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The rigorous calculation of the vacuum-polarization screening corrections to the hyperfine splitting in Li-like
bismuth is presented. The two-electron diagrams with electric and magnetic vacuum-polarization loops are
evaluated to all orders in αZ, including the Wichmann-Kroll contributions. This improves the accuracy of the
theoretical prediction for the specific difference of the hyperfine splitting values of H- and Li-like bismuth.
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I. INTRODUCTION

High-precision measurements of the ground-state hyperfine
splitting (HFS) were performed for various heavy H-like
ions, including 209Bi, 165Ho, 185Re, 207Pb, 203Tl, and 205Tl
[1–5]. Progress in experiments motivated intensive theoretical
calculations of the hyperfine splitting in highly charged heavy
ions [6–19], aiming to test quantum electrodynamics (QED) in
strong electromagnetic fields. It was found that in heavy ions
the QED effects are obscured by the uncertainty of the nuclear
magnetization distribution correction (Bohr-Weisskopf effect).
However, simultaneous study of H- and Li-like ions of the same
isotope can help to overcome this problem, since the uncer-
tainty of the Bohr-Weisskopf effect is significantly reduced in
the specific difference of the corresponding HFS values [17].
High-precision measurements of the hyperfine splitting of H-
and Li-like bismuth are feasible at the experimental storage
ring (ESR) and the heavy ion trap facility (HITRAP) in
GSI Helmholtzzentrum fuer Schwerionenforschung [20,21].
Recently, after 13 years of attempts, the HFS of the ground
state of Li-like Bi has been directly observed in GSI [22]. These
measurements, together with accurate theoretical calculations,
provide the possibility for stringent tests of QED in strong
fields.

The recent improvements of the theoretical accuracy for
the specific difference of the HFS values are related to the
calculations of the screened QED corrections [23,24] and
the two-photon exchange corrections [25] to the HFS of the
Li-like ions. Now the uncertainty of the specific HFS difference
is mainly determined by the Wichmann-Kroll part of the
screened QED corrections. In Refs. [16,26–30], the screened
QED corrections were evaluated by introducing an effective
local screening potential in the zeroth-order (Dirac) equation.
However, the screening potential approximation does not
provide a reliable estimation of the uncertainty. Recently,
the two-electron self-energy diagrams and a dominant part
of the two-electron vacuum-polarization diagrams, which
represent the leading contribution to this effect, have been
evaluated within the systematic QED approach [23,24]. The
present paper is devoted to the rigorous evaluation of the
two-electron vacuum-polarization diagrams, which have been
treated approximately in Refs. [23] and [24]. In particular, the
electric-loop and magnetic-loop diagrams are evaluated to all
orders in αZ, including the Wichmann-Kroll contributions.

The Wichmann-Kroll terms of the remaining internal-loop
contributions are estimated. The numerical results are pre-
sented for the hyperfine structure of Li-like bismuth 209Bi80+.

The relativistic units (h̄ = 1, c = 1, m = 1) and the
Heaviside charge unit [α = e2/(4π ),e < 0] are used through-
out the paper.

II. BASIC FORMULAS

The interaction of atomic electrons with the nuclear
magnetic moment is described by the Fermi-Breit operator,

Hμ = |e|
4π

μ · T, (1)

where μ is the operator of the nuclear magnetic moment. The
electronic operator T is given by

T =
∑

i

[ni × αi]

r2
i

F (ri), (2)

where the summation runs over the atomic electrons, α is
the Dirac-matrix vector, ni = ri/ri , and F (r) is the nuclear
magnetization distribution factor (see, e.g., Refs. [11] and
[30]). Here we employ the homogeneous sphere model,

F (r) =
{

(r/R0)3, if r � R0,

1, if r > R0,
(3)

where R0 is the radius of the sphere, related to the root-
mean-square charge radius 〈r2〉1/2

of the nucleus as R0 =√
5/3〈r2〉1/2

. The ground-state hyperfine splitting of a highly
charged Li-like ion in the nonrecoil limit can be written as

�E
(a)
hfs = α(αZ)3

12

gI

mp

(2I + 1)

×
[
A(αZ)(1 − δ)(1 − ε) + 1

Z
B(αZ) + 1

Z2
C(αZ)

+ 1

Z3
D(Z,αZ) + xQED + xSQED

]
. (4)

