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Numerical solution of the time-independent Dirac equation for diatomic molecules: B splines
without spurious states
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Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke J1K 2R1, Canada
(Received 7 December 2011; published 7 February 2012)

Two numerical methods are used to evaluate the relativistic spectrum of the two-center Coulomb problem
(for the H2

+ and Th179+
2 diatomic molecules) in the fixed nuclei approximation by solving the single-particle

time-independent Dirac equation. The first one is based on a min-max principle and uses a two-spinor formulation
as a starting point. The second one is the Rayleigh-Ritz variational method combined with kinematically balanced
basis functions. Both methods use a B-spline basis function expansion. We show that accurate results can be
obtained with both methods and that no spurious states appear in the discretization process.
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I. INTRODUCTION

There has been a strong interest in the solution of the time-
independent Dirac equation in the last few decades, motivated
mostly by new advances in molecular and nuclear physics.
More recently, the fields of laser-matter interaction and optics
have also considered this equation because new developments
have led to experimental facilities reaching laser intensities
above 1020 W cm−2 [1]. The mathematical description of
an electron subjected to such intense electromagnetic fields
necessitates a relativistic treatment [2–4], and thus, theoretical
efforts should be based on the Dirac equation instead of the
nonrelativistic Schrödinger equation.

It is well known that finding a solution of the Dirac
equation is very challenging because it has an intricate
matrix structure. This complicates analytical approaches, and
closed-form solutions can be found only for highly symmetric
systems. For this reason, a numerical treatment is required to
study more realistic physical processes occurring in molecules
or heavy-ion collisions. However, the development of an
accurate numerical approach is also difficult because the
Dirac spectrum is not bounded from below (and above). This
precludes the “naive” generalization of well-known methods
used to solve the Schrödinger equation such as the Galerkin
and Rayleigh-Ritz methods. These are based on minimization
principles and, thus, work rigorously only if the spectrum
of the differential operator has a lower (or upper) bound.
Trying to solve the Dirac equation with these methods can
thus be very dangerous, as the Dirac spectrum can be altered
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by negative energy contributions. This problem is called
“variational collapse” and leads to the appearance of spurious
states in the approximated spectrum. The spurious states are
eigenvalues which do not belong to the spectrum of the
continuous operator and which appear in the discretization
process. More precisely, let λ be an eigenvalue of the Dirac
operator Ĥ in the mass gap (−mc2,mc2) (corresponding to
bound states) and σĤ be its point spectrum in the mass gap, that
is, the set of all λ’s. Numerically, we approximate the operator
Ĥ by Ĥn such that limn→∞ Ĥn = Ĥ (here, n is the dimension
of the subspace on which the operator is projected or, loosely
speaking, the dimension of the Dirac operator matrix once
the problem is discretized). The discretized Dirac operator Ĥn

has eigenvalues given by λn ∈ σĤn
. The set of spurious states

σ s
Ĥn

⊂ σĤn
is defined by the set of all eigenvalues in σĤn

for
which limn→∞ λn /∈ σĤ .

There have been many successful attempts in the literature
to circumvent variational collapse by adapting minimization
techniques and basis set expansions to the Dirac operator
[5–14]. Usually, these techniques can be classified into one
of three main categories [12]: modification of basis functions,
utilization of an operator that has a lower bound but the same
spectrum as the Dirac operator, and transformation of the Dirac
operator. The methods utilized in this work fall into the first and
third categories; they are the Rayleigh-Ritz method with kine-
matically balanced basis functions (KBBFs) [11,14–16] and
the variational method based on a min-max principle [17,18].

Discretization of the Dirac equation in these two cases
proceeds by the utilization of a basis set expansion which
allows, in principle, a very good accuracy. These techniques
have been exploited extensively in the nonrelativistic case
to solve the time-independent Schrödinger equation [19]
and allow making accurate predictions for the nonrelativistic
spectra of molecules and for other observables. In this work,
a B-spline set of basis functions will be utilized. This choice
is motivated by some interesting properties of B splines: they
have compact support (leading to sparse matrix structures),
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they are very flexible in terms of element size and continuity
conditions (both are determined by their knot vector), they
are positive definite, and finally, they are linearly independent
(they form a complete basis). For these reasons, B splines have
also been widely applied to the nonrelativistic (see [20] for a
review of the use of B splines in molecular physics) and to
the relativistic [18,21–24] cases. Here, we combine B-spline
basis functions with the two numerical schemes described
previously.

We use these methods to investigate two particular systems:
the diatomic molecule H2

+ and the quasimolecule Th179+
2 . This

is accomplished by computing the relativistic spectrum of the
two-center Coulomb problem in the fixed nuclei approxima-
tion. The rationale for studying these systems is twofold. First,
they are physically relevant in many fields of physics. The
molecule H2

+ is very important in chemical physics and its
relativistic corrections, albeit very small, have been the subject
of many studies [25–29]. On the other hand, the quasimolecule
Th179+

2 is not stable and dissociates rapidly. However, it is
pertinent in heavy-ion collisions at an intermediate energy,
where processes such as charge transfer and electron-positron
pair production are investigated [30,31], and in high-intensity
laser-matter interaction, where pair production and quantum
electrodynamics (QED) processes could be enhanced in the
presence of heavy nuclei [32].

The second reason to look at these systems is that their
ground-state eigenvalue has already been computed, and
thus, the numerical results obtained from our analysis can
be compared to results from the literature. More precisely,
they have been studied using different analytical [33,34]
and numerical approaches such as the Rayleigh-Ritz scheme
[24,26,28,29,35,36], the variational scheme based on the min-
max principle [18], and finite-difference methods [25,27]. Very
accurate results for the ground state of diatomic molecules
were obtained in these analyses. However, the whole spec-
trum is rarely discussed (an exception to this is found in
Refs. [37,38]) and some of these methods (especially those
based on the “naive” Rayleigh-Ritz method) could potentially
lead to the appearance of spurious states. For instance, this
problem was discussed in Ref. [24] and a technique for
identifying these artifacts was described. However, this can be
cumbersome when one is interested in sums over intermediate
states such as those required in radiative QED corrections.
For these calculations, it is certainly more efficient to have a
numerical scheme free of spurious states from the outset.

