+1

(1 − iγ )n+1

]
z−n−1

}
. (A5)

Using the fact that the Pochhammer symbols satisfy the recur-
sion (a)n+1 = (a)n(a + n), we can show that the expression
inside the square bracket is zero, and so we have proven (33).

APPENDIX B

According to (13), in order to prove (52), it is enough to
show that

lim
r→0

rl+1ωs,l(k,r) = lim
r→0

rl+1χl(k,r). (B1)
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From definition (16), it follows that

lim
r→0

rl+1χl(k,r) = eγπ/2 (−1)l

(2ik)l+1

�(2l + 1)

�(l + 1 − iγ )
. (B2)

Considering (15), and the expression 7.2.2.3 from [29], the
function rl+1ωs,l(k,r) is a sum of three terms,

rl+1ωs,l(k,r) = Al(k,r) + Bl(k,r) + Cl(k,r), (B3)

where

Al(k,r) = −Kl(k)
M(l + 1 + iγ,2l + 2; −2ikr)

�(2l + 2)�(iγ − l)

× (−2ikr)2l+1 ln(−2ikr)eikr , (B4)

Bl(k,r) = −Kl(k)
eikr

�(2l + 2)�(iγ − l)

×
∞∑

n=0

f l
n

(l + 1 + iγ )n
(2l + 2)n

(−2ikr)n+2l+1

n!
, (B5)

and

Cl(k,r) = −Kl(k)
(2l)!eikr

�(l + 1 + iγ )

∞∑
n=0

(iγ − l)n
(−2l)n

(−2ikr)n

n!
.

(B6)

The following abbreviations are used:

Kl(k) = (−1)l+1

(2ik)l+1
e2iσl+γπ/2 (B7)

and

f l
n = �(l + 1 + iγ + n) − �(n + 1) − �(2l + 2 + n).

(B8)

The digamma function is denoted by �(z). From the ex-
pressions above, it is clear that limr→0 Al(k,r) = 0 and
limr→0 Bl(k,r) = 0. The limit value of Cl(k,r) as r →
0 is exactly the right-hand side of (B2), so we have
proven (52).
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