Here gI = μ/(μNI ) is the g factor of the nucleus with
magnetic moment μ and spin I , μN is the nuclear magneton,
and mp denotes the proton mass. A(αZ) is the one-electron
relativistic factor, and δ and ε are the corrections due to the
finite distribution of the charge and the magnetic moment over
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the nucleus, respectively, which can be found either analyt-
ically [7,31] or numerically. The interelectronic-interaction
correction of first order in 1/Z is represented by the function
B(αZ). The function C(αZ) incorporates the interelectronic-
interaction corrections in the second order in 1/Z; D(Z,αZ)
corresponds to the third- and higher-order corrections in
1/Z. xQED and xSQED correspond to the one-electron and
many-electron (screened) QED corrections, respectively.

To first order in α and 1/Z, the screened QED correction
xSQED to the hyperfine splitting is given by the sum of the
self-energy (SE) and vacuum-polarization (VP) parts

xSQED = xSE
SQED + xVP

SQED. (5)

In the present paper, the vacuum-polarization part xVP
SQED is

considered. The corresponding diagrams are depicted in Fig. 1.
The total contribution of these diagrams is conveniently

divided into reducible and irreducible parts. The irreducible
parts of each diagram A–F are denoted by the same letter:
x

VP(A−F)
SQED . The reducible contributions are to be considered

together with the nondiagram terms (see Ref. [24] for details).
They are divided into three parts, G, H, and I, according to
the type of the vacuum-polarization loop: G is associated with
the electric-loop diagrams A, B, and E; H corresponds to the
magnetic-loop diagram C; and I corresponds to the internal-
loop diagram F.

The total correction due to the two-electron vacuum-
polarization is given by the sum

xVP
SQED = x

VP(A)
SQED + x

VP(B)
SQED + x

VP(C)
SQED + x

VP(D)
SQED + x

VP(E)
SQED

+ x
VP(F)
SQED + x

VP(G)
SQED + x

VP(H)
SQED + x

VP(I)
SQED. (6)

A. Electric-loop diagrams

The terms A, B, E, and G in Eq. (6) correspond to
the so-called electric-loop (el) diagrams A, B and E. The
contributions of these terms are given by the following
expressions [23,24]:

x
VP(A)
SQED = 2 Ga

∑
b

∑
PQ

(−1)P+Q

[∑
n1,n2

′〈Pa|U el
VP|n1〉 〈n1|T0|n2〉〈n2Pb|I (�)|QaQb〉

(εPa − εn1 )(εPa − εn2 )

+
∑
n1,n2

′〈Pa|U el
VP|n1〉 〈n1Pb|I (�)|n2Qb〉〈n2|T0|Qa〉

(εPa − εn1 )(εQa − εn2 )

]
, (7)

x
VP(B)
SQED = 2 Ga

∑
b

∑
PQ

(−1)P+Q
∑
n1,n2

′ 〈Pa|T0|n1〉
εPa − εn1

〈n1|U el
VP|n2〉 〈n2Pb|I (�)|QaQb〉

εPa − εn2

, (8)

x
VP(E)
SQED = 2 Ga

∑
b

∑
PQ

(−1)P+Q

[∑
n1,n2

′〈Pa|U el
VP|n1〉 〈Pb|T0|n2〉〈n1n2|I (�)|QaQb〉

(εPa − εn1 )(εPb − εn2 )

+
∑
n1,n2

′〈Pa|U el
VP|n1〉 〈n1Pb|I (�)|Qan2〉〈n2|T0|Qb〉

(εPa − εn1 )(εQb − εn2 )

]
, (9)

x
VP(G)
SQED = −2 Ga

∑
b

∑
PQ

(−1)P+Q
∑
n1

′ 1

(εPa − εn1 )2

{〈
Pa|U el

VP|n1
〉〈n1|T0|Pa〉〈PaPb|I (�)|QaQb〉

+ 〈
Pa

∣∣U el
VP

∣∣Pa
〉〈Pa|T0|n1〉〈n1Pb|I (�)|QaQb〉 + 〈Pa|T0|Pa〉〈Pa

∣∣U el
VP

∣∣n1
〉〈n1Pb|I (�)|QaQb〉}

+ 2Ga

∑
b

∑
PQ

(−1)P+Q

{∑
n1

′ 1

εPa − εn1

[〈
Pa

∣∣U el
VP

∣∣n1
〉〈n1|T0|Pa〉〈PaPb|I ′(�)|QaQb〉

+〈
Pa

∣∣U el
VP

∣∣n1
〉〈n1Pb|I ′(�)|QaQb〉(〈Qb|T0|Qb〉 − 〈Pb|T0|Pb〉)]

