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QED calculation of the nuclear magnetic shielding for hydrogenlike ions
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(Received 26 January 2012; published 24 February 2012)

We report an ab initio calculation of the shielding of the nuclear magnetic moment by the bound electron
in hydrogenlike ions. This investigation takes into account several effects that have not been calculated before
to our knowledge (electron self-energy, vacuum polarization, nuclear-magnetization distribution), thus bringing
the theory to the point where further progress is impeded by the uncertainty due to nuclear-structure effects.
The QED corrections are calculated to all orders in the nuclear binding strength parameter and, independently,
to the leading order in the expansion in this parameter. The results obtained lay the groundwork for the high-
precision determination of nuclear magnetic dipole moments from measurements of the g factor of hydrogenlike
ions.
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I. INTRODUCTION

Much progress has occurred in recent years in the exper-
imental determination of the g factors of hydrogenlike ions
[1–4]. Measurements, accurate up to a few parts in 1011 [4],
were performed by studying a single ion confined in a Penning
trap. These experiments provided stringent tests of bound-state
quantum electrodynamics (QED) theory and yielded the best
determination yet of the electron mass [5].

In order to match the experimental accuracy, many so-
phisticated calculations have been performed during recent
years, in particular those of the one-loop self-energy [6–8], the
one-loop vacuum polarization [9], the nuclear recoil [10], and
the two-loop QED effects [11,12]. These calculations made it
possible to determine the electron mass from the experimental
values of the bound-electron g factor [13]. The theoretical
accuracy of the bound-electron g factor in hydrogenlike ions
is presently at the 10−11 level [12] for light elements up to
carbon, but deteriorates quickly for heavier elements because
of the unknown higher-order two-loop QED effects scaling
with the nuclear charge number Z as Z5.

The experimental investigations of the g factors of hy-
drogenlike ions were so far performed for ions with spinless
nuclei. However, when applied to ions with a nonzero nuclear
spin, such investigations can be useful as a new method for
the determination of the magnetic dipole moments of the
nuclei. This method has important advantages over the more
traditional approaches, such as nuclear magnetic resonance
(NMR), atomic beam magnetic resonance, collinear laser
spectroscopy, and optical pumping (OP). These advantages
are that (i) the simplicity of the system under investigation (a
hydrogenlike ion) allows for an ab initio theoretical description
with a reliable estimation of uncalculated effects and (ii) the
influence of the nuclear-structure effects (which are the main
limiting factors for theory) is relatively weak. This is in contrast
to the existing methods, in which the experimental data should
be corrected for several physical effects, which are difficult to
calculate. Among such effects is the diamagnetic shielding of
the external magnetic field by the electrons in the atom. The
NMR results should also be corrected for the paramagnetic

chemical shift caused by the chemical environment [14], and
the OP data are sensitive to the hyperfine mixing of the energy
levels [15]. Significant (and generally unknown) uncertainties
of calculations of these effects often lead to ambiguities in the
published values of nuclear magnetic moments [16].

The goal of the present investigation is to perform an
ab initio calculation of the g factor of a hydrogenlike ion
with a nonzero nuclear spin. It can be demonstrated that
the nuclear-spin-dependent part of the atomic g factor can
be parametrized in terms of the nuclear magnetic shielding
constant σ , which describes the effective reduction of the
coupling of the nuclear magnetic moment �μ to an external
magnetic field �B caused by the shell electron(s),

−�μ · �B → −�μ · �B (1 − σ ). (1)

The relativistic theory of the g factor of a hydrogenlike ion
with a nonzero nuclear spin (and, thus, the theory of the nuclear
magnetic shielding) was examined in detail in Ref. [17]. In the
present work, we go beyond the relativistic description of the
nuclear magnetic shielding and calculate the dominant correc-
tions to it, namely, the self-energy, the vacuum-polarization,
and the nuclear-magnetization-distribution corrections. As a
result, we bring the theory to the point where the uncertainty
due to nuclear-structure effects impedes further progress.

The main challenge of the present work is the calculation of
the self-energy correction. To the best of our knowledge, the
only previous attempt to address it was made in Ref. [18].
In that work, the self-energy contribution to the shielding
constant was estimated by the leading logarithm of its Zα

expansion (where α is the fine-structure constant). In our
work, we calculate the self-energy correction rigorously to
all orders in the binding nuclear strength parameter Zα and,
independently, perform an analytical calculation to the leading
order in the expansion in this parameter (including both the
logarithmic and constant terms). The first results of this work
were reported in Ref. [19].

The rest of the paper is organized as follows. In Sec. II
we summarize the relativistic theory of the g factor of
an ion with a nonzero nuclear spin and the theory of the
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nuclear magnetic shielding. Our calculation of the self-energy
and vacuum-polarization corrections to all orders in Zα is
described in Sec. III. In Sec. IV we report the calculation
of the QED correction to the nuclear magnetic shielding to
leading order in the Zα expansion. Section V deals with the
other effects, namely, the nuclear-magnetization distribution,
the nuclear recoil, and the quadrupole interaction. Numerical
results and discussion are given in Sec. VI. The paper ends
with conclusions in Sec. VII.

Relativistic units (m = h̄ = c = 1) and charge units α =
e2/(4π ) are used throughout this paper.

II. LEADING-ORDER MAGNETIC SHIELDING

We consider a hydrogenlike ion with a nonzero spin nucleus
placed in a weak homogeneous magnetic field �B directed
along the z axis. Assuming that the energy shift due to the
interaction with the �B field (the Zeeman shift) is much smaller
than the hyperfine-structure splitting (hfs), the energy shift can
be expressed in terms of the g factor of the atomic system gF ,

�E = gF μ0BMF , (2)

where B = | �B|, μ0 = |e|/(2m) is the Bohr magneton, e and m

are the elementary charge and the electron mass, respectively,
and MF is the z projection of the total angular momentum of
the system F . To leading order, the energy shift is given by

�E = 〈FMF |
[

− e

2
(�r × �α) · �B − �μ · �B

]
|FMF 〉, (3)

where |FMF 〉 ≡ |jIFMF 〉 is the wave function of the ion,
j and I are the angular momentum quantum numbers of the
electron and nucleus, respectively; �μ is the operator of the
magnetic moment of the nucleus. The matrix element (3) can
easily be evaluated, yielding the well-known leading-order
relativistic result [20]

g
(0)
F = g

(0)
j

〈 �j · �F 〉
F (F + 1)

− m

mp

gI

〈 �I · �F 〉
F (F + 1)

, (4)

where g
(0)
j is the Dirac bound-electron g factor [21], gI =

μ/(μNI ) is the nuclear g factor, μ = 〈II | �μ|II 〉 is the nuclear
magnetic moment, μN = |e|/(2mp) is the nuclear magneton,
mp is the proton mass, and 〈 �j · �F 〉 and 〈 �I · �F 〉 are the angular
momentum recoupling coefficients,

〈 �j · �F 〉 = [F (F + 1) − I (I + 1) + j (j + 1)]/2, (5)

〈 �I · �F 〉 = [F (F + 1) + I (I + 1) − j (j + 1)]/2. (6)

Generalizing the leading-order result to include the higher-
order correction, we write the atomic g factor gF as

gF = gj

〈 �j · �F 〉
F (F + 1)

− m

mp

gI (1 − σ )
〈 �I · �F 〉

F (F + 1)
. (7)

In the above equation, the bound-electron g factor gj = g
(0)
j +

α/(2π ) + · · · incorporates all corrections that do not depend
on the nuclear spin, whereas the nuclear shielding constant
σ parametrizes the nuclear-spin-dependent corrections. The
bound-electron g factor gj has been extensively studied during
recent years, both theoretically [8–12] and experimentally [1–

3]. The goal of the present work is the ab initio theoretical
description of the nuclear shielding parameter σ .

It can be seen from Eq. (7) that the nuclear-spin-dependent
contribution to the atomic g factor gF is suppressed by
the electron-to-proton mass ratio and thus is about three
orders of magnitude smaller than the nuclear-spin-independent
part proportional to gj . It is, however, possible to form a
combination of the atomic g factors which is free of the
nuclear-spin-independent contributions. So, for ions with the
nuclear spin I > 1

2 , we introduce the sum of the atomic g

factors g that is directly proportional to the nuclear magnetic
moment,

g ≡ gF=I+1/2 + gF=I−1/2 = −2
m

mp

μ

μNI
(1 − σ ). (8)

This combination of the g factors is particularly convenient
for the determination of the nuclear magnetic dipole moments
from experiment. Indeed, if both the gF=I+1/2 and gF=I−1/2

factors are measured and σ is known from theory, Eq. (8)
determines the nuclear magnetic moment μ. For the ions with
a nuclear spin I = 1

2 , Eq. (8) is not applicable and the nuclear
magnetic moment should be determined from Eq. (7).

