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Based on an asymmetric Lanczos-chain subspace algorithm, damped coupled cluster linear response functions
have been implemented for the hierarchy of coupled cluster (CC) models including CC with single excitations
(CCS), CC2, CC with single and double excitations (CCSD), and CCSD with noniterative triple corrected
excitation energies CCSDR(3). This work is a first step toward the extension of these theoretical electronic
structure methods of well-established high accuracy in UV-vis absorption spectroscopies to applications
concerned with x-ray radiation. From the imaginary part of the linear response function, the near K-edge
x-ray absorption spectra of neon, water, and carbon monoxide are determined and compared with experiment.
Results at the CCSD level show relative peak intensities in good agreement with experiment with discrepancies
in transition energies due to incomplete treatment of electronic relaxation and correlation that amount to 1–2 eV.
With inclusion of triple excitations, errors in energetics are less than 0.9 eV and thereby capturing 90%, 95%,
and 98% of the relaxation-correlation energies for C, O, and Ne, respectively.
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I. INTRODUCTION

Synchrotron radiation (SR) is an essential ingredient in
many scientific areas including physics, chemistry, biology,
materials and environmental sciences. It benefits any research
area utilizing electromagnetic radiation by providing highly
focused, high-intensity light of well-defined characteristics,
with wavelengths from the infrared to the x-ray region.
Not surprisingly, further development of SR sources is a
key strategic measure for scientific excellence, and with the
new fourth-generation radiation sources new disciplines and
research areas of both fundamental and applied character, like
x-ray femtochemistry and dynamic x-ray Raman spectroscopy,
will be emerging. Beyond doubt, a concomitant development
in theory and simulation technology is called for.

Largely used SR techniques are x-ray absorption spec-
troscopy (XAS), x-ray circular dichroism (XCD), and x-ray
magnetic circular dichroism (XMCD). Multiphoton XAS and
XCD experiments are also envisaged in the near future
owing to the advances at SR facilities. In all these spectro-
scopies, the photon energy is tuned to regions of core state
resonances, and their successful application relies not only
on the development of high quality radiation sources and
experimental techniques but also of theoretical methodologies:
It is the interplay of experiment and theory that provides
a fundamental understanding of the spectra and makes it
possible to extract the desired structure information from
the measurement. The analysis of the core-level spectra in
combination with theoretical calculations discloses detailed
electronic and structural information, such as charge-transfer,
bonding nature, hybridization, chemical environment, site
symmetry, etc. Thus, theoretical simulations are essential

not only to understand specific systems but also to define
the information content in the spectroscopic probes. Even
though single-particle and atomic-multiplet models [1–5] are
routinely employed to interpret XAS spectra, they suffer from
inherent limitations. It can therefore be argued that a molecular
approach, based on accurate quantum chemical electronic
structure methods, is to be preferred, hindered only by the need
for methodological development and the computational costs.

The hierarchy of coupled cluster (CC) levels enables
a systematic and rapid convergence of dynamic electron
correlation, and, with inclusion of triple excitations, very high
accuracy for polyatomic molecules (errors of order 0.1 eV)
is reached in the description of electronic transitions in the
UV-vis region of the spectrum [6,7]. In x-ray spectroscopies,
the use of CC response methods is, on the other hand, basically
unexplored, hampered mainly by the fact that the semibound
core–valence excited states of interest are embedded in a
continuum of valence ionized states.

In the present work, we circumvent this issue by a deter-
mination of the linear absorption cross section not from the
complete oscillator strength distribution (which corresponds
to solving fully a large eigenvalue problem) but from the
imaginary part of the electric dipole polarizability [8]

σ (ω) = 4πω

c
Im [α(ω)] , (1)

where the overbar denotes the isotropic tensor average. Key to
our approach is the taking into account of finite lifetimes of
excited states which leads to resonance convergent response
functions, also referred to as damped response functions, or
complex polarization propagators [9,10]. A spectrum obtained
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with our approach is, in the limit of small spectral broadenings,
equivalent to a spectrum composed of individual roots, each
broadened by Lorentzian functions. Our calculations of near-
edge x-ray absorption fine structure [11] spectra are based on
Eq. (1) with the imaginary polarizability obtained from CC
linear response functions.