+ 〈
Pa

∣∣U el
VP

∣∣Pa
〉 [∑

n1

′ 〈PaPb|I ′(�)|n1Qb〉〈n1|T0|Qa〉
εQa − εn1

+
∑
n1

′ 〈PaPb|I ′(�)|Qan1〉〈n1|T0|Qb〉
εQb − εn1

]}

+Ga

∑
b

∑
PQ

(−1)P+Q
〈
Pa

∣∣U el
VP

∣∣Pa
〉〈PaPb|I ′′(�)|QaQb〉 (〈Qb|T0|Qb〉 − 〈Pb|T0|Pb〉) . (10)

Here and below [Eqs. (16), (17), (30), and (31)], P and Q

are the permutation operators, interchanging a and b, � ≡
εQb − εPb. The summation over b runs over two core electron

states with different projections of the angular momentum.
The prime at the summation sign

∑′ indicates that the energy
of the intermediate state differs from the energy of the initial
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(A) (B) (C)

(D) (E) (F )

FIG. 1. Diagrams of contributions to the screened VP correction
to the hyperfine splitting. The wavy line indicates the photon
propagator and the double line indicates the electron propagator in
the Coulomb field. The dashed line terminated by the triangle denotes
the interaction with the nuclear magnetic field.

state, so that the corresponding denominator is nonzero. The
interelectronic-interaction operator I (�) and its derivatives
are defined as in Ref. [32]. The factor Ga is defined by the
quantum numbers of the valence state,

Ga = n3(2l + 1)j (j + 1)

2(αZ)3mj

= 3

(αZ)3mj

, (11)

where mj is the projection of the angular momentum j .
Equations (7)–(10) involve the matrix elements of the

standard electric-field-induced vacuum-polarization potential
U el

VP. The unrenormalized expression for U el
VP is given by

U el
VP(r) = α

2πi

∫
d3r′ 1

|r − r′|
∫ ∞

−∞
dω Tr[G(ω,r′,r′)],

(12)

where G(ω,r,r′) is the Dirac-Coulomb Green function

G(ω,r,r′) =
∑

n

ψn(r)ψ†
n(r′)

ω − εn(1 − i0)
. (13)

The decomposition of the vacuum-polarization loop into the
Uehling (Ue) and the Wichmann-Kroll (WK) terms is depicted
in Fig. 2. In this expansion, only the lowest order term, the
Uehling term, is divergent. The charge renormalization yields
a finite well-known renormalized expression,

U el-Ue
VP (r) = −αZ

2α

3π

∫ ∞

0
dr ′ 4πr ′ ρ(r ′)

×
∫ ∞

1
dt

(
1 + 1

2t2

) √
t2 − 1

t2

× 1

4rt
{exp(−2|r − r ′|t) − exp[−2(r + r ′)t]},

(14)

where the density of the nuclear charge distribution ρ(r)
is normalized to 1. The Wichmann-Kroll part (the term in
brackets in the decomposition in Fig. 2) is calculated to all
orders in αZ as the difference between the unrenormalized
total and Uehling contributions. The resulting expression is

= +

⎛
⎜⎜⎜⎜⎝

−

⎞
⎟⎟⎟⎟⎠

FIG. 2. The decomposition of the U el
VP into the Uehling (Ue) and

the Wichmann-Kroll (WK) terms.

free from divergencies, completely isolated in the Uehling
term [33]. It is known that no spurious terms contribute if the
calculation is based on the the partial-wave expansion of the
electron Green’s function and the summation is terminated
after a finite number of terms [34–36]. Thus, the WK
contribution after Wick rotation of the contour of ω integration
in the complex plane can be written as [37]

U el-WK
VP (r) = 2α

π

∑
κ

|κ|
∫ ∞

0
dω

∫ ∞

0
dr ′ r ′2

∫ ∞

0
dr ′′ r ′′2

× 1

max(r,r ′)
V (r ′′)

2∑
i,k=1

Re
{
F ik

κ (iω,r ′,r ′′)

× [
Gik

κ (iω,r ′,r ′′) − F ik
κ (iω,r ′,r ′′)

]}
. (15)

Here Gik
κ and F ik

κ are the radial components of the partial-wave
contributions to the bound and free electron Green’s functions,
respectively, and V (r) is the electric potential of the extended
nucleus.