Contributions to the nuclear magnetic shielding are de-
scribed by Feynman diagrams with two external interactions,
one with the external magnetic field (the Zeeman interaction),

VZee(r) = |e|
2

�B · (�r × �α), (9)

and the other with the magnetic dipole field of the nucleus (the
hfs interaction)

Vhfs(r) = |e|
4π

�μ · �r × �α
r3

. (10)

The leading-order contribution to the magnetic shielding
comes from the following energy shift:

�E = 2
∑
n�=a

1

εa − εn

〈a|VZee|n〉〈n|Vhfs|a〉, (11)

where the summation runs over the whole Dirac spectrum with
the reference state excluded. As follows from Eqs. (2) and (7),
contributions to the shielding constant δσ are obtained from
the corresponding energy shifts δE by

δσ = δE

μBMF
〈 �I · �F 〉

IF (F+1)

. (12)

For the electronic states with ja = 1/2, all nuclear quantum
numbers in Eq. (11) can be factorized out. The expression for
the shielding constant is then obtained by using the following
substitutions:

VZee → ṼZee ≡ (�r × �α)0, Vhfs → Ṽhfs ≡ (�r × �α)0

r3
,

|a〉 → |a1/2〉, |n〉 → |n1/2〉, (13)

2 → α (prefactor),

where the zero subscript refers to the zero spherical component
of the vector. Here and in what follows, |n1/2〉 ≡ |κn,μn = 1

2 〉
denotes the Dirac state with the relativistic angular quantum
number κn and the fixed momentum projection μn = 1/2.
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So, for ja = 1/2, the leading contribution to the magnetic
shielding is given by a simple expression

σ (0) = α
∑
n�=a

1

εa − εn

〈a1/2|ṼZee|n1/2〉〈n1/2|Ṽhfs|a1/2〉. (14)

Performing the angular integrations with help of Eq. (A3), one
gets for the ns reference state

σ (0) = α
∑

κn=−1,2

x2
κn

∑
n�=a

R(1)
an R(−2)

na

εa − εn

, (15)

where R(α) are radial integrals of the form

R
(α)
ab =

∫ ∞

0
dr r2+α[ga(r)fb(r) + fa(r)gb(r)], (16)

g(r) and f (r) are the upper and lower radial components of the
Dirac wave function, respectively, and the angular prefactors
xκn

are given by xκn=−1 = −2/3, xκn=2 = −√
2/3.

For the point-nuclear model, the sum over the Dirac
spectrum in the above expression can be evaluated analytically
[22–24] (see also more recent studies [17,25]),

σ (0) = −4αZα

9

(
1

3
− 1

6(1 + γ )
+ 2

γ
− 3

2γ − 1

)
= αZα

(
1

3
+ 97

108
(Zα)2 + · · ·

)
, (17)

where γ =
√

1 − (Zα)2. For the extended nucleus, the calcu-
lation is easily performed numerically [17].

III. QED CORRECTION

A. Self-energy: General formulas

The self-energy correction in the presence of the external
magnetic field and the magnetic dipole field of the nucleus
is graphically represented by six topologically nonequivalent
Feynman diagrams shown in Fig. 1. General expressions for
these diagrams are conveniently obtained by using the two-
time Green’s function method [26]. The resulting formulas are
summarized below.

1. Perturbed-orbital contribution

The irreducible contributions of diagrams in Figs. 1(a)–
1(c) can be represented in terms of the one-loop self-energy
operator 
. This part will be termed the perturbed-orbital

contribution. The corresponding energy shift is

�EPO = 2

〈

R

1

(εa − H )′
VZee

1

(εa − H )′
Vhfs

〉
+ 2

〈

R

1

(εa − H )′
Vhfs

1

(εa − H )′
VZee

〉
− 2

〈

R

1

(εa − H )2′ VZee

〉
〈Vhfs〉

− 2

〈

R

1

(εa − H )2′ Vhfs

〉
〈VZee〉

− 2 〈
R〉
〈
VZee

1

(εa − H )2′ Vhfs

〉
+ 2

〈
VZee

1

(εa − H )′

R

1

(εa − H )′
Vhfs

〉
, (18)

where we used the shorthand notations for the reduced Green’s
function

1

(εa − H )′
=

∑
n�=a

|n〉〈n|
εa − εn

, (19)

and its derivative
1

(εa − H )2′ =
∑
n�=a

|n〉〈n|
(εa − εn)2

. (20)

The (unrenormalized) self-energy operator 
(ε) is defined by
its matrix elements as follows:

〈i|
(ε)|k〉 = i

2π

∫ ∞

−∞
dω

∑
n

〈in|I (ω)|nk〉
ε − ω − u εn

, (21)

where I (ω) is the operator of the electron-electron interaction,
I (ω) = e2αμανD

μν(ω), Dμν(ω) is the photon propagator, αμ

are the Dirac matrices, and u ≡ 1 − i0, where i0 is a small
imaginary addition that defines the positions of the poles of
the electron propagators with respect to the integration contour.
The summation over n runs over the complete Dirac spectrum.
Renormalization of the one-loop self-energy operator is well
described in the literature; see, e.g., Ref. [27]. In this work, the
renormalized part of the self-energy operator is defined as


R(ε) = 
(ε) − β δm − (ε − �α · �p − VC − βm) B(1), (22)

where δm is the mass counterterm, β is the Dirac β matrix, B(1)

is the one-loop renormalization constant, VC is the binding
Coulomb potential of the nucleus, and the renormalization
is to be performed in momentum space with a covariant
regularization of ultraviolet (UV) divergences. Details on the
renormalization procedure and explicit formulas for 
R(ε) can
be found in Refs. [28,29].

(a) (b) (c) (d) (e f)

FIG. 1. Self-energy correction to the nuclear magnetic shielding. Double lines represent the electron in the binding nuclear field. The wavy
lines terminated by triangles represent the dipole hyperfine interaction with the nucleus and the wavy lines terminated by crosses represents
the interaction with the external magnetic field.
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2. Single-vertex contributions

The irreducible contribution of the diagram shown in
Fig. 1(d), together with the corresponding derivative term, is
referred to as the hfs-vertex contribution. It is given by

�Evr,hfs = 2

〈
�hfs,R

1

(εa − H )′
VZee

〉
+ 2

〈

′

R

1

(εa − H )′
VZee

〉
〈Vhfs〉, (23)

where �hfs,R ≡ �hfs,R(εa) is the renormalized part of the
three-point vertex representing the interaction with the hfs
field and 
′

R ≡ 
′
R(εa) is the derivative of the renormalized

self-energy operator over the energy argument, 
′
R(εa) =

d/(dε)
R(ε)|ε=εa
. The unrenormalized three-point hfs-vertex

operator is defined by its matrix elements as

〈i|�hfs(ε)|k〉 = i

2π

∫ ∞

−∞
dω

∑
n1n2

〈in2|I (ω)|n1k〉〈n1|Vhfs|n2〉(
ε − ω − uεn1

)(
ε − ω − uεn2

) .

(24)

The renormalized part of the operator is obtained as

�hfs,R(ε) = �hfs(ε) − Vhfs L(1) , (25)

where L(1) is the one-loop renormalization constant and the
renormalization is to be performed in momentum space with a

covariant regularization of UV divergencies; see Ref. [29] for
details.

The irreducible contribution of the diagram shown in
Fig. 1(e), together with the corresponding derivative term, is
referred to as the Zeeman-vertex contribution. It is given by

�Evr,Zee = 2

〈
�Zee,R

1

(εa − H )′
Vhfs

〉
+ 2

〈

′

R

1

(εa − H )′
Vhfs

〉
〈VZee〉, (26)

where the three-point Zeeman vertex is defined analogously to
the hfs vertex.

3. Double-vertex contribution

The contribution of the diagram shown in Fig. 1(f), together
with the corresponding derivative terms, will be termed the
double-vertex contribution. It is defined by

�Edvr = 2 〈�(εa)〉 + 〈
′′〉〈VZee〉〈Vhfs〉 + 〈�′
hfs〉〈VZee〉

+ 〈�′
Zee〉〈Vhfs〉 − 2

〈
VZee

1

(εa − H )′
Vhfs

〉
× i

2π

∫ ∞

−∞
dω

∑
a′

〈aa′|I (ω)|a′a〉
(−ω + i0)2

, (27)

where � denotes the four-point vertex containing both the
Zeeman and hfs interactions,

〈i|�(ε)|k〉 = i

2π

∫ ∞

−∞
dω

∑
n1n2n3

〈in3|I (ω)|n1k〉〈n1|VZee|n2〉〈n2|Vhfs|n3〉(
ε − ω − uεn1

)(
ε − ω − uεn2

)(
ε − ω − uεn3

) , (28)


′′ ≡ 
′′(εa) denotes the second derivative of the self-
energy operator over the energy argument, 
′′(εa) =
d2/(d2ε) 
(ε)

∣∣
ε=εa

, �′ ≡ �′(εa) denotes the derivative of the
vertex operator over the energy argument, and a′ denotes the
intermediate electron states with energy εa′ = εa . The last term
in Eq. (27) is added artificially, in order to make the whole
expression for �Edvr infrared (IR) finite. The same term will
be subtracted from the derivative contribution defined below;
see Eq. (29).