In this work, we present and compare two numerical
methods that use a B-spline basis set expansion to compute
the relativistic spectrum of the two-center problem. The first
one is the min-max variational method. The second one is the
Rayleigh-Ritz method combined with KBBFs. In Sec. II, the
variational formulation of both numerical methods is presented
and the choice of basis functions is described. The numerical
results are reported in Sec. III, where some values for the spec-
tra of diatomic molecules are shown, along with a discussion
of spurious states. The conclusion is found in Sec. IV.

II. NUMERICAL METHODS

The Dirac equation describes the relativistic dynamics of
spin- 1

2 particles (fermions) like the electron. In this work, we

consider specifically the single-particle static Dirac equation
without vector potential given by1

Ĥψ(x) = Eψ(x) with Ĥ ≡ cα · p + mc2β + V (x)I4,

(1)

where Ĥ is the Hamiltonian operator, p = −i∇ is the
momentum operator, c is the light velocity, m is the electron
mass, E is the electron energy, and ψ ∈ L2(R3,C4) is a
four-spinor. The matrix structure is given by α and β, which
are 4 × 4 matrices given by

αi =
[

0 σi

σi 0

]
and β =

[
I2 0

0 −I2

]
, (2)

where σi are the usual Pauli matrices. The latter are

σx =
[

0 1

1 0

]
, σy =

[
0 −i

i 0

]
, and σz =

[
1 0

0 −1

]
.

(3)

Written in this way, the Dirac equation is in the Dirac
representation. This equation gives a consistent description of
single bound electrons within the fixed nuclei approximation,
i.e., when the effect of the nuclei is included in the potential
term V and the nuclei are fixed in space. This is valid when
the masses of the nuclei are much larger than the mass of
the electron, which will always be the case for the systems
considered in this study.

The main goal of this work is to calculate approximate
solutions of (1). To achieve this, it is convenient to write the
four-spinor as ψ(x) ≡ [φ(x),χ (x)]T, where φ(x) and χ (x)
are two bispinors called the large and small components,
respectively. The Dirac equation then becomes[

V (x) + mc2 R̂

R̂ V (x) − mc2

] [
φ(x)

χ (x)

]
= E

[
φ(x)

χ (x)

]
, (4)

where we have defined R̂ = −icσ · ∇. This last equation is the
common starting point for the numerical methods that follow.
As shown later, it is also handy for decomposing the latter into
two coupled equations as

R̂χ (x) = [E − mc2 − V (x)]φ(x), (5)

R̂φ(x) = [E + mc2 − V (x)]χ (x). (6)

The small component can then be written in terms of the large
component, yielding

χ (x) = R̂

E + mc2 − V (x)
φ(x). (7)

By substitution, we get

R̂

[
R̂φ(x)

E + mc2 − V (x)

]
= [E − mc2 − V (x)]φ(x) (8)

1All calculations here are performed in atomic units (a.u.), where
m = 1, h̄ = 1, and c = 1/α and we take α ≈ 1/137.035999679 as
the fine-structure constant. In all equations, however, we keep the
mass explicitly, allowing us to switch easily from atomic to natural
units.
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for the large component, which belongs to φ ∈ L2(R3,C2).
Note here that the latter procedure can also be implemented as
a Foldy-Wouthuysen transformation [39]. These two relations
are important for the analysis that follows.

For a diatomic molecule, the case considered in this study,
the static potential is

V (x) = − Z1

|x + Rẑ| − Z2

|x − Rẑ| , (9)

where Z1,2 are the atomic electric charges, 2R is the inter-
atomic distance, and ẑ is a unit vector in the z-coordinate
direction. It represents the static Coulomb interaction of two
point-like nuclei with an electron in the fixed nuclei approxi-
mation. This potential is axially symmetric so the number of
dimensions can be reduced by one: the azimuthal coordinate
dependence can be treated analytically by factorization. Thus,
the four-spinor in cylindrical symmetry reads [29,40]

ψ(x) =
[

φ(ξ,η,θ )

χ (ξ,η,θ )

]
=

⎡
⎢⎢⎢⎣

φ1(ξ,η)ei(jz−1/2)θ

φ2(ξ,η)ei(jz+1/2)θ

iχ1(ξ,η)ei(jz−1/2)θ

iχ2(ξ,η)ei(jz+1/2)θ

⎤
⎥⎥⎥⎦ , (10)

where jz is the angular momentum projection on the z axis (it
can take one of the values jz = . . . ,− 5

2 ,− 3
2 ,− 1

2 , 1
2 , 3

2 , 5
2 , . . .)

and η and ξ are prolate spheroidal coordinates. This choice
of coordinate system is very convenient for the numerical
implementation because the Coulomb singularities are situated
on the domain boundaries. Also, it has already been utilized in
accurate evaluations of the diatomic ground-state energy in the
relativistic [28,29] and nonrelativistic [41–43] cases. For these
reasons, these coordinates are used throughout this work, even
though it was argued in Ref. [24] that Cassini coordinates can
provide slightly more accurate results. The prolate spheroidal
coordinates are defined as

x = R[(ξ 2 − 1)(1 − η2)]
1
2 cos θ, (11)

y = R[(ξ 2 − 1)(1 − η2)]
1
2 sin θ, (12)

z = Rξη, (13)

where ξ ∈ [1,∞), η ∈ [−1,1], and θ = [0,2π ] (azimuthal
angle). The Coulomb potential in these coordinates becomes

V (ξ,η) = − Z1

R(ξ + η)
− Z2

R(ξ − η)
. (14)

We can now start discussing the numerical methods utilized in
this work to calculate the spectrum of diatomic molecules.