Several quantum mechanical methods are available for the
calculation of core-electron excitation spectra, for instance
the multiple scattering MSXα technique [11], the direct
static exchange method STEX [12,13], the transition potential
density functional theory (DFT-TP) method [14], the algebraic
diagrammatic connection [15] propagator approaches ADC(2)
[16] and ADC(3) [17], various methodologies based on time-
dependent density-functional theory (TDDFT) [18–21], and
the GW/Bethe-Salpeter equation approach [22]. Some of the
proposed methods are adapted to specific systems, elements
or x-ray adsorption edges, which represents an unphysical
dichotomy of methodologies.

Thus, despite the richness of methods available, we argue
that the development of a CC ground-state response approach
can mark a generation leap through the provision of a clear path
toward methods of systematic treatment of core correlation, in
combination with the well-known virtues of response theory,
such as state orthogonality, size consistency, as well as the
extendibility to nonlinear, multiphoton, x-ray phenomena.

Past formulations of CC response theory (see, e.g.,
Ref. [23]) have been restricted to a calculation of the real-
valued, resonance divergent, polarizability and to a “bottom-
up” state-by-state determination of excitation energies by
solving eigenvalue equations. The damped CC response func-
tions introduced in the present work contain the conventional
linear-algebraic building blocks but a different computational
strategy is required, and we have here explored a Lanczos
chain as the computational vehicle.

It has become increasingly clear that the Lanczos algorithm,
a well-known algorithm for solving eigenvalue equations, also
has very attractive features as a method to compute certain
matrix functions [24] and spectra [25–30]. The algorithm
is now exploited in the context of electronic CC theory,
where we consider the damped CC response function as a
function of the asymmetric characteristic CC response matrix.
With an appropriate starting vector, the Lanczos algorithm
can be be used to calculate spectra simultaneously for all
frequencies with well-defined features of global convergence
with increasing chain length. The boon here is that this
approach emphasizes directly the quantity of interest, that
is, the absorption, circumventing the explicit calculation of
a great many states that are irrelevant to the formation of the
spectrum.

In response theory approaches, the degree to which elec-
tronic relaxation effects in core-excited states are retrieved
becomes a matter of treatment of electron correlation. Access
to the hierarchy of CC approaches enables us to pinpoint the
multielectron excited character of this relaxation effect and
perform convergence studies with respect to completeness
of the cluster expansion. We expect this result to be highly
valuable for the benchmarking of more approximate methods
such as adiabatic TDDFT that, for core excitations [20,21], are
plagued by self-interaction errors [31].

II. METHODOLOGY

For real reference states, the CC response function for two
identical electric-dipole operators can be written as

〈〈μ̂X; μ̂X〉〉γω =
∑

μ

ηX
μ

[
tXμ (ω + iγ ) + tXμ (−ω − iγ )

]

+
∑
μν

Fμνt
X
μ (−ω − iγ )tXν (ω + iγ ), (2)

with
[A − (ω + iγ )1]tX(ω + iγ ) = −ξX (3)

and the CC “building blocks” ξX
μ , ηX

μ , Fμν , and Aμν defined
in Ref. [23]. We note that the diagonal elements of the
polarizability tensor in Eq. (1) equal minus the response
function in Eq. (2). This suggests that the solution of complex
linear response equations over a grid of input frequencies
ω and for a given damping parameter γ is required to
obtain the absorption spectrum based on Eq. (1). We take a
slightly different view and adopt an asymmetric Lanczos-chain
algorithm to perform an approximate tridiagonalization of the
asymmetric CC Jacobian matrix A. With T indicating the
tridiagonal representation, we obtain T = PT A Q, PT Q = 1,
where P and Q collect the “Lanczos vectors” generated from
the asymmetric Lanczos procedure [32]. As start vectors we
use biorthonormal ξX and ηX vectors, that is,