We note that all terms in Eq. (27) are UV finite, so that there
is no need for any UV regularization. There are, however, IR
divergences, which appear when the energy of the intermediate
electron states in the electron propagators coincides with the
energy of the reference state. The divergences cancel out in
the sum of individual terms in Eq. (27).

4. Derivative contribution

Finally, the remaining contribution will be called the
derivative term. It is given by

�Eder = 2

[
〈
′

R〉 + i

2π

∫ ∞

−∞
dω

∑
a′

〈aa′|I (ω)|a′a〉
(−ω + i0)2

]
×

〈
VZee

1

(εa − H )′
Vhfs

〉
. (29)

The second term in the square brackets is added artificially, in
order to compensate the IR reference-state divergence present
in the first term, making the total expression for �Eder IR
finite. Note that this term is exactly the same as the one added
to Eq. (27) but has the opposite sign.

Finally, the total self-energy correction is given by the sum
of the contributions discussed above,

�ESE = �EPO + �Evr,hfs + �Evr,Zee + �Edvr + �Eder,

(30)

which are given by Eqs. (18), (23), (26), (27), and (29),
respectively.

B. Self-energy: Calculation

The general formulas reported so far represent contributions
to the energy shift. We now have to separate out the nuclear
degrees of freedom and convert the corrections to the energy
into corrections to the shielding constant. In most cases, this is
achieved simply by using the substitutions (13). The double-
vertex contribution, however, requires an explicit angular
momentum algebra calculation for the separation of the nuclear
variables.

We will see that most of the corrections to the shielding
constant can be regarded as generalizations of the corrections
already discussed in the literature. So our present calculation
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will be largely based on previous investigations of the self-
energy correction to the Lamb shift [28,30], to the hyperfine
structure [31–33], and to the g factor [32–34]. A double-vertex
correction of a kind similar to that in the present work appeared
in the evaluation of the self-energy correction to the parity-
nonconserving transitions in Refs. [35,36]. However, in this
work we develop a different scheme for the evaluation of the
double-vertex contribution based on analytical representation
of the Dirac-Coulomb Green’s function.

1. Perturbed-orbital contributions

The matrix elements of the self-energy operator are diago-
nal in the relativistic angular momentum quantum number κ

and the momentum projection μ. Because of this, the angular
reduction of the perturbed-orbital contribution is achieved by
the same set of substitutions (13) as for the leading-order
magnetic shielding. The resulting contribution to the shielding
constant is conveniently represented as

�σPO = α 〈a1/2|
R(εa)|δ(2)a1/2〉
+α

〈
δ

(1)
hfsa1/2

∣∣
R(εa)
∣∣δ(1)

Zeea1/2
〉
, (31)

where the first-order perturbations of the reference-state wave
function are given by∣∣δ(1)

hfsa1/2
〉 =

∑
n�=a

|n1/2〉 1

εa − εn

〈n1/2|Ṽhfs|a1/2〉 , (32)

and ∣∣δ(1)
Zeea1/2

〉 =
∑
n�=a

|n1/2〉 1

εa − εn

〈n1/2|ṼZee|a1/2〉 , (33)

and |δ(2)a〉 is the standard second-order perturbation [37] of
the reference-state wave function induced by both interactions,
Ṽhfs and ṼZee. Note that only the diagonal in κ part of the
perturbed wave functions contributes to �σpo. The calculation
of the non-diagonal matrix elements of the self-energy operator
is performed by a straightforward generalization of the method
developed in Ref. [30] for the first-order self-energy correction
to the Lamb shift.

2. hfs-vertex contributions

The hfs-vertex correction to the energy shift (23) for
the reference state with ja = 1/2 can be converted to the
correction to the magnetic shielding by the substitution (13).
The result is

�σvr,hfs

= iα

2π

∫ ∞

−∞
dω

∑
n1n2

〈a1/2n2|I (ω)
∣∣n1 δ

(1)
Zeea1/2

〉〈n1|Ṽhfs|n2〉(
εa − ω − u εn1

)(
εa − ω − u εn2

)
−〈Ṽhfs〉 iα

2π

∫ ∞

−∞
dω

∑
n

〈a1/2n|I (ω)
∣∣n δ

(1)
Zeea1/2

〉(
εa − ω − u εn

)2 ,

(34)

where the covariant regularization of the ultraviolet diver-
gences is implicitly assumed. The right-hand side of Eq. (34)
differs from the vertex and reducible parts of the self-
energy correction to the hyperfine structure only in having

the perturbed wave function |δ(1)
Zeea〉 in place of one of the

reference-state wave functions |a〉. The main complication
brought by this difference is that the perturbed wave function
contains components with different values of the relativistic
angular quantum number κ . So, for the reference state with
κa = −1, the perturbed wave function has components with
κ = −1 and κ = 2, both of which contribute to the first term
in Eq. (34), denoted in the following as �σver,hfs. The second
(reducible) term contains only the κ = κa component of the
perturbed wave function and its calculation is done exactly as
described in Ref. [31]. Below, we present generalizations of
formulas derived in Refs. [31,33] needed for the evaluation of
�σver,hfs.

As explained in Ref. [31], the covariant separation of the UV
divergences is conveniently performed by dividing the vertex
contribution into zero- and many-potential parts, according to
the number of interactions with the binding Coulomb field in
the electron propagator,

�σver,hfs = �σ
(0)
ver,hfs + �σ

(1+)
ver,hfs. (35)

The zero-potential part is calculated in momentum space with
the dimensional regularization of the UV divergences. The
Fourier transform of the Ṽhfs is obtained by

(�r × �α)0

r3
→ (−4πi)

(�q × �α)0

�q2
, (36)

where �q = �p1 − �p2 is the transferred momentum. The con-
tribution of the zero-potential hfs-vertex part to the shielding
constant is

�σ
(0)
ver,hfs = −4πiα

∫
d �p1

(2π )3

d �p2

(2π )3
ψa1/2

( �p1)

× [�q × ��R(p1,p2)]0

�q2
ψδa1/2 ( �p2), (37)

where p1 and p2 are four-vectors with fixed time components
p1 = (εa, �p1), p2 = (εa, �p2), ψa and ψδa are the reference-state
and the perturbed wave functions, respectively, ψ = ψ†γ 0 is
the Dirac adjoint, and ��R is the renormalized one-loop vertex
operator [28]. For evaluation of the integrals over the angular
variables, it is convenient to use the following representation
of the vertex operator sandwiched between the Dirac wave
functions:

ψa( �p1) ��R(p1,p2) ψb( �p2)

= α

4π
[R1χ

†
κaμa

( �̂p1) �σ χ−κbμb
( �̂p2)

+R2χ
†
−κaμa

( �̂p1) �σ χκbμb
( �̂p2)

+ (R3 �p1 + R4 �p2)χ †
κaμa

( �̂p1)χκbμb
( �̂p2)

+ (R5 �p1 + R6 �p2)χ †
−κaμa

( �̂p1)χ−κbμb
( �̂p2)], (38)

where �̂p ≡ �p/| �p|, χκμ( �̂p) are the spin-angular Dirac spinors
[38], and the scalar functions Ri are given by Eqs. (A7)–(A12)
of Ref. [39]. Integration over the angular variables yields [cf.
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Eq. (30) of Ref. [33]]

�σ
(0)
ver,hfs = − α2

48π5

∑
κδa

xκδa
ila−lδa

∫ ∞

0
dp1r dp2r

∫ p1r+p2r

|p1r−p2r |
dqr

p1rp2r

qr

{R1 [p1rK1(κa, − κδa) − p2rK
′
1(κa, − κδa)]

+R2 [p1rK1(−κa,κδa) − p2rK
′
1(−κa,κδa)] + p1rp2r (R3 + R4) K2(κa,κδa) + p1rp2r (R5 + R6) K2(−κa, − κδa)},

(39)

where pir = | �pi |, qr = |�q|, κδa is the relativistic angular
quantum number of the perturbed wave function, ln = |κn +
1/2| − 1/2, xκ=−1 = −2/3, xκ=2 = −√

2/3, and the basic
angular integrals Ki(κ,κ ′) are defined and evaluated in the
Appendix.