A. Min-max method

The first method described in this work was developed in
Refs. [17,18,44–46] and is a weak formulation for operators
with gaps in their spectrum. The main idea is to find the critical
points of the Rayleigh-Ritz coefficient by using a min-max
principle. More precisely, it was rigorously proven that the
sequence of values defined by [44]

λk = inf
G subspace of F+

dim G=k

sup
ψ∈(G⊕F−)\{0}

〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 (15)

gives the actual eigenvalues of Ĥ in the mass gap, if certain
assumptions are fulfilled (e.g., the first eigenvalue should obey
λ1 > −mc2 and the potential V should be Coulomb-like).
Here, F+,− are two well-defined orthogonal subspaces of
F ⊂ L2(R3,C4). This result is very general and can be applied
to any space decompositions F+ ⊕ F−. For practical purpose,
it is convenient to use one that splits the large and small
components of the Dirac equation as [44]

F+ = L2(R3,C2) ⊗
{(

0

0

)}
,

(16)

F− =
{(

0

0

)}
⊗ L2(R3,C2).

In this setting, the maximization is performed exactly by
relation (7), which relates the large and small components [44].
Then, only the minimization remains, and this step is carried
out numerically.

The latter can be performed by minimizing the energy over
any couple (E,φ) obeying the functional equation given by

A[E,φ] ≡
∫

d3x

[( |R̂φ|2
E + mc2 − V

)

− [E − mc2 − V ]|φ|2
]

= 0. (17)

This functional equation is obtained from (7) and (8) by
multiplying the latter by φ† on the left, by integrating on
space (using integration by parts), and by using the divergence
theorem. Also, the wave function should vanish more rapidly
than ∼ 1

r2 at infinity. This is the case when V is a Coulomb-like
potential because the corresponding wave function vanishes
as φ ∼ e−r when r → ∞ [47].

Therefore, the last equation gives a realization of the
min-max principle. Moreover, it is shown from the preceding
procedure that it predicts the same spectrum in the mass
gap (−mc2,mc2) as that of the Dirac equation [17,18,44–46].
This formulation also allows discretization schemes that use
a basis function discretization without “variational collapse”:
the calculated energy spectrum is bounded in the mass gap
and does not fall into the negative energy continuum. Finally,
spurious states does not appear in the calculated spectrum
without adding any additional conditions [17], making for a
very robust numerical method. In the following, we describe
the discretization of (17) by using a set of basis functions.

1. Basis set expansion

The discretization of (17) with the potential in Eq. (9)
proceeds by expanding the wave function over a set of basis
functions. Thus, the bispinor can be written as

φ1,2(ξ,η) =
N∑

n=1

a(1,2)
n B(1,2)

n (ξ,η), (18)

where a(1,2)
n are the basis expansion coefficients and B(1,2)

n (ξ,η)
are the basis functions (defined later), for components 1 and
2, respectively.

The explicit expression of (17) in discretized form depends
on the potential considered, and on the coordinate choice, and
is a complicated functional of basis functions (some examples
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are given in Refs. [17,18]). The equation A[E,φ] = 0, once
discretized, generally has the form

2N∑
i,j=1

a
(1,2)
k,i Aij (E)a(1,2)

k,j = k(E), (19)

where A(E) is now a matrix, k(E) is its kth eigenvalue, and

a
(1,2)
k,i =

{
a

(1)
k,i for i � N,

a
(2)
k,i−N for i > N

(20)

its eigenvector. For cylindrically symmetric systems expressed
in prolate spheroidal coordinates, the case considered in this
study, A(E) becomes a 2N × 2N matrix having the structure

A(E) =
[

A11(E) A12(E)

AT
12(E) A22(E)

]
, (21)

where A11, A22, and A12 are N × N matrices for which explicit
expressions are given in Appendix A.

Therefore, solving the nonlinear [A(E) depends on the
energy E] eigenvalue problem, (19), gives an approximation
of the energy E and eigenfunctions: the energy of the kth
bound state is a solution of k(E) = 0, where k is the kth
eigenvalue of A(E), while wave function coefficients in the
basis expansion are the A(E) matrix eigenvector coefficients.
It can easily be demonstrated that k(E) are monotonically
decreasing functions [18], which implies that they have
only one root, i.e., only one value of E = Eroot for which
k(Eroot) = 0. This problem can thus be solved by iteration or
any other root finding algorithm.

B. Rayleigh-Ritz method

The Rayleigh-Ritz method is well known and has been
studied extensively for both the relativistic and the nonrela-
tivistic cases (see, e.g., Refs. [11,14]). Starting from (4), we
can multiply by ψ† on the left and integrate on space to get
another functional equation, given by∫

d3x{[mc2 + V ]|φ|2 + (φ|R̂χ ) + (χ |R̂φ) + [V − mc2]|χ |2}

= E

∫
d3x{|φ|2 + |χ |2}, (22)

which is just an explicit way of writing the well-known
Rayleigh-Ritz functional equation H̄ = 〈ψ |Ĥ |ψ〉/〈ψ |ψ〉.
The notation (·|·) stands for the Hermitian inner product. In
the following, we define two operators C and S by

C[ψ] =
∫

d3x{[mc2 + V ]|φ|2 + (φ|R̂χ )

+ (χ |R̂φ) + [V − mc2]|χ |2}, (23)

S[ψ] =
∫

d3x{|φ|2 + |χ |2}. (24)

A numerical scheme can be developed from these equations
by discretizing the wave function over a set of basis functions.

For a bounded operator (like the Schrödinger operator), the
best estimate for the eigenpairs is obtained by a minimization
procedure because the Rayleigh-Ritz quotient forms an upper
bound for the eigenenergy E (if the spectrum is bounded from

below). Moreover, it can be shown that the minimum of the
quotient converges toward the exact eigenpair as the number of
basis function N → ∞ (see [11] and references therein). If the
operator is not bounded, as in the case of the Dirac equation, the
quantity H̄ does not necessarily form an upper bound, although
it is still a stationary point (as seen in the previous section,
the eigenvalues can actually be characterized by a min-max
principle). For this reason, the convergence of this approach is
not guaranteed because the stationary point is a saddle point,
and spurious states may appear. Therefore, a modification
of the method is required to improve the convergence. The
strategy we use in this paper is the KBBF described in the next
section.