q1 = ξX

nξ

, nξ = ||ξX||, (4)

p1 = ηX

nη

, nη = (ηX)T ξX

nξ

, (5)

and maintain biorthogonality explicitly throughout, that is,
pT

i qk = δik . The nonzero elements of the tridiagonal matrix
are computed from the Lanczos vectors as outlined in Ref. [32].
Diagonalization of T , which is conveniently truncated to
dimension J � n (n being the full dimension), generates an
effective spectrum. Formulating the linear response function
in terms of the effective spectrum allows for the expedient
calculation of Eq. (2) for all frequencies and γ values of
interest, according to the following simplified “diagonal”
representation,

〈〈μ̂X,μ̂X〉〉γω = nξnη

∑
j

{
Lj1R1j

(ω − ωj ) + iγ
− Lj1R1j

(ω + ωj ) + iγ

}

− n2
ξ

∑
jk

FkjLj1Lk1

(ω − ωj + iγ )(ω + ωk + iγ )
, (6)

where the (columns of the) matrix R and the (rows of the)
matrix L collect, respectively, the right and left eigenvectors
of the truncated T matrix, and Fkj = ∑

μν FμνXμkXνj , with
Xj = Q Rj .

The imaginary component of Eq. (6) used to compute the
absorption cross section is easily derived as

Im〈〈μ̂X,μ̂X〉〉γω
= γ nηnξ

∑
j

{
Lj1R1j

(ω − ωj )2 + γ 2
− Lj1R1j

(ω + ωj )2 + γ 2

}

− γ n2
ξ

∑
jk

FkjLj1Lk1(2ω + ωk − ωj )

[(ω − ωj )2 + γ 2][(ω + ωk)2 + γ 2]
. (7)
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Note that in the equations given it is assumed for simplicity
that only real eigenvalues are obtained, even though this is not
strictly guaranteed due to the non-Hermitian nature of the CC
Jacobian. The actual implementation does, however, properly
account for the occurrence of complex roots.

Even though Eq. (7) yields the absorption cross-section
spectrum straightaway, one may be interested in the oscillator
strengths of the individual excitations (0 → j ) contributing
to a given band yielded by the Lanczos approach. These are
computed straightforwardly, together with the absorption cross
section in Eq. (7), from the expression (here given for one
dipole-moment Cartesian component X)

f XX(0 → j ) = 2

3
ωj

{
nηnξLj1R1j − n2

ξ

∑
l

Flj

Lj1Ll1

(ωj + ωl)

}
,

(8)

obtained as the residue for ω → ωj and γ = 0 of the response
function in Eq. (6).

Note that with increasing chain length an increasing
amount of pseudoeigenvectors will converge to true accurate
eigenvectors, allowing standard CC calculations of transition
properties. This is a most useful test, but also useful in other
ways, such as making noniterative triple excitation corrections
using CCSDR(3) possible using those CCSD eigenvectors that
can be verified to have converged. Recall still that the essence
of the whole strategy is that we do not need to converge all
roots explicitly to obtain accurate response functions.