The many-potential vertex contribution is free from UV
divergences and thus can be calculated in coordinate space.
The result after integration over the angular variables is

�σ
(1+)
ver,hfs =

∑
κδa=−1,2

xκδa

iα2

2π

∫ ∞

−∞
dω

×
∑
n1n2

R(−2)
n1n2

∑
J XJ (κ1,κ2) RJ (ω,an2n1δa)(

ε − ω − u εn1

)(
ε − ω − u εn2

)
− (subtraction), (40)

where R(−2)
n1n2

is the radial integral of hfs type given by Eq. (16),
XJ is the angular coefficient

XJ (κ1,κ2) = (−1)jδa−1/2

√
2

{
j1 j2 1
jδa ja J

} −κ1 − κ2√
3

C1(−κ2,κ1),

(41)

C1(κa,κb) is the reduced matrix element of the normalized
spherical harmonics given by Eq. (C10) of Ref. [28], RJ is the
relativistic generalization of the Slater radial integral given by
Eqs. (C1)–(C9) of Ref. [28], and the subtraction in the last line
of Eq. (40) means that the contribution of the free propagators
(already accounted for by the zero-potential term) needs to be
subtracted.

3. Zeeman-vertex contribution

The Zeeman-vertex correction to the energy shift (26) for
the reference state with ja = 1/2 can be converted to the
correction to the magnetic shielding by the substitution (13).
The result has a form analogous to that for the hfs-vertex
contribution,

�σvr,Zee = iα

2π

∫ ∞

−∞
dω

×
∑
n1n2

〈a1/2n2|I (ω)
∣∣n1 δ

(1)
hfsa1/2

〉〈n1|ṼZee|n2〉(
εa − ω − u εn1

)(
εa − ω − u εn2

)
−〈ṼZee〉 iα

2π

∫ ∞

−∞
dω

∑
n

〈a1/2n|I (ω)
∣∣n δ

(1)
hfsa1/2

〉(
εa − ω − u εn

)2 ,

(42)

where the covariant regularization of the UV divergences is
implicitly assumed. The above expression looks very similar
to Eq. (34) and can be evaluated almost in the same way, except

for the zero-potential vertex contribution. The expression for
the zero-potential Zeeman vertex contribution is different from
that in the hfs case because the momentum representation of
the interaction with a constant magnetic field involves a δ

function. The diagonal matrix element of the Zeeman vertex
operator was evaluated previously in Ref. [34]; here we present
the generalization of the formulas required for the nondiagonal
case.

The Fourier transform of the interaction with the external
magnetic field is given by

�B × �r → −i(2π )3 �B × �∇�p′δ3( �p − �p ′). (43)

The contribution of the zero-potential vertex to the shielding
constant is

�σ
(0)
ver,Zee = −iα

∫
d �p d �p ′

(2π )3
ψa1/2

( �p)

× [ �∇�p ′δ3( �p − �p ′) × ��R(p,p′)]0ψδa1/2 ( �p ′),
(44)

where the gradient �∇�p ′ acts on the δ function only. This
expression is transformed by integrating by parts and carrying
out the integration with the δ function analytically. The result
after the angular integration consists of two parts [cf. Eqs. (27)
and (36) of Ref. [34]],

�σ
(0)
ver,Zee = �σ

(0)
ver,Zee,1 + �σ

(0)
ver,Zee,2, (45)

where

�σ
(0)
ver,Zee,1 = α2

π

∑
κδa

xκδa
ila−lδa

∫ ∞

0

p2dp

8π3
A(ρ)

× [gag̃δaA1(κa,κδa) + faf̃δaA1(−κa, − κδa)

−pgafδaA2(κa, − κδa) − pfagδaA2(−κa,κδa)]

(46)

and

�σ
(0)
ver,Zee,2

= − α2

4π

∑
κδa

xκδa
ila−lδa

∫ ∞

0

p2dp

8π3

×{b1(ρ)[gaf
′
δaA2(κa, − κδa) + fag

′
δaA2(−κa,κδa)]

+ 1

p
b1(ρ)[gafδaA3(κa, − κδa) + fagδaA3(−κa,κδa)]

+ b2(ρ)[g̃agδaA4(κa,κδa) + f̃afδaA4(−κa, − κδa)]

+ b3(ρ)[gagδaA4(κa,κδa) − fafδaA4(−κa, − κδa)]},
(47)
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where g̃δa = εagδa + pfδa , f̃δa = εafδa + pgδa , g̃a = εaga +
pfa , f̃a = εafa + pga , g′ = dg(p)/dp, and f ′ = df (p)/dp,
the scalar functions A(ρ) and bi(ρ) are given by Eqs. (24) and
(30)–(32) of Ref. [34], and Ai(κ1,κ2) are the basic angular
integrals defined and evaluated in the Appendix.

Note that the expression for �σ
(0)
ver,Zee,2 is nonsymmetric

with respect to a and δa, but the result does not change when
the two wave functions are interchanged.

4. Double-vertex contribution

The double-vertex correction is defined by Eq. (27). All
parts of it are UV finite and thus can be evaluated in coordinate
space. We denote the individual terms in the right-hand side
of Eq. (27) by δiE and consider each of them separately,

�Edvr =
5∑

i=1

δiE. (48)

The first term is

δ1E ≡ 2〈�〉 = 2
i

2π

∫ ∞

−∞
dω

∑
n1n2n3

〈an3|I (ω)|n1a〉〈n1|VZee|n2〉〈n2|Vhfs|n3〉(
ε − ω − u εn1

)(
ε − ω − u εn2

)(
ε − ω − u εn3

) . (49)

After separating the nuclear variables and integrating over the angles, the contribution to the magnetic shielding is (for ja = 1/2)

δ1σ = iα2

2π

∫ ∞

−∞
dω

∑
n1n2n3

∑
J

Xdver
J (κ1,κ2,κ3)

RJ (ω,an3n1a) R(1)
n1n2

R(−2)
n2n3(

ε − ω − u εn1

)(
ε − ω − u εn2

)(
ε − ω − u εn3

) , (50)

where

Xdver
J (κ1,κ2,κ3) = (−1)J+ja−j2

2

∑
jn=1/2,3/2

(2jn + 1)

{
1 jn ja

J j1 j2

}{
1 jn ja

J j3 j2

}
κ1 + κ2√

3
C1(−κ2,κ1)

κ2 + κ3√
3

C1(−κ3,κ2).

(51)

Note that the expression for δ1σ is IR divergent when any two or all three of the intermediate states have the same energy as the
reference state: εn1 = εn2 = εa , εn2 = εn3 = εa , εn1 = εn3 = εa , εn1 = εn2 = εn3 = εa . The IR divergence cancels when all parts
of Eq. (27) are added together.

The contribution of the second term to the shielding is

δ2σ = α

2
〈ṼZee〉 〈Ṽhfs〉 〈
′′〉

= 4

9
R(1)

aa R(−2)
aa

iα2

2π

∫ ∞

−∞
dω

∑
n1n2n3

∑
J

(−1)J+ja−j1

2ja + 1
δκ1,κ2 δκ1,κ3

RJ (ω,an3n1a) Nn1n2 Nn2n3(
ε − ω − u εn1

)(
ε − ω − u εn2

)(
ε − ω − u εn3

) , (52)

where Nab is the normalization integral,

Nab =
∫ ∞

0
dx x2 (gagb + fafb). (53)

The expression for δ2σ is IR divergent when εn1 = εn2 = εn3 = εa .
The third term is given by

δ3σ = 1

3
R(1)

aa

iα2

2π

∫ ∞

−∞
dω

∑
n1n2n3

[ ∑
J XJ (κ1,κ2) δκ2,κ3 RJ (ω,an3n1a) R(−2)

n1n2
Nn2n3(

ε − ω − u εn1

)(
ε − ω − u εn2

)(
ε − ω − u εn3

)
+

∑
J XJ (κ2,κ3) δκ1,κ2 RJ (ω,an3n1a) Nn1n2 R(−2)

n2n3

(ε − ω − u εn1 )(ε − ω − u εn2 )(ε − ω − u εn3 )

]
, (54)

where

XJ (κ1,κ2) = 1√
2

{
j1 j2 1
ja ja J

} −κ1 − κ2√
3

C1(−κ2,κ1). (55)

The fourth term δ4σ is obtained from δ3σ by the obvious
substitution R(1) ↔ R(−2).