1. Basis set expansion

The discretization of (22) is very similar to the one in the
last section and proceeds by expanding the wave function over
a set of basis functions. In this case, one writes the bispinors
as

φ1,2(ξ,η) =
N∑

n=1

a(1,2)
n B(1,2)

n (ξ,η), (25)

χ1,2(ξ,η) =
N∑

n=1

c(1,2)
n X(1,2)

n (ξ,η), (26)

where a(1,2)
n , c(1,2)

n are the basis expansion coefficients and
B(1,2)

n (ξ,η), X(1,2)
n (ξ,η) are the basis functions (to be defined

later), for components 1 and 2, respectively. In the naive
Rayleigh-Ritz method, the basis functions for both spinors
are the same, that is, X(1,2)

n (ξ,η) = B(1,2)
n (ξ,η). Substituting

(25) and (26) into (22), we obtain a generalized eigenvalue
problem in the form of

Ca = ESa, (27)

where the generalized eigenvector a = [a(1)
1 , . . . ,a(1)

n ,

a
(2)
1 , . . . ,a(2)

n ,c
(1)
1 , . . . ,c(1)

n ,c
(2)
1 , . . . ,c(2)

n ] contains the basis
function expansion coefficients. Finding the solution of this
last equation corresponds to an extremization on the trial
function parameters (a(1,2)

i and c
(1,2)
i ) and yields an approxima-

tion of the eigenenergies and eigenfunctions. The functionals
C[ψ] and S[ψ] become 4N × 4N matrices having the general
structure

C =

⎡
⎢⎢⎢⎢⎣

C(1)
11 0 C(3)

11 C(3)
12

0 C(1)
22 C(3)

21 C(3)
22

C(3)T
11 C(3)T

21 C(2)
11 0

C(3)T
12 C(3)T

22 0 C(2)
22

⎤
⎥⎥⎥⎥⎦ , (28)

S =

⎡
⎢⎢⎢⎢⎣

S(1)
11 0 0 0

0 S(1)
22 0 0

0 0 S(2)
11 0

0 0 0 S(2)
22

⎤
⎥⎥⎥⎥⎦ , (29)

where the matrices C(1,2,3)
ij and S(1,2)

ij are N × N matrices. Their
explicit expressions are given in Appendix B.
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In the KBBF technique, a special choice of basis functions is
made: the bases for the large and small components are related
by a transformation guaranteeing that the nonrelativistic
equation is recovered in the limit c → ∞. This is achieved
by considering the relation between the small and the large
component given in Eq. (7). Substituting (25) into the latter,
we get

χ (ξ,η) = R̂

E + mc2 − V (ξ,η)

(∑N
n=1 a(1)

n B(1)
n (ξ,η)∑N

n=1 a(2)
n B(2)

n (ξ,η)

)
. (30)

Note here that substituting this equation in the Rayleigh-Ritz
coefficient allows recovery of the min-max method and its
discretization scheme described in the previous section. Then
the eigensolutions have to be calculated by using an iteration
procedure because the functional has an intrinsic dependence
on the eigenenergy. This is circumvented by neglecting the
space dependence of the potential over the support of each
basis function and redefining the basis expansion coefficients
as

c(1,2)
n = 1

E + mc2 − Vn

a(1,2)
n , (31)

≈ 1

E + mc2 − V (ξ,η)
a(1,2)

n , (32)

where Vn is a constant coefficient representing the contribution
of the potential on the support of the basis function n. Thus,
we obtain

χ (ξ,η) = R̂

2mc2

(∑N
n=1 c(1)

n B(1)
n (ξ,η)∑N

n=1 c(2)
n B(2)

n (ξ,η)

)
, (33)

where the factor 1/2mc2 was included for numerical con-
venience (it also allows us to recover the nonrelativistic
limit exactly if the energy is shifted by mc2). In some
sense, the eigenenergy and space dependence of the prefactor
1/(E + mc2 − V ) is encoded in the coefficients c(1,2)

n . No
iteration procedure is required as in the min-max method but
the eigenvalue problem is larger. Also, the relation between the
small and the large components is only approximate because
the constants c(1,2)

n have neither energy nor space dependence.
However, we expect this relation to converge toward the exact
one as the number of basis functions is increased and their
support decreases. In that case, neglecting the spatial variation
of the potential becomes a better approximation. In the limit
N → ∞, we have

χ (ξ,η) = R̂

2mc2
f (ξ,η), (34)

where f (ξ,η) is a bispinor. This implies that in the KBBF,
the extremization of the Rayleigh quotient is performed on
f (ξ,η) rather than on χ (ξ,η) as in the “naive” Rayleigh-Ritz
method. The former is consistent with the min-max principle
exposed previously and the stationary point (or Euler-Lagrange
equation) is given by

R̂
E + mc2 − V

2mc2
R̂f = R̂2φ. (35)

This equation can also be obtained from a unitary trans-
formation of the Dirac equation [12]. Therefore, in the
continuous limit, the exact solution is recovered from the

min-max principle, which establishes that the two approaches
are consistent with each other in that limit.

Explicitly, the basis function expansion is given in prolate
spheroidal coordinates by (here, we dropped the basis function
argument for simplicity)

φ1,2(ξ,η) =
N∑

n=1

a(1,2)
n B(1,2)

n , (36)

χ1(ξ,η) = i

2mc

N∑
n=1

{
c(2)
n

[
− ∂r − μ2

r

]
B(2)

n − c(1)
n ∂zB

(1)
n

}
,

(37)

χ2(ξ,η) = i

2mc

N∑
n=1

{
c(1)
n

[
− ∂r + μ1

r

]
B(1)

n + c(2)
n ∂zB

(2)
n

}
,

(38)

where ∂r and ∂z are given in Eqs. (A4) and (A5), respectively,
while r = R[(ξ 2 − 1)(1 − η2)]

1
2 . The latter expressions were

obtained by expressing the operator R̂ explicitly in prolate
spheroidal coordinates.