A few comments are in order relative to Eq. (7) and
the relation of the damped response theory approach with
a standard spectrum obtained by finding eigenvalues and
transition properties and subsequently imposing a Lorentzian
shape on the individual transitions. For the response function
of an exact state there is an exact match between the two
(ignoring the contributions from the “emission” term of the
response function). For the present approximate CC case there
is a close but not formally exact match of the two. We see that
the first term in the above CC spectrum equation has exactly
the form of a sum of Lorentzians, and discarding the second
term is fully equivalent to the steps taken for the exact case.
However, the third F -matrix term formally destroys the exact
match as it contains additional dependencies of ω and γ . These
forms are for example not present if one takes the standard
CC response excitation energies and oscillator strengths and
imposes a Lorentzian form. The nonvariational structure of
CC makes the standard equivalences of exact theory come out
slightly different, but it should be remarked that: (i) for the
exact untruncated cluster expansion the CC response function
matches that of the exact one, and the equivalence is fully
retained; (ii) when all equations are fully converged for an
approximate wave function, the spectrum will, to a very good
approximation, be composed of a sum of Lorentzians since the
F -matrix term represents after all only a minor contribution.
Having stated these facts for the purpose of rigor, one can
see that in the limit of a complete diagonalization—thus,
the Lanczos algorithm has expanded the full matrix—all that
our approach has done is essentially to create a Lorentzian
convoluted spectrum. In practice, we will neither use exact
wave functions nor be able to run the iterative scheme to full
resolution of the Jacobian, and it should be emphasized that the

damped response functions enable calculations of absorption
without converging the full set of eigenvalues and eigenvectors
at a given approximation level. The attention then shifts to
actually calculating the damped response function, and it is for
that purpose that we in this work use the Lanczos algorithm
as it has a straightforward path to the full solution (use a long
enough chain) and good-enough results in a global sense can
be obtained with truncated chains.

For further details on damped CC response theory by a
Lanczos driven algorithm, see Refs. [30,33], including in
Ref. [30] formal arguments for the specific way the damping
is included in the methodology (derived in the context of
the closely related vibrational CC response function) and
in Ref. [33] algorithmic details in electronic CC theory,
with studies of the performance of the approach for a range
of different properties. For conciseness we restrain from
providing further algorithmic details here and focus instead
on specific comments related to understanding the generation
of x-ray results before benchmarking the use of CC response
methods in XAS.

The use of the iterative, asymmetric, Lanczos algorithm
to compute the damped linear response function parallels
developments made for the case of molecular vibrational
states [28,30], where the density of states in the spectral region
of interest is high. The challenge here is similar: We must
accurately determine the key contributor to absorption among,
in principle, very many other states.

With the present approach we generate the entire absorption
spectrum for all frequency values of interest using one common
approximate representation of the Jacobian matrix. Thus, we
construct by an iterative procedure a tridiagonal matrix (in a
reduced space) that is diagonalized once and the approximate
spectrum is available according to the above simple equations.
Specifically, while the standard bottom-up solution of eigen-
value equations typical to CC response implementations would
be impossible to apply for calculating x-ray absorption spectra,
the present approach allows us to make access to this spectral
region. The Lanczos approach provides effective spectra
useful for accurate computations of matrix functions. With
the appropriate seed of the Lanczos scheme as given above,
the response functions relevant for calculating absorption
are converged with increasing precision as the chain length
increases. The Lanczos algorithm has attractive convergence
features with respect to chain length J , since higher moments
of the spectrum are determined exactly with increasing chain
length (see, e.g., Refs. [25,28,30]). The convergence behavior
is related to the convergence of the eigenvalues where the
Lanczos approach, according to traditional wisdom, converges
the extremes before the interior, but the moment perspective
also opens for a more global view upon the convergence of
absorption, which is needed for our application.

It is here remarkable that the effective Lanczos spectrum
generated with emphasis on the calculation of the response
function considered as a matrix function, for well-converged
spectra has some parts that are converged hard enough to
extract useful information on eigenstates. Specifically, we have
checked by converting the pseudoeigenvectors Xj generated
by expanding the eigenvectors of the tridiagonal T matrix into
the full excitation space whether these may or may not be
relative accurate eigenvectors of the CC response Jacobian.
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This can be done by using such vectors as start vectors in an
ordinary CC response calculation. A typical situation is that the
vector that corresponds to the strong absorption feature in the
spectrum is also well converged as an eigenvector, while other
pseudoeigenvectors which contributed essentially nothing to
the absorption are far from converged. A consequence of this
is that we have a way to converge the intense states in the x-ray
region. Furthermore, analyzing such states is useful to identify
the transitions originating from the core and to determine their
percentage of multielectron excited character. The weight of
excitations in the response eigenvector is, in fact, one standard
way of analyzing the character of the excited states. All states
will, due to correlation effects, have a mixture of different
excitation levels relative to the Hartree-Fock reference Slater
determinant, with typical pure single excitations having around
5%–10% double excitation weight. With much large weight
of double excitations (25%–100%) the speed of convergence
in the CC hierarchy becomes much slower, which represents
another diagnostic of the multielectron excited character of the
excited state.