B. Magnetic-loop diagrams

The magnetic-loop (ml) diagram C corresponds to the terms
C and H in Eq. (6), given by [23,24]

x
VP(C)
SQED = 2 Ga

∑
b

∑
PQ

(−1)P+Q
∑
n1

′〈Pa|Uml
VP|n1〉

× 〈n1Pb|I (�)|QaQb〉
εPa − εn1

, (16)

x
VP(H)
SQED = 1

2
Ga

∑
b

∑
PQ

(−1)P+Q〈PaPb|I ′(�)|QaQb〉

× (〈Qb|Uml
VP|Qb〉 − 〈Pb|Uml

VP|Pb〉). (17)

Equations (16) and (17) involve the matrix elements of the
magnetic-field-induced vacuum-polarization potential Uml

VP. Its
unrenormalized expression reads

Uml
VP(r) = α

2πi

∫ ∞

−∞
dω

∫
d3r′

∫
d3r′′ α

|r − r′|
× Tr [αG(ω,r′,r′′)T0(r′′)G(ω,r′′,r′)] . (18)

The scalar product is implicit in Eq. (18). Similar to the
electric-loop potential, the decomposition of the magnetic-
loop potential into the first-order term and the remainder
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= +

⎛
⎜⎜⎜⎜⎝

−

⎞
⎟⎟⎟⎟⎠

FIG. 3. The decomposition of the Uml
VP into the Uehling and the

Wichmann-Kroll terms.

(Fig. 3) leads to the isolation of the divergency in the
leading Uehling term. It is given by Eq. (18) with the bound-
electron Green function replaced by the free-electron one. For
the sphere model of the nuclear magnetization distribution
[F (r) given by Eq. (3)], the analytical expression for the
renormalized magnetic-loop Uehling term reads [30]

Uml-Ue
VP (r) = α

π

[n × α]0

r2

3

16R3
0

×{4rR0[β1(R0 + r) + β1(|R0 − r|)]
+ 2(R0 + r)β2(R0 + r) − 2|R0 − r|β2(|R0 − r|)
+β3(R0 + r) − β3(|R0 − r|)}, (19)

where the function βn is defined by

βn(r) = 2

3

∫ ∞

1
dt

√
t2 − 1

tn+2

(
1 + 1

2t2

)
exp(−2tr). (20)

Similar to the case of electric-loop term, the magnetic-
loop Wichmann-Kroll contribution is calculated by summing
up the partial-wave differences between the unrenormalized
total and Uehling contributions. The magnetic-loop diagram
contributes also to the nuclear magnetic moment. The cor-
responding Uehling term is equal to zero; however, the
Wichmann-Kroll term is not. Therefore, in the calculations
of the WK contribution, one should account for the related
contribution to the nuclear magnetic moment in the zeroth-
order HFS value (see Refs. [12,18,38]). This implies the
replacement of the nuclear magnetic moment μ by the “bare”
value

μ → μbare = μ − �μ. (21)

The nuclear magnetic moment correction �μ due to the
magnetic-loop WK part can be expressed as �μ = εμ with
the dimensionless parameter ε given by

ε = 1

2πi

α

2

∫
d3r

∫
d3r′

∫ ∞

−∞
dω

× [Tr{[r × α]0G(ω,r,r′)T0(r′)G(ω,r′,r)}
− Tr{[r × α]0F (ω,r,r′)T0(r′)F (ω,r′,r)}]. (22)

Finally, the corrected magnetic-loop WK contribution is
obtained by subtraction of εT0 from the WK part of Eq. (18).
The corresponding expression reads

Uml-WK
VP (r) = α

2πi

∫ ∞

−∞
dω

∫
d3r′

∫
d3r′′

(
α

|r − r′|
[
Tr{αG(ω,r′,r′′)T0(r′′)G(ω,r′′,r′)}

− Tr{αF (ω,r′,r′′)T0(r′′)F (ω,r′′,r′)}] − 1

2
T0(r)

[
Tr{[r′ × α

]
0G(ω,r′,r′′)T0(r′′)G(ω,r′′,r′)}

− Tr{[r′ × α
]

0F (ω,r′,r′′)T0(r′′)F (ω,r′′,r′)}]) . (23)