Substituting (36)–(38) into (22), we also obtain a general-
ized eigenvalue problem in the form of (27). In this case, the
matrix structure is

C =

⎡
⎢⎢⎢⎢⎣

C(1)
11 0 C(3)

11 C(3)
12

0 C(1)
22 C(3)

21 C(3)
22

C(3)T
11 C(3)T

21 C(2)
11 C(2)

12

C(3)T
12 C(3)T

22 C(2)T
12 C(2)

22

⎤
⎥⎥⎥⎥⎦ , (39)

S =

⎡
⎢⎢⎢⎢⎣

S(1)
11 0 0 0

0 S(1)
22 0 0

0 0 S(2)
11 S(2)

12

0 0 S(2)T
12 S(2)

22

⎤
⎥⎥⎥⎥⎦ , (40)

and explicit expressions are given in Appendix C. The matrices
C and S are 4N × 4N matrices, while the other components
(C(1,2,3)

ij and S(1,2)
ij ) are N × N matrices.

The analytical analysis of convergence of this method and
the proof that it does not have spurious solutions are clearly
a nontrivial matter but were discussed in Ref. [11] for the L-
spinor basis functions. In our case, these properties are verified
empirically by looking at the numerical results, while a careful
analysis of the method is currently under investigation.

C. Basis functions

Throughout this work, B-spline basis functions are used
(a description of these functions is given in Ref. [20]). This
choice is favored over other techniques because it can be
easily implemented and because B splines have compact
support, leading to sparse matrix structures. This allows the
use of powerful numerical routines for the calculation of
eigenvalues. More important is the fact that B splines are
linearly independent and form a complete basis, which is a
necessary condition for the convergence of the Rayleigh-Ritz
method for both eigenenergies and eigenfunctions ([11] and
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references therein). It is also an important requirement to avoid
errors of order 1/c4 in the Rayleigh-Ritz bounds, which may
induce spurious states in certain circumstances [5].

B-spline basis functions have been studied extensively
for solving the time-independent Dirac equation because of
these important properties. However, most of these studies
considered atoms or atomic-like systems [18,21–23], although
recently, they have also investigated diatomic molecules
[18,24].

B splines are fully determined by their order kξ,η and knot
vector using the iterative formula [20,48]

bk
i (x) = x − ti

ti+k−1 − ti
bk−1

i (x) + ti+k − x

ti+k − ti+1
bk−1

i+1 (x) (41)

and initial conditions

b1
i (x) = 1 for ti � x < ti+1 and b1

i = 0 otherwise,

(42)

where ti’s are knot coordinates. The number of knots at a given
coordinate determines the continuity condition at that point.
Therefore, the number of knots should be maximal at singular
points (at the Coulomb singularity position, e.g.) to allow for a
discontinuous behavior of the wave function. Throughout this
work, the knot vectors are given by the sequences

1 = ξ1 = · · · = ξkξ
< ξkξ +1 < · · · < ξnξ +1

= · · · = ξnξ +kξ
= ξmax, (43)

−1 = η1 = · · · = ηkη
< ηkη+1 < · · · < ηnη+1

= · · · = ηnη+kη
= 1. (44)

Here, nξ,η are the number of spline functions in ξ and η

coordinates, respectively. The knot coordinates can be chosen
arbitrarily in the domain under consideration. However, to
improve the accuracy, an exponential sequence with smaller
intervals close to the singularities is used in this study. The
knot sequences and domain structure for diatomic molecules
are depicted in Fig. 1.

The basis function can then be written as the tensor product
of B-spline functions as

B (1,2)
n (ξ,η) = G(1,2)(ξ,η)b

kξ

i (ξ )b
kη

j (η), (45)

where n = [i,j ] ∈ Z2, i ∈ [1,nξ ], and j ∈ [1,nη]. The overall
factor is defined as [28,29]

G(1,2)(ξ,η) = [(ξ 2 − 1)(1 − η2)]
μ1,2

2 , (46)

where

μ1 = jz − 1
2 and μ2 = jz + 1

2 . (47)

This factor accounts for the angular momentum dependence
(remember that jz is the angular momentum projection on the
z axis). Moreover, this allows having well-defined integrals
in the functionals and, thus, a better convergence of the
method.

D. Details of the calculation

The construction of the matrices appearing in the two
numerical methods involves several integrals extending over
the whole domain. However, because B splines are compact,

FIG. 1. (Color online) Discretization of the domain. A circle
represents a point where there is a Coulomb singularity. The domain
under consideration is discretized into a certain number of elements,
while each element is subdivided into smaller regions for the space
integration. Note that we are using an exponential size distribution
with smaller elements close to the Coulomb singularities. There is a
knot point at every intersection of two dotted lines.

the integration domains are reduced to the support of each
basis function, which are regions having kξ × kη elements
or less. The integrals are evaluated numerically using the
Gauss-Legendre quadrature rule.

The boundary conditions are chosen as φ(ξmax,η) = 0 and
χ (ξmax,η) = 0. Using B splines, this can be implemented
easily by setting bnξ

(ξ ) = 0 and by considering only nξ − 1
B-spline functions in ξ coordinates. The other boundaries are
free. Strictly speaking, these boundary conditions may lead
to some numerical problems because of the occurrence of the
Klein paradox [21]: they correspond to the confining of the
electron in a box surrounded by an infinite potential barrier
at ξ = ξmax. However, similar conditions have been used
successfully in Refs. [28,29,36] to obtain very accurate results.
Also, it was argued in Refs. [18,22] that using these zero
boundary conditions have negligible effects on the solution if
the domain is large enough.

The boundary conditions on the nuclei are more subtle. It is
argued in Ref. [49] that B-spline basis expansions are plagued
with nonphysical solutions related to an incorrect treatment of
these boundary conditions. A remedy to this problem is also
proposed but it is not clear to us how this technique can be
applied to the diatomic molecule case. However, it is verified
a posteriori, by looking at the spectrum, that our boundary
conditions do not induce spurious states.