The pseudoeigenvectors are also used to construct the
CCSD eigenvectors needed as restart vectors for the inclu-
sion of triple excitations on the excitation energies via the
noniterative CCSDR(3) method [34]. The corrected excitation
energies for the peaks giving the absorption are then put back
into the pseudospectrum with the CCSD transition properties
to define a CCSDR(3) spectrum. This pragmatic procedure
allows us with noniterative N7 effort to get the accuracy of
triple excitations for the energies without having to suffer full
inclusion of triple excitations in all steps of the calculation.

III. RESULTS

A. Computational details

The outlined approach has been implemented in a local
version of the DALTON program [35]. All CCS calculations
were performed with full excitation space dimension. At the
CC2 and CCSD levels, chain lengths of J = 3000, J = 3000,
and J = 3800 were used for Ne, H2O, and CO, respectively,
for each symmetry unique component of the dipole operator
(Abelian symmetry only). Symmetry labeling refers to a water
molecule placed on the YZ plane, with the C2 axis along
Z. Experimental molecular structures are used. Relativistic
effects are estimated with use of the second-order Douglas-
Kroll-Hess Hamiltonian [36–38].

A common lifetime broadening of γ = 1000 cm−1 (ca.
0.124 eV) is used, in accordance with previous studies [20,21],
which provides a resolution of electronic transitions that
exceeds what is found in experimental spectra. Dunning’s
aug-cc-pCVTZ basis set was adopted for all species [39].
As proposed by Kaufmann and co-workers [40], the original
basis sets are supplemented with sets of uncontracted Rydberg
functions: for Ne, (6s6p) with n = 2.5 to 5 are added and,
for H2O and CO, (3s3p3d) with n = 3 to 4 are placed at the
respective center of mass.

B. Neon

The accurate experimental NEXAFS spectrum reported
by Coreno et al. [41] shows a series of three peaks of

FIG. 1. X-ray absorption spectra for neon as obtained with
CC response theory and compared against experiment [41]. The
results are aligned against the first given experimental peak, and
the corresponding shift is given below the model label for both
nonrelativistic (NR) and relativistic (REL) calculations. The NR and
REL calculations [CCSD and CCSDR(3)] have the same spectral
profile to within the thickness of the line. The theoretical absorption
cross section is given in atomic units, whereas arbitrary units are
adopted in the case of the experiment.

decreasing intensity centered at 867.12(5), 868.69(4), and
869.27(5) eV, respectively, which are assigned to transitions
of the 1s core electron to the np (n = 3,4,5) Rydberg orbitals.
In Fig. 1, results obtained with the hierarchy of CC approxi-
mations are shown together with the experimental spectrum,
with an alignment made of the 1s → 3p peak for ease of
comparison.

The CCS spectrum is ca. 22 eV too high, with far too
intense a peak for the 1s → 3p transition and incorrect energy
separation between the peaks. The CC2 peaks are at about 3 eV
lower than the experimental ones, and the energy separations,
in particular between the n = 3 and n = 4 peaks, are quite
underestimated. The CCSD profile is shifted by about 2 eV,
with correct energy separations and relative intensity of the
various peaks. Both relativistic and nonrelativistic CCSDR(3)
results are within 0.5 eV of the experimental peaks, with the
nonrelativistic one underestimating and the relativistic ones
overestimating the experimental counterparts. The transitions
have approximately 10% of double excitation character.
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TABLE I. Compilation of excitation energies ωj (eV) and
oscillator strengths f of selected core excitations (vertical transitions)
as obtained from the Lanczos procedure. Label NR stands for
nonrelativistic, REL for relativistic results (via the Douglas-Kroll-
Hess Hamiltonian).