The angular-momentum conservation allows one to distinguish in this expression the following angular dependence:

Uml-WK
VP (r) = [n × α]0 uml-WK

VP (r). (24)

The radial part uml-WK
VP (r) can be presented in the form

uml-WK
VP (r) =

∫ ∞

0
dr ′r ′2

(
r<

r2
>

− r ′

r2
F (r)

)
ρml(r

′), (25)

where the magnetic-loop WK charge density ρml(r ′) after rotating the contour of ω-integration can be written as

ρml(r
′) = α

6π

∫ ∞

0
dr ′′F (r ′′)

∫ ∞

0
dω

∑
κ1,κ2

B2(κ1,κ2)Sκ1κ2 (ω,r ′,r ′′). (26)

Here the Green-function trace Sκ1κ2 is given by

Sκ1κ2 (ω,r ′,r ′′) = Re
{
G11

κ1
(iω,r ′,r ′′) G22

κ2
(iω,r ′,r ′′) + G12

κ1
(iω,r ′,r ′′) G21

κ2
(iω,r ′,r ′′)

+G21
κ1

(iω,r ′,r ′′) G12
κ2

(iω,r ′,r ′′) + G22
κ1

(iω,r ′,r ′′) G11
κ2

(iω,r ′,r ′′)

−F 11
κ1

(iω,r ′,r ′′) F 22
κ2

(iω,r ′,r ′′) − F 12
κ1

(iω,r ′,r ′′) F 21
κ2

(iω,r ′,r ′′)

−F 21
κ1

(iω,r ′,r ′′) F 12
κ2

(iω,r ′,r ′′) − F 22
κ1

(iω,r ′,r ′′) F 11
κ2

(iω,r ′,r ′′)
}
, (27)

and the angular factor B(κ1,κ2) is defined by the following expression:

B(κ1,κ2) = 1 + (−1)l1+l2

2

√
2(2j1 + 1)(2j2 + 1) (−1)l1

(
j1 j2 1
1
2

1
2 −1

)
. (28)
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The selection rule, following from this expression, forces κ2 to be equal to either κ1 or −κ1 ± 1. Therefore, the double κ

summation can be reduced to a single one, including diagonal and off-diagonal κ terms:∑
κ1,κ2

B2(κ1,κ2)Sκ1κ2 =
∑

κ

[
2|κ|3

κ2 − 1/4
Sκκ + 2

|κ|(|κ| + 1)

|κ| + 1/2
Sκκ̄

]
, (29)

where κ̄ = −κ − sgn(κ).

C. Internal-loop diagrams

The internal-loop diagram F corresponds to the terms F and
I in Eq. (6), given by [23,24]

x
VP(F)
SQED = 2 Ga

∑
b

∑
PQ

(−1)P+Q
∑
n1

′ 〈Pa|T0|n1〉
εPa − εn1

×〈n1Pb|IVP(�)|QaQb〉, (30)

x
VP(I)
SQED = 1

2
Ga

∑
b

∑
PQ

(−1)P+Q〈PaPb|I ′
VP (�)|QaQb〉

× (〈Qb|T0|Qb〉 − 〈Pb|T0|Pb〉). (31)

Equations (30) and (31) involve the interelectronic-interaction
operator, modified by the vacuum-polarization loop,

IVP(ε,r1,r2)

= α2

2πi

∫ ∞

−∞
dω

∫
d3r′

1

∫
d3r′

2

× α1μ exp(i|ε||r1 − r′
1|)

|r1 − r′
1|

α2ν exp(i|ε||r2 − r′
2|)

|r2 − r′
2|

× Tr[αμG(ω − ε/2,r′
1,r

′
2)ανG(ω + ε/2,r′

2,r
′
1)],

(32)

where ε is the energy of the transmitted photon, αμ = (1,α)
is the four-vector of the Dirac matrices, and the summation
over μ and ν is implicit. The matrices α1μ and α2ν act on
the spinor variables corresponding to r1 and r2, respectively.
This operator is also divided into the leading divergent Uehling
part and the remaining finite Wichmann-Kroll part (see Fig. 4).
The renormalized expression for the Uehling term reads (see,
e.g., [37])

IUe
VP(ε,r1,r2) = 2α2

3π

α1μα
μ

2

|r1 − r2|
∫ ∞

1
dt

(
1 + 1

2t2

) √
t2 − 1

t2

× exp(−
√

4t2 − ε2 |r1 − r2|). (33)

= +

⎛
⎜⎜⎜⎜⎝

−

⎞
⎟⎟⎟⎟⎠

FIG. 4. The decomposition of the internal electric loop IVP into
the Uehling and the Wichmann-Kroll terms.