The code performing the calculation is parallelized by using
the domain decomposition strategy described in Ref. [50].
For better performance, the ScaLAPACK library is utilized to
solve the eigenvalue and generalized eigenvalue problems. In
the Rayleigh-Ritz method, the latter yields the whole energy
spectrum and eigenfunction in one calculation. For the min-
max method, only one eigenenergy can be calculated at a time
because each evaluation necessitates a solution of k(E) =
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0. The latter is solved by a root-finding algorithm based on
Brent’s method [51].

III. RESULTS AND DISCUSSION

In this section, the results obtained for both numerical
methods are presented. First, the convergence of the method
is analyzed. Then the spectra of diatomic molecules are
presented, and finally, the absence of spurious states is
discussed.

A. Convergence of the method

In this section, we are investigating the convergence of
our numerical methods. More specifically, we study and
calculate the ground state of dithorium (Th179+

2 , which has
Z1,2 = 90) and dihydrogen (H2

+, which has Z1,2 = 1). The
semi-interatomic distance is set to R = 1

90 ≈ 0.011111 a.u.
for dithorium and to R ≈ 1.000 a.u. for dihydrogen, while the
angular momentum is taken as jz = 1/2. The results for the
calculation of the ground state binding energy using B splines
of order 7 and different mesh sizes are listed in Tables I and II
for H2

+ and Th179+
2 , respectively.

The results presented in these tables show the convergence
of the method as the number of elements is increased. The
results obtained are very accurate, although there is a small rel-
ative difference dr between our results and the results presented
in Ref. [29]. For H2

+, we obtain dr ≈ 2.2 × 10−8% and dr ≈
1.9 × 10−8% for the min-max and Rayleigh-Ritz methods,
respectively, while for Th179+

2 , we have dr ≈ 6.1 × 10−4%
and dr ≈ 0.97 × 10−4% for the min-max and Rayleigh-Ritz
methods, respectively. These differences can be explained
by the different choice of boundary conditions, different
element formulations, and different treatments of the Coulomb
singularity.

In all cases, the convergence is from above, suggesting
that both methods are consistent with the min-max principle.
The convergence in the case of dithorium, however, is much
slower than for dihydrogen. One possible reason explaining
this discrepancy is the behavior of B splines close to the
Coulomb singularities. In that region, the wave function should

TABLE I. Results of the numerical computation for the ground
state of H2

+ for different mesh sizes and B splines of order 7. Here,
Nξ,η are the number of elements in each coordinates, while N∗ is the
total number of basis functions utilized. The maximum coordinate
was fixed to ξmax = 30 a.u. and the angular momentum to jz = 1/2.
The calculations are to be compared with the results from [29], where
the authors obtained EH+

2
= −1.10264158103 a.u.

EH+
2

(a.u.)

Nξ Nη N∗ Min-max RR

8 8 182 −1.102590816884 −1.102590816895
10 10 240 −1.102638533873 −1.102638533934
12 12 306 −1.102641366239 −1.102641366228
14 14 380 −1.102641554428 −1.102641554501
16 16 462 −1.102641577089 −1.102641577085
18 18 552 −1.102641580210 −1.102641580229
20 20 650 −1.102641580782 −1.102641580825

TABLE II. Results of the numerical computation for the ground
state of Th179+

2 for different mesh sizes and B splines of order 7.
Here, Nξ,η are the number of elements in each coordinates, while
N∗ is the total number of basis functions utilized. The maximum
coordinate was fixed to ξmax = 15 a.u. and the angular momentum to
jz = 1/2. The calculations are to be compared with the results from
[24,29], where the authors obtained ETh+

179
= −9504.756746922 a.u.

and ETh+
179

= −9504.752 a.u..

ETh179+
2

(a.u.)

Nξ Nη N∗ Min-max RR

8 8 182 −9503.998584802 −9504.592867005
10 10 240 −9504.333585765 −9504.687658554
12 12 306 −9504.466070634 −9504.711111628
14 14 380 −9504.539502492 −9504.722791962
16 16 462 −9504.586247153 −9504.730034585
18 18 552 −9504.618392312 −9504.735005730
20 20 650 −9504.641636959 −9504.738611929
24 24 870 −9504.672557123 −9504.743429586
30 30 1260 −9504.698874401 −9504.747552293

behave like ψ ∼ r
−1+γ1,2

1,2 (obtained in atomic calculations),
where

γ1,2 =
√(

|jz| + 1

2

)2

− α2Z2
1,2 (48)

and r1,2 are the distances from nuclei 1 and 2. In ground-state
calculations, we have jz = 1/2, and thus, 0 < γ1,2 < 1 for
Z1,2 < 137. Therefore, the wave function has a noninteger
power-law behavior close to the singularity. The B-spline basis
functions, being polynomial with integer powers, are unable
to reproduce exactly this feature. Moreover, we have that

γH ≈ 0.999947 and ψ ∼ r−0.000053
1,2 , (49)

γTh ≈ 0.568664 and ψ ∼ r−0.431336
1,2 , (50)

where γH,Th are the γ associated with a hydrogen and a thorium
atom. It is clear from this that the behavior of the wave function
is much closer to a power law for dihydrogen and, therefore,
is better reproduced by the B splines and also, has a faster
convergence.

One possible cure for this is to use another prefactor in the
basis function that captures the correct behavior. For instance,
it was proposed to multiply the basis functions in Eqs. (45)
by [28,29,36]

G′(ξ,η) = r
−1+γ1
1 r

−1+γ2
2 , (51)

with

r1 = (ξ + η)R, r2 = (ξ − η)R. (52)

The main issue with this technique is that derivatives in
the functionals become singular at the nuclei position. To
cope with this, a singular coordinate transformation can be
performed that allows transformation of the singular noninte-
ger behavior near the nuclei to a polynomial approximation
[28,36]. The latter can then be fitted more accurately with a
polynomial basis function. We do not implement this technique
here, as the goal of this paper is not to achieve the most accurate
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TABLE III. Results of the numerical computations for the spectrum of H2
+ for a mesh size of 30 × 30 and B splines of order 7. The states

of the positive and negative continua are computed with the Rayleigh-Ritz method (RR) and only the first 25 states are shown.