The fifth term is given by

δ5σ = −σ (0) iα

2π

∫ ∞

−∞
dω

∑
J

(−1)J

2ja+1 RJ (ω,aaaa)

(−ω + i0)2
. (56)

Finally, the total double-vertex contribution is given by the
sum of the five terms discussed above,

�σdvr =
5∑

i=1

δiσ. (57)

Despite the fact that the individual terms δiσ are IR divergent,
the sum of them is finite and can be evaluated without any
explicit regularization, provided that (i) the integration over
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)c()a( )d()b(

FIG. 2. Vacuum-polarization corrections to the nuclear magnetic shielding calculated in the present work. The double line represents
electron propagating in the binding nuclear field, the single line represents the free-electron propagator, the dashed line terminated by a cross
represents interaction with the binding Coulomb field, the wave line terminated by a triangle represents the dipole hyperfine interaction with
the nucleus, and the wave line terminated by a cross represents the interaction with the external magnetic field.

the frequency of the virtual photon in the self-energy loop
ω is performed after all five terms are added together and
(ii) the contour of the ω integration is suitably chosen. One can
show that if the ω integration is performed along the contour
consisting of the low-energy and high-energy parts, as e.g., in
Refs. [30,31], the integrand becomes regular at ω → 0 and,
therefore, can be directly evaluated numerically.

The numerical evaluation of the double-vertex correction
�σdvr was the most time-consuming part of our calculation,
due to the large number of the partial waves involved and
a four-dimensional radial integration in Eq. (50). The radial
integration was carried out with the help of the numerical
approach developed in our calculation of the two-loop self-
energy and described in detail in Ref. [29]. Because of
numerical cancellations between the five terms in Eq. (57),
especially in the region of small values of ω, we took
care to treat all five terms exactly in the same way. In
particular, the normalization integrals Nab in Eqs. (52) and
(54) were evaluated numerically, in order to be consistent
with the evaluation of Eq. (50), whereas the corresponding
contributions could have been evaluated more easily by taking
the derivative of the Dirac-Coulomb Green’s function.

C. Vacuum-polarization correction

Vacuum-polarization corrections to the magnetic shielding
calculated in the present work are shown in Fig. 2. The dia-
grams in Figs. 2(a)–2(c) come from the insertion of the Uehling
potential into the electron line of the leading-order magnetic
shielding, whereas the diagram in Fig. 2(d) respresents the
Uehling potential insertion into the hfs interaction. We note
that the diagram with the vacuum-polarization insertion into
the Zeeman interaction vanishes in the Uehling-potential
approximation. In our treatment, we neglect contributions with
additional Coulomb interactions in the vacuum-polarization
loop (which correspond to the Wichmann-Kroll part of the
one-loop vacuum polarization) and the additional diagram of
Wichmann-Kroll type with both hfs and Zeeman interactions
attached to the vacuum-polarization loop. We expect that the
part accounted for in the present work yields the dominant
contribution to the vacuum polarization correction.

The contribution of the diagrams in Fig. 2 (a)–2(c) is an
analog of the perturbed-orbital self-energy contribution and is
given by a similar expression,

�σVP,PO = α 〈a1/2|VUeh|δ(2)a1/2〉 + α
〈
δ

(1)
hfsa1/2

∣∣VUeh

∣∣δ(1)
Zeea1/2

〉
,

(58)

where VUeh is the Uehling potential,

VUeh(r) = −2α2Z

3mr

∫ ∞

0
dr ′r ′ρ(r ′)

× [K0(2m|r − r ′|) − K0(2m|r + r ′|)] (59)

and

K0(x) =
∫ ∞

1
dt e−xt

(
1

t3
+ 1

2t5

) √
t2 − 1, (60)

and the nuclear-charge density ρ is normalized by the condition∫
d�r ρ(r) = 1. We note that this contribution can also be

calculated by incorporating the Uehling potential into the
Dirac equation and reevaluating the leading-order magnetic
shielding, in this way accounting for the Uehling potential to
all orders. We performed calculations in both ways, which
ensured that the perturbations of the reference-state wave
function |δ(1)a〉 and |δ(2)a〉 are computed correctly.

The contribution of the diagram in Fig. 2(d) to the magnetic
shielding can be expressed as

�σVP,mag = α
∑
n�=a

1

εa − εn

×〈a1/2|ṼZee|n1/2〉〈n1/2|ṼVP,mag|a1/2〉, (61)

where

ṼVP,mag(r) = Ṽhfs(r)
2α

3π

∫ ∞

1
dt

√
t2 − 1

t2

×
(

1 + 1

2t2

)
(1 + 2mrt) e−2mrt (62)

is the hfs interaction modified by the vacuum-polarization
insertion.

IV. QED CORRECTION FOR SMALL
NUCLEAR CHARGES

In the previous section, we calculated the QED corrections
to the magnetic shielding without any expansion in the nuclear
binding strength parameter Zα. Now we turn to the evaluation
of these corrections within the expansion in this parameter.
We will derive the complete expression for the leading term of
the Zα expansion, which enters in the relative order δσ/σ ∼
α(Zα)2. The results obtained in this section will be applicable
for light hydrogenlike ions, where no all-order calculations
were possible because of large numerical cancellations. They
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will also provide an important cross-check with the all-order
calculations described in the previous section.

For the derivation, it is convenient to use the formalism
of the nonrelativistic quantum electrodynamics (NRQED). In
this approach, all QED effects are calculated by an expansion
in powers of α and Zα and represented as expectation
values of various effective operators on the nonrelativistic
reference-state wave function. Let us start with the effective
Hamiltonian HNRQED, which includes leading one-loop radia-
tive corrections:

HNRQED = �π2

2m
+ eA0 − e

6

(
3

4m2
+ r2

E

)
�∇ · �E

+ e

12m

(
r2
E − 3κ

4m2

)
{ �π, �∇ × �B}

− e2

2

(
1

4m3
+ αM

)
�B2, (63)

where {·,·} denotes an anticommutator and �π = �p − e �A. The
QED effects in the above Hamiltonian are parametrized in
terms of the constants κ , rE , and αM , which are interpreted
as the electron magnetic moment anomaly, the charge radius,
and the magnetic polarizability, respectively,

κ = α

2π
, (64)

r2
E = 3 κ

2m2
+ 2α

πm2

(
ln

m

2ε
+ 11

24

)
, (65)

αM = 4α

3πm3

(
ln

m

2ε
+ 13

24

)
, (66)

where ε is the photon momentum cutoff. In the non-QED
limit, all QED constants vanish, r2

E = αM = κ = 0, and the
effective Hamiltonian HNRQED turns into the Schrödinger-Pauli
Hamiltonian.

The QED constants r2
E and αM depend explicitly on the

the photon momentum cutoff parameter ε. This dependence
cancels out with contributions coming from the emission and
absorption of virtual photons with energy smaller than ε. The
complete expression for any physical quantity, e.g., the Lamb
shift or the shielding constant, does not depend on the artificial
photon cutoff parameter.

The above formula for r2
E is obtained from the well-known

expressions for the one-loop radiative corrections to the
electromagnetic form factors F1 and F2 [40]. The formula
for αM has not appeared in the literature previously to our
knowledge. We have derived it by a method similar to that
used in Ref. [41] for the electric polarizability, denoted by χ

in that work.
We will start by rederiving the known nonrelativistic

expression for the shielding constant within our approach.
It comes from the �A2 term in the electron kinetic energy in
Eq. (63). The electromagnetic potential �A is the sum of the
external magnetic potential �AE ,

�AE = 1
2

�B × �r, (67)

and the potential induced by the nuclear magnetic moment,

�AI = 1

4π
�μ × �r

r3
. (68)

The corresponding energy shift is

δE = e2

2m
〈 �A2〉 = e2

m
〈 �AE · �AI 〉

= α

2m

〈
( �B × �r) ·

(
�μ × �r

r3

)〉
, (69)

where the matrix elements are calculated with the nonrelativis-
tic wave function. The shielding constant σ is obtained from
the energy shift δE via δE = σ �μ · �B. For the ground (L = 0)
hydrogenic state, the nonrelativistic result is

σ = α

3m

〈
1

r

〉
. (70)

Before considering the QED effects on the shielding
constant, it is convenient to first recalculate the leading QED
correction to the energy levels. The total contribution is split
into two parts induced by the virtual photons of low (L) and
high (H ) energy,

δELamb = δEL + δEH . (71)

The high-energy part is the expectation value of the �∇ · �E term
in the effective Hamiltonian in Eq. (63),

δEH =
〈
− e

6
r2
E

�∇ · �E
〉

= 2

3

(Zα)4

n3
r2
Eδl0

= α

π

(Z)4

n3

(
4

3
ln

m

2ε
+ 10

9

)
δl0, (72)

where �E = −�∇A0 and A0 = −Ze/(4πr). The vacuum polar-
ization can be incorporated in the above expression by adding
−2α/(5πm2) to r2

E in Eq. (65). The low-energy part δEL

is induced by the emission and the absorption of the virtual
photons of low (k < ε) energy,

δEL = e2
∫ ε

0

d3k

(2π )3 2k

(
δij − kikj

k2

) 〈
pi

m

1

E − H − k

pj

m

〉
= 2α

3π

〈 �p
m

(H − E)

{
ln

[
2ε

m(Zα)2

]
− ln

[
2(H − E)

m(Zα)2

]} �p
m

〉
. (73)

The terms containing ln ε cancel out in the sum of the low- and
high-energy parts, as expected. The total leading-order Lamb
shift contribution is

δELamb = α

π

(Zα)4

n3

{
4

3
ln

[
(Z)−2

]
δl0

+
(

10

9
− 4

15

)
δl0 − 4

3
ln k0(n,l)

}
, (74)

where ln k0(n,l) is the Bethe logarithm,

ln k0(n,l) = n3

23(Zα)4

〈
�p (H − E) ln

[
2 (H − E)

m(Zα)2

]
�p
〉
. (75)

We now turn to the calculation of the QED correction to
the magnetic shielding, which is performed similarly to that
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for the Lamb shift. The total contribution is split into the low-
and the high-energy parts:

δE = δEL + δEH , (76)

where

δEL = e2
∫ ε

0

d3k

(2π )32k

(
δij − kikj

k2

)〈
πi

m

1

E − H − k

πj

m

〉
(77)

and

δEH = −2

〈
e

6
r2
E

�∇ · �E 1

(E − H )′
�A 2

2m

〉
+

〈
e

12m

(
r2
E − 3 κ

4m2

)
{ �π, �∇ × �B}

〉
−

〈
e2

2
αM

�B 2
〉
.