Excitation ωj f Method

Ne(1s → 3p) 866.64 0.01187 CCSDR(3)-NR
868.17 0.01187 CCSD-NR
864.36 0.00435 CC2-NR
888.28 0.03366 CCS-NR
867.52 0.01189 CCSDR(3)-REL
869.06 0.01189 CCSD-REL

Ne(1s → 4p) 868.20 0.00350 CCSDR(3)-NR
869.84 0.00350 CCSD-NR
865.41 0.00140 CC2-NR
890.39 0.00721 CCS-NR
869.08 0.00351 CCSDR(3)-REL
870.72 0.00351 CCSD-REL

Ne(1s → 5p) 868.77 0.00151 CCSDR(3)-NR
870.42 0.00151 CCSD-NR
865.79 0.00061 CC2-NR
891.07 0.00287 CCS-NR
869.65 0.00151 CCSDR(3)-REL
871.31 0.00151 CCSD-REL

Ne(1s → 6p) 869.04 0.00086 CCSDR(3)-NR
870.71 0.00086 CCSD-NR
865.99 0.00061 CC2-NR
891.39 0.00150 CCS-NR
869.91 0.00084 CCSDR(3)-REL
871.59 0.00084 CCSD-REL

H2O(O1s → 3s) 534.54 0.0128 CCSDR(3)-NR
535.68 0.0128 CCSD-NR
534.34 0.0067 CC2-NR
551.23 0.0409 CCS-NR
534.87 0.0129 CCSDR(3)-REL
536.02 0.0129 CCSD-REL

H2O(O1s → 3p) 536.36 0.0262 CCSDR(3)-NR
537.47 0.0262 CCSD-NR
535.88 0.0085 CC2-NR
551.88 0.0758 CCS-NR
536.70 0.0262 CCSDR(3)-REL
537.81 0.0262 CCSD-REL

CO(C1s → π∗) 287.97 0.1656 CCSDR(3)-NR
288.21 0.1656 CCSD-NR
289.55 0.1755 CC2-NR
294.41 0.2624 CCS-NR
288.05 0.1653 CCSDR(3)-REL
288.31 0.1653 CCSD-REL

CO(O1s → π∗) 534.50 0.0813 CCSDR(3)–NR
535.85 0.0813 CCSD–NR
535.41 0.0726 CC2–NR
550.09 0.1393 CCS–NR
534.97 0.0816 CCSDR(3)–REL
536.18 0.0816 CCSD–REL

For future reference we also report in Table I individual
values of the vertical excitation energies and corresponding
oscillator strengths f [the latter computed according to

Eq. (8)] for the first four transitions from the core. To
generate the CCSDR(3) spectrum, CCSDR(3) excitation
energies—obtained restarting the CCSDR(3) calculation
from the CCSD pseudoeigenvectors—and CCSD oscillator
strengths have been used, along with a Lorentzian line-shape
convolution function.

C. Water

The experimental K-edge photoabsorption spectrum
recorded by Schirmer et al. [42] is characterized by five
distinct peaks in the region 533–540 eV (vibrational states
are not resolved). The first two peaks (534.0 and 535.9 eV)
are assigned to individual states of A1 and B2 symmetry,
respectively, whereas the remaining three peaks represent
convolutions of excitations to the virtual orbitals 4a1, 2b1,
and 2b2. The intensity of the peaks depends on the local p

character of the empty orbitals at the oxygen nucleus.
Figure 2 shows the theoretical spectra together with the

experimental spectrum [42], and the theoretical spectra are
shifted as to align the first peak to the corresponding experi-
mental peak. For completeness, Table I also reports individual