Negative Positive
Bound Binding energy (a.u.) continuum continuum
state

Min-max RR (a.u.) (a.u.)

1 −1.1026413662 −1.1026415808 −18778.95240 18778.86549
2 −0.6675525594 −0.6675527718 −18778.95792 18778.86561
3 −0.4287795568 −0.4287811584 −18778.96471 18778.86562
4 −0.3608697621 −0.3608710695 −18778.97284 18778.86741
5 −0.2554175614 −0.2554197033 −18778.98233 18778.86746
6 −0.2357807609 −0.2357812681 −18778.98475 18778.86808
7 −0.2267021482 −0.2267030696 −18778.99077 18778.86917
8 −0.2008621355 −0.2008689095 −18778.99320 18778.88272
9 −0.1776816232 −0.1776839788 −18778.99684 18778.88275
10 −0.1373089205 −0.1373147686 −18778.99979 18778.88617
11 −0.1307908409 −0.1307928214 −18779.00397 18778.88627
12 −0.1267066133 −0.1267100818 −18779.00544 18778.88659
13 −0.1266438351 −0.1266441499 −18779.00643 18778.89067
14 −0.1261986510 −0.1261992440 −18779.01259 18778.89068
15 −0.1158897902 −0.1159009024 −18779.01542 18778.89977
16 −0.1053558675 −0.1053611251 −18779.01903 18778.89987
17 −0.0852450505 −0.0852548082 −18779.02284 18778.90406
18 −0.0823477309 −0.0823523149 −18779.02659 18778.90575
19 −0.0804553251 −0.0804564514 −18779.03400 18778.90766
20 −0.0802631100 −0.0802631662 −18779.03472 18778.91436
21 −0.0802102415 −0.0802110614 −18779.03980 18778.91438
22 −0.0802047983 −0.0802048234 −18779.04047 18778.91544
23 −0.0800201297 −0.0800252078 −18779.04625 18778.91591
24 −0.0730502242 −0.0730676123 −18779.04822 18778.91599
25 −0.0649840057 −0.0649993038 −18779.05030 18778.91605

value of bound state energies. However, it can be done in
principle and could improve the convergence of the numerical
method.

B. Spectra of diatomic molecules

In this section, the spectra of dihydrogen and dithorium are
presented. They are reported in Tables III and IV for jz = 1/2.

TABLE IV. Results (in a.u.) of the numerical computation for the spectrum of Th179+
2 . The mesh size is indicated in parentheses. B splines

are of order 7.

Naive RR RR Min-max

State (14 × 14) (30 × 30) (30 × 30) (16 × 16)

1 −9504.6525442 −9504.7243225 −9504.7475523 −9504.5862992
2 −6815.3652913 −6815.4657298 −6815.5599111 −6815.3230307
3 −4127.8799531 −4127.8877478 −4128.1451137 −4127.8197047
4 −3374.4958326 −3374.5117016 −3374.5143753 −3374.4569981
5 −2564.1326367 −2564.1559253 −2564.1719708 −2564.0744037
6 −2455.9453341 −2455.9537953 −2455.9600280 −2455.8837393
7 −2010.6579407 −2010.6535604 −2010.4321103 −2010.4241948
8 −1918.5275474 −1918.4056980 −1915.7178408 −1915.6761267
9 −1649.5111100 −1649.2929148 −1643.9543595 −1643.9320665
10 −1349.5529034 −1344.0855870 −1313.8071916 −1313.7606899
11 −1339.1123032 −1333.5368147 −1303.6850950 −1303.6580541
Spurious −1218.2113620 −1204.6990945
12 −1169.3956263 −1159.1761393 −1089.6415827 −1089.6356220
13 −1138.5709512 −1131.0151665 −1084.3699127 −1084.3519981
14 −1046.2053120 −1045.4764538 −1028.1920826 −1028.1912423
15 −1018.4013912 −984.5252901 −969.6816867 −969.64172165
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The spectra are calculated using a mesh of 14 × 14 elements
and 17 × 17 elements for the min-max method for dihydrogen
and dithorium, respectively, while a mesh of 30 × 30 elements
is utilized in the Rayleigh-Ritz method. The other parameters
are set to the same values as in the last section where the
convergence of the ground state was discussed. The binding
energy values in the mass gap (−mc2,mc2), corresponding to
bound states, are shifted by mc2 to have a comparison with
nonrelativistic results. The values in the continua, however,
are not shifted and calculated with the Rayleigh-Ritz method
only. The results of the dithorium spectrum can be compared
to the ones in Ref. [37]. Both are generally in good agreement,
although a small discrepancy can be seen for the higher excited
states.

In the Rayleigh-Ritz method, the nbinding bound-state
energies shown in Tables III and IV correspond to the
2N + 1 to 2N + 1 + nbinding eigenvalues of matrix C (once
the eigenvalues are ordered in increasing order). The other
eigenvalues can be associated with the “discretized” negative
[the first to the (2N )th eigenvalues] and positive [the (2N +
2 + nbinding)th to the (4N )th eigenvalues] energy continua.
For the min-max method, the bound-state energies shown
correspond to the solution of k(E) = 0 for the nbinding lowest
energy eigenvalues. For the diatomic molecules considered,
the spectra calculated with both methods are in very good
agreement. The small discrepancy remaining is mostly due to
the use of different mesh sizes.

The convergence of the excited states is very similar to that
of the ground state: all values are approached from above and
the order of convergence is close to that of the ground state.
The same is true for states in the positive energy continuum,
that is, for E � mc2. For the negative energy states, the
convergence occurs from below but, otherwise, follows the
same trends as the other cases. The energy values in the
continua (especially their smallest and largest eigenvalues)
depend on the size of the domain. In the dithorium calculation,
the domain was smaller, which yielded less accurate values
in the continua (not reported in the table) but a better accuracy
of the bound states. In all cases, the eigenvalues of the positive
and negative energy continua accumulate at points mc2 and
−mc2, respectively.