(78)

The high-energy part can be conveniently rewritten in the
form

δEH = 1

9
Zα2r2

E

〈
1

r

1

(E − H )′
4πδ3(r)

〉
�μ · �B

− 2πα

3m

(
r2
E − 3κ

4m2

)
〈 �AE · �∇ × �BI 〉

− 4πααM〈 �B · �BI 〉. (79)

In the low-energy part, we separate out ln ε and then
perform an expansion in the magnetic fields,

δEL = δELA + δELB, (80)

δELA = − 2α

3π

〈 �π
m

(H − E) ln
2(H − E)

m(Zα)2

�π
m

〉
, (81)

δELB = 2α

3π

〈 �π
m

(H − E)
�π
m

〉
ln

2ε

m(Zα)2
. (82)

Using the identity

2

〈 �π
m

(H − E)
�π
m

〉
=

〈[ �π
m

,

[
H − E,

�π
m

]]〉
=

〈
4πZαδ3(r) + e

2m3
{ �π, �∇ × �B} + 2 e2

m3
B2

〉
, (83)

we transform δELB to the form

δELB

= α

3 π
ln

[
2 ε

m(Zα)2

][
2

〈
α

3r

1

(E − H )′
4πZαδ3(r)

〉
�μ · �B

− 4πα〈 �AE · �∇ × �BI 〉 + 16πα〈 �B · �BI 〉
]
. (84)

The artificial parameter ln ε cancels out in the sum δELB +
δEH separately for each type of matrix element,

δELB + δEH = 2

9

α2

π
Zα

[
ln(Zα)−2 + 5

6
− 1

5

]
× �μ · �B

〈
4πδ3(r)

1

E − H )′
1

r

〉

− 4

3
α2

[
ln(Zα)−2 + 31

48
− 1

5

] 〈 �AE · �∇ × �BI

〉
+ 16

3
α2

[
ln(Zα)−2 − 13

24

] 〈 �B · �BI

〉
. (85)

Using the following results for the matrix elements with nS

states: 〈
4πδ3(r)

1

(E − H )′
1

r

〉
= −6(Zα)2

n3
, (86)

〈 �AE · �∇ × �BI 〉 = (Zα)3

πn3
�μ · �B, (87)

〈 �B · �BI 〉 = 2

3π

(Zα)3

n3
�μ · �B, (88)

we obtain

δELB + δEH = 8α2

9π

(Zα)3

n3

[
ln(Zα)−2 − 421

96
+ 3

5

]
�μ · �B.

(89)

The calculation of the remaining low-energy contribution
δELA is slightly more complicated. We first return to the
integral form of δEL, derive an expression for δELA, and then
drop all terms with ln ε, as they are already accounted for by
δELB . The integral form of δEL is

δEL = 2α

3π

∫ ε

0
k dk

〈 �π
m

1

E − H − k

�π
m

〉
. (90)

It can be rewritten, using the identity �π = −im[�r,H − E], in
the form

δEL = 2α

3π

∫ ε

0
k3 dk

〈
�r 1

E − H − k
�r
〉
. (91)

All terms with positive powers of ε are discarded, since one
assumes that the limit ε → 0 is taken after the expansion in α

is done. We shall now expand the integrand in Eq. (91) in the
magnetic fields. The Hamiltonian H is

H = H0 + α

3r
�μ · �B − e

2m
�L · �B − e

4πmr3
�L · �μ , (92)

where H0 = p2/(2m) − Zα/r . The first term with �B in
Eq. (92) can be absorbed into Z′ = Z − �μ · �B/3. So the
correction due to this term is

δEL1 = 4α

3π
(Z′α)4

{
ln

[
2 ε

m(Z′α)2

]
− ln k0

}
= 16α2

9π

(Zα)3

n3
�μ · �B

{
ln k0 + 1

2
− ln

[
2ε

m(Zα)2

]}
.

(93)
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The correction due to the two last terms in Eq. (92) is

δEL2 = 2α2

3πm2

∫ ε

0
dk k3

〈
�r 1

E − H − k
�L · �B 1

E − H − k

�μ · �L
r3

1

E − H − k
�r
〉

= 2 α2

9 π
�μ · �B

∫ ε

0
dk k3 d

dk

〈
�r 1

E − H − k

1

r3

1

E − H − k
�r
〉
.

(94)

Integrating by parts and using the results and the notation of ln k3 from Ref. [12],∫ ε

0
dk k2

〈
�r 1

E − H − k

1

r3

1

E − H − k
�r
〉

= ε

〈
1

r

〉
− 4(Zα)3

n3

{
ln

[
2 ε

m(Zα)2

]
− ln k3

}
, (95)

we obtain

δEL2 = 8α2

3πm2

(Zα)3

n3
�μ · �B

{
ln

[
2 ε

m(Zα)2

]
− ln k3 − 1

3

}
.

(96)

The sum of these two contributions δELA = δEL1 + δEL2,
after dropping the ln ε terms, is

δELA = 8α2

9π

(Zα)3

n3
�μ · �B (2 ln k0 − 3 ln k3). (97)

Finally, the total correction to energy is

δE = δELA + δELB + δEH . (98)

Expressing the energy shift in terms of the shielding constant
(δE = δσ �μ · �B), we obtain the complete result for the
leading QED correction to the nuclear magnetic shielding in
hydrogenlike ions, valid for the nS states,

δσ = 8α2

9π

(Zα)3

n3

×
{

ln[(Zα)−2] + 2 ln k0(n) − 3 ln k3(n) − 421

96
+ 3

5

}
.

(99)

The term of 3/5 in the braces is the contribution of the vacuum
polarization. The numerical results for the Bethe logarithm
ln k0 and the 1/r3 Bethe-logarithm-type correction ln k3 [12]
for the 1s state are

ln k0(1s) = 2.984 128 556, (100)

ln k3(1s) = 3.272 806 545 . (101)

We note that the numerical value of the constant term in
Eq. (99), −7.635 58, is comparable in magnitude but of the
opposite sign to the logarithmic term at Z = 1, ln α−2 =
9.840 49. This entails a significant numerical cancellation
between these two terms for hydrogen and light hydrogenlike
ions. As a result, the total QED correction turns out to be
much smaller in magnitude than could be anticipated from the
leading logarithm alone.

V. OTHER CORRECTIONS

A. Bohr-Weisskopf correction

We now turn to the effect induced by the spatial distribution
of the nuclear magnetic moment, also known as the Bohr-
Weisskopf (BW) correction. Our treatment of the BW effect is
based on the effective single-particle (SP) model of the nuclear
magnetic moment. Within this model, the magnetic moment
is assumed to be induced by the odd nucleon (a proton, when
Z and A are odd, and a neutron, when Z is even and A is
odd) with an effective g factor, which is adjusted to yield
the experimental value of the nuclear magnetic moment. The
treatment of the magnetization-distribution effect on hfs within
the SP model was originally developed in Refs. [42,43] and
later in Ref. [44]. Our present treatment closely follows the
procedure described in Refs. [44–46].

The wave function of the odd nucleon is assumed to
satisfy the Schrödinger equation with the central potential of
Woods-Saxon form and the spin-orbital term included (see,
e.g., Ref. [47]),

V (�r) = −V0 F(r) + 1

mp

φso(r) �l · �σ + VC(r), (102)

where

φso(r) = Vso

4mpr

dF(r)

dr
, (103)

F(r) =
[

1 + exp

(
r − R

a

)]−1

, (104)

and VC is the Coulomb part of the interaction (absent for
neutrons), with the uniform distribution of the charge (Z − 1)
over the nuclear sphere. The parameters V0, Vso, R, and a were
taken from Refs. [47,48].