FIG. 2. (Color online) X-ray absorption spectra for water as
obtained with CC response theory and compared against experiment
[42]. The contribution from the different components of the dipole
operator are indicated for the CCSD spectrum. For other details, see
caption of Fig. 1.
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FIG. 3. (Color online) X-ray absorption spectra for carbon monoxide as obtained with CC response theory and compared against experiment
[43,44]. The contribution from the different components of the dipole operator are indicated for the CCSD spectrum. For other details, see
caption of Fig. 1.

excitation energies and oscillator strengths of the first two core
transitions. As can be observed, the CCS spectrum strongly
overestimates transition energies and yields incorrect peak
separations. CC2 greatly improves on transition energies but
provides poor peak separations. At the CCSD level, peak sep-
arations are within 0.1 eV of the experimental results and rel-
ative peak intensities are in good agreement with experiment.
Inclusion of triple excitations and relativistic effects brings
the theoretical results for absolute transition energies to within
0.9 eV. For comparison, in a recent study using the complex
polarization propagator approach for the density functionals
LB94 and CAM-B3LYP and the taug-cc-pVDZ basis, Ekström
et al. [20,21] obtained spectra qualitatively similar to ours,
but with relative shifts of as much as 4.0 eV (LB94) and
15.15 eV (CAM-B3LYP). Moreover, limiting ourselves to the
first two excitations, our nonrelativistic results are 534.54 eV
for the vertical excitation energy of the 4a1 transition, with an
oscillator strength f of 1.28, and 536.36 eV (f = 2.62) for
the 2b2 transition. The corresponding ADC(2) results [42] are
532.76 eV (f = 0.944), and 534.71 (f = 1.83).

We note that the double-excitation character of the transi-
tions is on the order of 10%–15%.

D. Carbon monoxide

The dominant spectral feature at both the oxygen and
carbon K-edges is given by the 1s → π∗ band positioned

at 287.4 eV [43] and 534.2 eV [44], respectively. It is
followed by a sequence of much weaker discrete bands
associated to Rydberg transitions: first, the 1s → 3sσ band
at about 292.4 eV (C) and 539 eV (O) and second, the
1s → 3pπ band at 293.3 eV (C) and 540 eV (O). A series
of high-resolution experiments [16,43–47] have clarified the
vibrational progressions of such transitions, but this aspect is
beyond the scope of the present work.

The theoretical results shown in Fig. 3 reproduce the
discussed experimental spectral profiles at both edges; see
also Table I for individual energies and strengths of the
first core excitation. Neglecting presumable small vibrational
corrections, the difference between the energies found from the
essentially uncorrelated CCS level of theory and those found
in experiment gives an approximate measure of the relaxation
and correlation effects that are here treated together as a
correlation problem. Focusing first on the main π∗ bands, we
see that the relaxation-correlation energies amount to 7.1 and
15.8 eV at the carbon and oxygen K edges, respectively. At the
highest level of theory, CCSDR(3) with inclusion of relativistic
effects, about 90% and 95% of the relaxation-correlation
contribution is captured for C and O, respectively. Analysis
of the pseudoeigenvectors for the two intense 1s → π∗ tran-
sitions indicates 9% double-excitation character at the carbon
K edge and around 12% double-excitation character at the
oxygen K edge. At the relativistic CCSD level, the oscillator
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strengths of the intense transitions are 0.1653 (carbon edge)
and 0.0816 (oxygen edge), and they compare well with the
corresponding experimentally derived values of 0.167 [48]
and 0.06 [49]. Note that, for the C1s → π∗ band, Triguero
et al. [14] reported, using the DFT-TP method, nonrelativistic
results for the excitation energies between 287.5 and 288.9 eV,
with oscillator strengths between 0.162 and 0.164, depending
on the functional adopted. With a revised ADC(2) approach in
combination with the core-valence separation (CVS) approx-
imation, Trofimov et al. [16] obtained a nonrelativistic value
of 287.15 eV and an oscillator strength of 0.145. Within the
electron-attachment equation-of-motion (EA-EOM) CCSD
method, Nooijen and Bartlett [50] calculated 287.52 eV and
0.169 using a closed-shell variant based on the neutral ground-
state orbitals (called QRHF/EA-EOMCCSD) and 287.08 eV
(f = 0.190) with the open-shell variant. Our corresponding
nonrelativistic CCSDR(3)/CCSD results are 287.97 eV and
0.1656. For the O1s → π∗ transition, we calculate 534.49 eV
and 0.0813, whereas the DFT-TP [14] results are between
535.1 and 536.1 eV (f = 0.066), ADC(2) yields 532.53 eV
and 0.07 [16], the QRHF/EA-EOMCCSD method [50] gives
533.98 eV and 0.031, and its open-shell variant [50] yields
534.15 eV and 0.083. Similar to water, using the CPP approach
at the TDDFT level, Ekström et al. [20,21] reported an absorp-
tion spectrum for the C edge qualitatively consistent with the
experimental spectrum, but with shifts of as much as +4.8 eV
(LB94) and +14.8 eV (CAM-B3LYP) and weaker intensity.