The corresponding contribution is taken into account rigor-
ously. The direct part of the Wichmann-Kroll contribution
with the hyperfine interaction vertex on the 2s-electron line has
been calculated by introducing the screening potential of the
(1s)2 closed-shell electrons into the electric loop. We take the
difference between the contributions with the Green’s function
inside the loop calculated with and without the screening
potential. The calculation of the direct part of the diagram
D, which involves the internal loop modified by the hyperfine
interaction vertex, has been performed in a similar way. It is
evaluated by including the potential of the closed shell into
the Green’s functions of the internal loop, which leads to
a diagram of the magnetic-loop type. The evaluation of the
remaining exchange diagrams is currently under way.

III. RESULTS AND DISCUSSION

The contribution of the two-electron vacuum-polarization
diagrams to the hyperfine splitting of the Li-like ion is
calculated in coordinate space according to the formulas
presented above. The electric-loop terms (A, B, E, G) and
the magnetic-loop terms (C and H) are taken into account
completely, including the Uehling and the Wichmann-Kroll
parts. The internal-loop diagram F and the corresponding
reducible term I are calculated rigorously in the Uehling
approximation. The related WK contributions are evaluated for
the direct parts with the hyperfine interaction vertex on the 2s

electron. The remaining terms are estimated by employing the
assumption that the ratio of the WK part to the corresponding
Uehling part is the same. The uncertainty is ascribed as high
as 200% of the value obtained in this way. The contribution
of the direct part of the diagram D is evaluated as described in
the previous section. We ascribe a 200% uncertainty to the D
contribution as a conservative estimation of the uncalculated
exchange term. The numerical evaluation of the one-electron
wave functions for the initial (a) and intermediate (n1,2)
states is performed using the dual kinetic balance (DKB)
approach [39] with the basis set constructed from the B splines
[40]. The Fermi model for the nuclear charge distribution
is employed in these calculations. The Uehling parts of the
vacuum-polarization potentials are calculated according to the
expressions (14), (19), and (33). The Wichmann-Kroll parts
involve the free- and bound-electron Green’s functions for the
Dirac equation. The spherical shell model (possessing analyt-
ical solution for the bare nucleus case) and Fermi model of the
nuclear charge distribution were employed in calculations of
the Green’s function. The nuclear magnetization distribution
effect is taken into account within the homogeneous sphere
model. The partial-wave expansion is terminated at |κ| = 5
in the case of the electric-loop Wichmann-Kroll parts and
at |κ| = 10 in the case of the magnetic-loop Wichmann-Kroll
parts. The remainders of the κ summations are estimated using
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TABLE I. Screened VP corrections to the HFS of Li-like bismuth 209Bi80+ in terms of xSQED for the Coulomb and Feynman gauges.

Feynman Coulomb

Uehling Wichmann-Kroll Uehling Wichmann-Kroll

A −0.000 5074 0.000 0178 −0.000 5085 0.000 0179
B −0.000 2192 0.000 0056 −0.000 2166 0.000 0055
C −0.000 1692 0.000 0461 −0.000 1670 0.000 0455
D – 0.000 0021 – 0.000 0021
E −0.000 0033 0.000 0002 −0.000 0031 0.000 0002
F 0.000 0015 −0.000 0002 0.000 0015 −0.000 0002
G 0.000 2896 −0.000 0123 0.000 2879 −0.000 0124
H 0.000 0023 −0.000 0006 0.000 0001 −0.000 0000
I 0.000 0000 0.000 0000 0.000 0000 0.000 0000

Total (A − I) −0.000 6056 0.000 0586 −0.000 6056 0.000 0586
Uehling + Wichmann-Kroll −0.000 5470 −0.000 5470

the least-squares inverse-polynomial fitting. The numerical
calculation procedure has been performed in different gauges,
and the gauge invariance should hold for the complete set
of the two-electron vacuum-polarization diagrams. The total
values obtained in the Feynman and Coulomb gauges for the
photon propagator mediating the interelectronic interaction
agree within the level of the numerical accuracy. The results
for Li-like bismuth 209Bi80+ in both gauges are presented term
by term in Table I.