The nuclear magnetic moment can be evaluated within the
SP model to yield [45]

μ

μN

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2gS + [

I − 1
2 + 2I+1

4(I+1) 〈φsor
2〉]gL

for I = L + 1
2 ,

− I
2(I+1)gS + [

I (2I+3)
2(I+1) − 2I+1

4(I+1) 〈φsor
2〉] gL

for I = L − 1
2 ,

(105)

where I and L are the total and the orbital angular momentum
of the nucleus, respectively, gL is the g factor associated
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with the orbital motion of the nucleon (gL = 1 for protons
and gL = 0 for neutrons), and gS is the effective nucleon g

factor, determined by the condition that Eq. (105) yields the
experimental value of the magnetic moment.

It was demonstrated in Ref. [45] that, within the SP model,
the BW effect can be accounted for by adding a multiplicative
magnetization-distribution function F (r) to the standard point-
dipole hfs interaction. The distribution function is given by [46]

F (r) = μN

μ

∫ r

0
dr ′ r ′2|u(r ′)|2

[
1

2
gS +

(
I − 1

2
+ 2I + 1

4(I + 1)
r2φso(r)

)
gL

]
+μN

μ

∫ ∞

r

dr ′ r ′2|u(r ′)|2 r3

r ′3

[
− 2I − 1

8(I + 1)
gS +

(
I − 1

2
+ 2I + 1

4(I + 1)
r2φso(r)

)
gL

]
(106)

for I = L + 1/2 and

F (r) = μN

μ

∫ r

0
dr ′ r ′2|u(r ′)|2

[
− I

2(I + 1)
gS +

(
I (2I + 3)

2(I + 1)
− 2I + 1

4(I + 1)
r2φso(r)

)
gL

]
+μN

μ

∫ ∞

r

dr ′ r ′2|u(r ′)|2 r3

r ′3

[
2I + 3

8(I + 1)
gS +

(
I (2I + 3)

2(I + 1)
− 2I + 1

4(I + 1)
r2φso(r)

)
gL

]
(107)

for I = L − 1/2. In the above formulas, u(r) is the wave
function of the odd nucleon. It can easily be seen that F (r) = 1
outside the nucleus.

B. Recoil and quadrupole corrections

The recoil correction to the magnetic shielding was ob-
tained in Ref. [18] in the nonrelativistic approximation,

δσrec = −αZα

3

m

M

(
1 + gN − 1

gN

)
, (108)

where M is the nuclear mass and

gN = M

Zmp

μ

μNI
. (109)

The electric quadrupole correction to the magnetic shield-
ing is

δσQ = − 3Q

2I (2I − 1)

δgQ

(m/mp)gI

, (110)

where Q is the quadrupole moment of the nucleus and δgQ is
the quadrupole correction to the g factor calculated in Ref. [17],

δgQ = α(Zα)3 12[35 + 20γ − 32(Zα)2]

135γ (1 + γ )2[15 − 16(Zα)2]

= α (Zα)3

[
11

135
+ 43

405
(Zα)2 + · · ·

]
. (111)

VI. RESULTS AND DISCUSSION

Numerical results for the self-energy (SE) correction to the
nuclear magnetic shielding can be conveniently parametrized
in terms of the dimensionless function DSE(Zα) defined as

�σSE = α2(Zα)3DSE(Zα). (112)

Our numerical all-order (in Zα) results for the self-energy
correction to the magnetic shielding are summarized in
Table I. We note significant numerical cancellation between

the individual contributions, which is particularly strong for
low values of Z. The fact that the resulting sum is a smooth
function of Z and demonstrates the expected Z scaling serves
as a consistency check of our calculations. In addition to
numerical cancellation, the additional complication arising in
the low-Z region is that the convergence of the partial-wave
expansions becomes slower when Z decreases. Because of
these two complications, the accuracy of our results worsens
for smaller values of Z, and no all-order results were obtained
for Z < 10.

The all-order numerical results can be compared with the
Zα-expansion results obtained in Sec. IV. As follows from
Eq. (99), the Zα expansion of the function DSE for the 1s state
reads

DSE(Zα) = 8

9π
[ln(Zα)−2 − 8.235 579 + O(Zα)], (113)

TABLE I. Individual contributions to the self-energy correction
to the nuclear magnetic shielding, for the point nucleus, in terms of
the function DSE defined by Eq. (112).

Z PO vr,hfs vr,Zee dvr der Total

10 −9.584 6.095 9.180 −49.722 43.523 −0.508(100)
14 −4.741 1.711 4.321 −21.048 19.047 −0.710(15)
16 −3.571 0.705 3.140 −14.718 13.655 −0.789(9)
20 −2.217 −0.405 1.761 −7.848 7.782 −0.927(4)
26 −1.277 −1.115 0.772 −3.473 3.983 −1.110(2)
32 −0.858 −1.407 0.292 −1.644 2.333 −1.283(1)
40 −0.624 −1.580 −0.043 −0.586 1.315 −1.519(1)
45 −0.575 −1.643 −0.171 −0.267 0.975 −1.681
54 −0.595 −1.744 −0.335 0.023 0.622 −2.029
60 −0.672 −1.825 −0.423 0.112 0.487 −2.321
70 −0.929 −2.028 −0.571 0.175 0.355 −2.999
82 −1.612 −2.508 −0.812 0.191 0.284 −4.457(2)
83 −1.701 −2.569 −0.839 0.192 0.281 −4.636(1)
92 −3.011 −3.400 −1.174 0.198 0.280 −7.107(2)
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FIG. 3. (Color online) Self-energy correction to the nuclear
magnetic shielding.

where O(Zα) denotes the higher-order terms. In Fig. 3, the
numerical all-order results for the function DSE are plotted
together with the contribution of the leading logarithmic term
in Eq. (113) (dashed line, red) and the contribution of both
terms in Eq. (113) (dash-dotted line, blue). We observe that
the leading logarithm alone gives a large contribution that
disagrees strongly with the all-order results. However, when
the constant term is added, the total Zα-expansion contribution
shrinks significantly and even changes its sign for Z > 3.
Only after the constant term is accounted for do we observe
reasonable agreement between the all-order and Zα-expansion
results.

The vacuum-polarization correction to the nuclear magnetic
shielding is parametrized as

�σVP = α2(Zα)3DVP(Zα). (114)

Our numerical results for the vacuum-polarization correction
are presented in Table II. The calculation was performed for
the extended nucleus and the Uehling potential was included
to all orders. Note that our present treatment is not complete,
as the Wichmann-Kroll part of the correction is still missing.
We estimate the uncertainty due to omitted terms to be within
30% of the calculated contribution.

The Zα expansion of the function DVP reads

DVP(Zα) = 8

9πn3

3

5
δl,0 + O(Zα), (115)

where the Kronecker symbol δl,0 indicates that the correction
vanishes for the reference states with l > 0. Comparison of
the all-order numerical results with the leading term of the
Zα expansion is given in Fig. 4. It is remarkable that the
all-order results grow fast when Z is increased and eventually
become more than an order of magnitude larger than the
leading-order result. In the high-Z region, the self-energy
and vacuum-polarization corrections are (as usual) of opposite
signs, the self-energy being about twice larger than the vacuum
polarization. In the low-Z region, however, the self-energy
correction changes its sign and the total QED contribution
becomes positive for very light ions.

TABLE II. Vacuum-polarization correction to the magnetic
shielding, for the extended nucleus, in terms of the function DVP

defined by Eq. (114).

Z PO mag Total

10 0.118 0.110 0.228
14 0.135 0.121 0.256
16 0.144 0.126 0.271
20 0.164 0.137 0.302
26 0.200 0.155 0.355
32 0.242 0.175 0.417
40 0.314 0.206 0.520
45 0.369 0.228 0.597
54 0.500 0.275 0.775
60 0.618 0.315 0.933
70 0.891 0.398 1.289
82 1.449 0.546 1.996
83 1.512 0.562 2.074
92 2.227 0.727 2.954

A summary of our calculations of the nuclear magnetic
shielding constant σ for several hydrogenlike ions is given in
Table III. The first row of the table presents results for the
leading-order nuclear shielding, including the finite-nuclear-
size effect. The leading-order contribution was calculated
using the Fermi model for the nuclear-charge distribution and
the point-dipole approximation for the interaction with the
nuclear magnetic moment. The nuclear charge radii were taken
from Ref. [49]. The results are in good agreement with those
reported in Ref. [17]. The QED correction presented in the
second row of Table III is the sum of the all-order results for
the self-energy and the vacuum polarization. Its error comes
from the numerical uncertainty of the self-energy part and the
estimate of uncalculated vacuum-polarization diagrams. Since
there were no all-order calculations performed for oxygen,
we used an extrapolation of our all-order results (taking into
account the derived values of the Zα-expansion coefficients).
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D
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  all-orders
  leading
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FIG. 4. (Color online) Vacuum-polarization correction to the
nuclear magnetic shielding.
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TABLE III. Individual contributions to the shielding constant σ × 106 for selected hydrogenlike ions.