Intensities in the Rydberg regions are much weaker as
compared to the π∗ bands, and, for clarity, the CCSDR(3)
spectra for carbon and oxygen are magnified by factors of
10 and 5, respectively. We note that our calculation correctly
captures the 3sσ and 3pπ transitions, which are about equally
intense at the oxygen K edge but not so at the carbon K edge,
where the 3pπ peak strongly dominates. The polarization
dependence of the absorption is depicted in Fig. 3 by the
dashed curves, and, upon closer inspection of the carbon
spectrum, it is clear that our results support the identification
of a 3pσ progression under the 3pπ one (as suggested by
Domke [45]). Also in the carbon spectrum, the polarization
dependence clearly reveals the 3dπ shoulder to the left of the
4pπ band, and, for oxygen, we note the 4sσ shoulder (relevant
polarization is plotted in red (lighter gray)) to the left of the
3dπ/4pπ bands.

IV. CONCLUDING REMARKS

We have presented a formulation and implementation of
the complex polarization propagator for the hierarchy of

CC response methods CCS, CC2, and CCSD based on an
asymmetric Lanczos algorithm and with triple excitation
effects on the energetics accounted for using the CCSDR(3)
approximation. This hierarchy of theoretical levels provides a
generic and systematic way to treat multielectron excitations
(shake-up processes) as well as a way to account for electronic
relaxation effects. The approach has been applied to the
calculation of near K-edge x-ray absorption spectra of Ne,
H2O, and CO, thereby illustrating the applicability of standard
CC response methods to x-ray spectroscopies. The accuracy
of the description of electronic relaxation and differential
correlation for the core-excited state depends only on the
accuracy in the description of dynamic electron correlation,
and it can be monitored by using the CC hierarchy, as
typically done for UV-vis spectra. The multielectron excited
character that accounts for the relaxation effect amounts to
about 10%–15% for the studied transitions at the K edges.
In terms of peak separation energies and intensities, the
agreement between CCSDR(3) and experimental spectra is
excellent. In absolute terms, the CCSDR(3) energies (with
relativistic corrections) are on the order 0.4–0.9 eV too high.
The remaining effects are anticipated to be due to a subtle
combination of remaining basis set and correlation errors as
well as vibrational effects for the molecules. While in absolute
terms these energy discrepancies are about five times larger
than what is reported in the UV-vis region, the agreement is,
in a relative sense, significantly better. This work should be
seen in view of the importance of CC response methods for
UV-vis spectroscopies, and there is reason to believe that CC
response calculations can become the standard benchmark also
in the x-ray region. Obviously, the present theoretical methods
can be extended to higher-level CC methods giving higher
accuracy at higher cost. Another interesting future perspective
is that the combination of CC with molecular mechanics
methods opens for calculations of much larger systems, where
accuracy can still be maintained for a specific central core
region.
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