In Table II, the individual terms are compared with those
from Ref. [24]. For the electric-loop terms, the sums of the
Uehling and Wichmann-Kroll contributions are presented. In
Ref. [24], the Wichmann-Kroll parts were calculated by means
of the approximate formulas for the electric WK potential
from Ref. [41]. For the magnetic-loop terms (C and H),
the Wichmann-Kroll part is figured out separately (WK-ml)
in order to compare the result with the estimation given
in Ref. [24]. In that work, it was evaluated utilizing the
hydrogenic 2s value from Ref. [18], assuming that it enters
with the same screening ratio as the Uehling term.

TABLE II. Screened VP corrections to the HFS of Li-like bismuth
209Bi80+ in terms of xSQED in the Feynman gauge are compared to the
corresponding corrections from Ref. [24]. The Wichmann-Kroll part
of the magnetic-loop diagram (WK-ml) is separated for comparison
with the estimation of Ref. [24].

This work Ref. [24]

A −0.000 4897 −0.000 4881
B −0.000 2136 −0.000 2128
C −0.000 1692 −0.000 1691
D 0.000 0021(42)
E −0.000 0031 −0.000 0031
F 0.000 0013(3) 0.000 0015
G 0.000 2773 0.000 2766
H 0.000 0023 0.000 0023
I 0.000 0000 0.000 0000
WK-ml 0.000 0454 0.000 05(2)

Total −0.000 547(4) −0.000 54(2)

The uncertainty of the present evaluation is determined by
the uncalculated terms in sets D and F. It was estimated as high
as 200% of the calculated WK terms in these sets.

In Table III, the specific difference of the ground-state
hyperfine splitting in H-like bismuth 209Bi82+ and in Li-like
bismuth 209Bi80+, �′E = �E(2s) − ξ�E(1s), is considered.
The parameter ξ is chosen to cancel the Bohr-Weisskopf
correction, ξ = 0.16886 [23]. The rms radius was taken to be
〈r2〉1/2 = 5.5211 fm [42], the nuclear spin and parity Iπ =
9/2−, and the magnetic moment μ/μN = 4.1106(2) [43].
The most accurate values for the interelectronic-interaction
contributions are taken from a recent paper [25], where the
contribution of the two-photon-exchange diagrams has been
evaluated in the framework of QED. The contribution of
the screened vacuum polarization calculated in this work
equals −0.188(2) meV, which agrees with the previous value
−0.187(6) meV [23,24]. The uncertainty of the present result,
being three times smaller than the previous one, is determined
by the conservative estimates for the contributions which have
not been taken into account rigorously so far. The first error
bar in the total value of the specific difference −61.320(4)(5)
originates from the uncertainties of the screened VP contribu-
tion and the 1/Z3 and higher-order interelectronic-interaction
term. The second uncertainty comes from the nuclear magnetic
moment, the nuclear polarization corrections [44], and other
nuclear effects, which are not completely canceled in the
specific difference.

In summary, calculations of the major part of the screened
vacuum-polarization correction to the hyperfine splitting in Li-
like bismuth have been performed. The Wichmann-Kroll con-
tributions to the two-electron electric-loop and magnetic-loop
diagrams and to the direct parts of the internal-loop diagrams
have been evaluated within the rigorous QED approach. As a
result, the accuracy of the screened QED contribution to the
hyperfine splitting of Li-like bismuth has been significantly
improved. These results, combined with the recent rigorous
calculations of the two-photon exchange contributions [25],
provide a new value of the specific difference of the HFS
values in H-like and Li-like bismuth, which is by an order
of magnitude more precise compared to the previous one
[23,24].
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TABLE III. Individual contributions to the specific difference �′E of the hyperfine splittings of Li-like and H-like bismuth 209Bi. Units
are meV.

�E(2s) ξ�E(1s) �′E

Dirac value 844.829 876.638 −31.809
Interelectronic interaction, ∼1/Z −29.995 −29.995
Interelectronic interaction, ∼1/Z2 0.258 0.258
Interelectronic interaction, ∼1/Z3 and higher orders −0.003(3) −0.003(3)
QED −5.052 −5.088 0.036
Screened SE 0.381 0.381
Screened VP, this work −0.188(2) −0.188(2)
Screened VP, Refs. [23,24] −0.187(6) −0.187(6)

Total −61.320(4)(5)
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