17O7+ 43Ca19+ 73Ge31+ 131Xe53+ 209Bi82+

Leading 143.3127 375.960 657.93 1461.6 4112
QED −0.0026(2) −0.103(15) −0.59(8) −4.1(0.8) −30 (7)
Bohr-Weisskopf −0.0013(4) −0.061(18) −0.54(16) −8.2(2.5) −42 (13)
Quadrupole −0.0007(1) −0.018 −0.42 6.9(0.1) 7
Recoil −0.0120 −0.015 −0.02 0.0 0
Total 143.2960(5) 375.763(24) 656.36(18) 1456.3(2.6) 4046 (15)

The Bohr-Weisskopf correction, presented in the third row
of Table III, was calculated by reevaluating the leading-
order contribution with the point-dipole hfs interaction mod-
ified by the extended-distribution function F (r) given by
Eqs. (106) and (107). Because the effective single-particle
model of the nuclear magnetic moment is (of course) a
rather crude approximation, we estimate the uncertainty of
the Bohr-Weisskopf correction to be 30%, which is consistent
with previous estimates of the uncertainty of this effect [45].
This uncertainty includes also the error due to the nuclear-
polarization effect, which is not considered in the present work.

The quadrupole and the recoil corrections, given in the
fourth and fifth rows of Table III, respectively, were evaluated
according to Eqs. (110) and (108). The error of the quadrupole
correction comes from the nuclear quadrupole moments. The
magnetic dipole and electric quadrupole moments of the nuclei
were taken from Refs. [50,51].

The Z dependence of individual contributions to the
magnetic shielding constant σ is shown in Fig. 5.
The leading-order contribution is separated into three parts, the
point-nucleus nonrelativistic part (solid line, black), the point-
nucleus relativistic part (dashed line, green), and the finite-
nuclear-size correction (dash-dotted line, blue). We observe
that the finite-nuclear-size correction, as well as the other
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10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Z

|δ
σ  

|

FIG. 5. (Color online) Individual contributions to the nuclear
shielding. NR is the nonrelativistic contribution, REL the relativistic
point-nucleus contribution, FNS the finite-nuclear-size correction,
QED the QED correction, BW the Bohr-Weisskopf correction, REC
the recoil correction, and QUAD the electric quadrupole correction.
Note that the QED correction changes its sign between Z = 4 and 5.

effects calculated in this work, becomes increasingly important
in the region of large nuclear charges. The only exception
is the nuclear recoil correction. It is almost independent of
the nuclear-charge number Z, since the linear Z scaling in
Eq. (108) is compensated by the increase of the nuclear mass
M with Z. As a consequence, the recoil effect is completely
negligible for high- and medium-Z ions, but turns into one of
the dominant corrections for Z < 10.

For most ions, the uncertainty of the theoretical prediction
is roughly 30% of the Bohr-Weisskopf effect; it can be
immediately estimated from Fig. 5. For very light ions,
however, there is an additional uncertainty due to the unknown
relativistic recoil effect. Its contribution can be estimated
by multiplying the nonrelativistic recoil correction plotted in
Fig. 5 by the factor of (Zα)2. We observe that for very light
ions the relativistic recoil is the dominant source of error in
theoretical predictions.

VII. CONCLUSION

In this work we have performed an ab initio calculation
of the nuclear magnetic shielding in hydrogenlike ions with
inclusion of relativistic, nuclear, and QED effects. The
uncertainty of our theoretical predictions for the nuclear
magnetic shielding constant defines [according to Eq. (8)] the
precision to which the nuclear magnetic dipole moments can be
determined from experiments on the g factors of hydrogenlike
ions. It can be concluded from Table III and Fig. 5 that
the present theory permits determination of nuclear magnetic
moments with fractional accuracy ranging from 10−9 in the
case of 17O7+ to 10−5 for 209Bi82+.

For most hydrogenlike ions, the dominant source of error
in the theoretical predictions is the Bohr-Weisskopf effect.
Since this effect cannot be accurately calculated at present,
we conclude that the theory of the nuclear magnetic shielding
has reached the point where the uncertainty due to nuclear-
structure effects impedes further progress. For very light
ions, however, the dominant theoretical error comes from the
unknown relativistic recoil effect, whose calculation might be
a subject of future work.
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APPENDIX: ANGULAR INTEGRALS

Throughout this work, we repeatedly used the following result for the matrix element of the hfs and Zeeman interactions:

〈κ1μ1| (�̂r × �α)q
ra

|κ2μ2〉 = (−1)j2+μ2C
1q

j2 −μ2,j1μ1
P (−a)(n1,n2), (A1)

where �̂r = �r/|�r|, C
jm

j1m1,j2m2
is the Clebsch-Gordan coefficient, and

P (α)(n1,n2) = −κ1 − κ2√
3

C1(−κ2,κ1) R(α)
n1n2

. (A2)

The radial integral R(α) is defined by Eq. (16) and the angular coefficient C1(κa,κb) is the reduced matrix element of the normalized
spherical harmonics; see, e.g., Eq. (C10) of Ref. [28]. An important particular case is κ1 = κ2 = −1 and μ1 = μ2 = 1

2 , in which
case the above formulas reduce to 〈

− 1
1

2

∣∣∣∣ (�̂r × �α)0

ra

∣∣∣∣ −1
1

2

〉
= −2

3
R

(−a)
ab . (A3)

The basic angular integrals Ki needed for the evaluation of the hfs-vertex contribution are defined by

3i

4π

∫
d �̂p1 d �̂p2F (ξ ) χ

†
κa

1
2
( �̂p1) [ �̂p1 × �σ ]0 χκb

1
2
( �̂p2) =

∫ 1

−1
dξ F (ξ ) K1(κa,κb), (A4a)

3i

4π

∫
d �̂p1 d �̂p2F (ξ ) χ

†
κa

1
2
( �̂p1) [ �̂p2 × �σ ]0 χκb

1
2
( �̂p2) =

∫ 1

−1
dξ F (ξ ) K ′

1(κa,κb), (A4b)

3i

4π

∫
d �̂p1 d �̂p2F (ξ ) χ

†
κa

1
2
( �̂p1) [ �̂p1 × �̂p2]0 χκb

1
2
( �̂p2) =

∫ 1

−1
dξ F (ξ ) K2(κa,κb), (A4c)

where F (ξ ) is an arbitrary function and ξ = �̂p1 · �̂p2. The integrals over all angles except for ξ in the above equations are
evaluated analytically, as described in the Appendix of Ref. [33]. The results relevant for this work are

K1(−1,1) = −ξ, K1(1, − 1) = 1, K1(−1, − 2) = − ξ√
2
, K1(1,2) = −1 + 3ξ 2

2
√

2
,

K ′
1(−1,1) = −1, K ′

1(1, − 1) = ξ, K ′
1(−1, − 2) = − 1√

2
, K ′

1(1,2) = ξ√
2
, (A5)

K2(−1, − 1) = 0, K2(1,1) = −1 + ξ 2

2
, K2(−1,2) = 0, K2(1, − 2) = −1 + ξ 2

2
√

2
.

The basic angular integrals Ai needed for the evaluation of the Zeeman-vertex contribution are given by

A1(κa,κb) =
∫

d �̂p χ
†
κa

1
2
( �̂p) σ0 χκb

1
2
( �̂p), (A6)

A2(κa,κb) =
∫

d �̂p χ
†
κa

1
2
( �̂p) i [�σ × �̂p]0 χκb

1
2
( �̂p), (A7)

A3(κa,κb) =
∫

d �̂p χ
†
κa

1
2
( �̂p) i [�σ × �∇�]0 χκb

1
2
( �̂p), (A8)

A4(κa,κb) =
∫

d �̂p χ
†
κa

1
2
( �̂p) i [ �̂p × �∇�]0 χκb

1
2
( �̂p). (A9)

These integrals are evaluated by using the standard Racah algebra. The results relevant for this work are

A1(−1, − 1) = 1, A1(1,1) = −1/3, A1(−1,2) = 0, A1(1, − 2) = −2
√

2/3,

A2(−1,1) = 2/3, A2(1, − 1) = −2/3, A2(−1, − 2) =
√

2/3, A2(1,2) = −
√

2/3,
(A10)

A3(−1,1) = 4/3, A3(1, − 1) = 0, A3(−1, − 2) = 2
√

2/3, A3(1,2) = −
√

2,

A4(−1, − 1) = 0, A4(1,1) = −2/3, A4(−1,2) = 0, A4(1, − 2) = −
√

2/3.
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