C. Spurious states

The results for the spectra of diatomic molecules presented
in the last section showed a spurious state in the dithorium
spectrum calculated with the naive Rayleigh-Ritz method,
while the other methods did not. Spurious states usually appear
as eigenstates with an energy in the interval −mc2 < E <

Eground because of their highly oscillatory behavior. This was
not observed in the numerical results. Moreover, it was proven
mathematically that the min-max method is free of these
numerical artifacts [18]. The spectra predicted by the min-max
and the Rayleigh-Ritz methods coincides (up to numerical
errors), implying that our version of the Rayleigh-Ritz method
using kinematically balanced function is also free from these
unphysical states.

These last arguments are mainly qualitative. A more
convincing approach proceeds by computing the spectrum
for an atom (by setting Z2 = 0) and by comparison to the

TABLE V. Results for the spectrum of Th89+. The mesh size
is 30 × 30 and B splines are of order 7. The states are denoted in
spectroscopic notation.

Analytical RR Naive RR
State (a.u.) (a.u.) (a.u.)

1s 1
2

−4617.757542 −4615.302929 −4636.678774
2s 1

2
−1192.289212 −1192.108524 −1201.301342

2p 1
2

−1192.289212 −1191.771020 −1192.051000
2p 1

2
−1041.374505 −1041.374468 −1041.383185

3s 1
2

−512.199990 −512.140001 −526.114688
3p 1

2
−512.199990 −512.038910 −512.120856

3p 1
2

−467.182486 −467.182452 −467.295571
3d 1

2
−467.182486 −467.182410 −467.182518

Spurious −462.487121
3d 3

2
−455.524906 −455.524869 −455.524983

Spurious −341.014173
4s 1

2
−280.938972 −280.913251 −281.417745

4p 1
2

−280.938972 −280.871281 −280.904780
4p 1

2
−262.173744 −262.173642 −262.173904

4d 1
2

−262.173744 −262.173503 −262.173811
4d 3

2
−257.210164 −257.210092 −257.210222

4f 3
2

−257.210164 −257.209987 −257.209640
4f 5

2
−254.854358 −254.854272 −254.854328

Spurious −195.443773
5s 1

2
−176.667335 −176.653978 −176.650586

5p 1
2

−176.667335 −176.633024 −175.916124
5p 1

2
−167.174184 −167.173989 −167.177456

5d 1
2

−167.174184 −167.173578 −167.174285
5d 3

2
−164.630108 −164.629880 −164.876895

5f 3
2

−164.630108 −164.629582 −164.630142
5f 5

2
−163.417654 −163.417526 −164.438475

5g 5
2

−163.417654 −163.417279 −163.417704

Spurious −163.375298
5g 7

2
−162.704858 −162.704687 −162.694189

6s 1
2

−121.138528 −121.130514 −121.774091
6p 1

2
−121.138528 −121.118841 −121.128677

6p 1
2

−115.699215 −115.698928 −115.700224
6d 1

2
−115.699215 −115.698194 −115.699014

6d 3
2

−114.228643 −114.228211 −114.228851
6f 3

2
−114.228643 −114.227668 −114.225881

6f 5
2

−113.525840 −113.525445 −113.526110

6g 5
2

−113.525840 −113.524951 −113.523149

6g 7
2

−113.112069 −113.111850 −113.112958
6h 7

2
−113.112069 −113.111368 −113.110337

Spurious −112.924774
6h 9

2
−112.839015 −112.838682 −112.839037

Spurious −104.197448

well-known analytical formula for the atomic binding energy,
given by [47]

Enj = mc2√
1 + Z2α2

(n−δj )2

− mc2, (53)
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where n is the principal quantum number, j is the angular
momentum, and

δj = j + 1

2
−

√(
j + 1

2

)
− Z2α2. (54)

Of course, the numerical methods are not optimized for
atomic calculations, but these results, albeit not very accurate,
allow showing that no spurious states appear. The results
for the spectrum of Th89+ are reported in Table V. For
all eigenenergies considered, there is always a one-to-one
correspondence between the analytical and the Rayleigh-Ritz
results, in contradistinction with the spectrum obtained from
the naive Rayleigh-Ritz method, which exhibits spurious
states.

IV. CONCLUSION

In this work, we have presented two numerical methods to
solve the single-particle time-independent Dirac equation. The
first one is based on a min-max variational principle, while the
second one uses a combination of the Rayleigh-Ritz method
and KBBFs. For comparison purposes, we have also included
a description of the naive Rayleigh-Ritz method. All are based
on a B-spline basis function discretization which allows us
to obtain a high accuracy and a sparse matrix structure in
the discretized equations. We have applied these methods to
the computation of the two-center Coulomb problem ground-
state energy and spectrum. Because of its axial symmetry and
simple structure, it was convenient to use prolate spheroidal
coordinates. These techniques were used specifically to com-
pute the spectra of the molecule H2

+ and the quasimolecule
Th179+

2 . A comparison with results in the literature for the
ground state demonstrated that our methods yield very accurate
and convergent results, especially for dihydrogen. More im-
portantly, no spurious states were reported in these numerical
schemes, and thus, they both could be used to evaluate
radiative QED corrections for diatomic molecules which
necessitate sums over intermediate states. This conclusion
was reached by comparing the calculated spectra of dithorium
and thorium to results obtained from the naive Rayleigh-Ritz
method.

The two methods have strengths and weaknesses. In terms
of computation time, the Rayleigh-Ritz methods were much
faster, especially for the computation of the whole spectrum.
This happens because in the min-max method, the solution of
the eigenvalue equation k(E) = 0 necessitates many itera-
tions (typically between 20 and 30) to obtain a decent accuracy
and each iteration requires a solution of the eigenvalue prob-
lem. This could be improved somewhat by using an iterative
eigensolver optimized for the computation of few eigenvalues.
Therefore, if one is only interested in the computation of
the first few excited states while using a very large mesh,
it may be advantageous to use the min-max method combined
with a version of these iterative eigensolvers. In terms of
accuracy, both methods yielded very similar results, although
the convergence was slightly better for the Rayleigh-Ritz
method in the dithorium case. This is in contradiction with the
conclusion reached in Ref. [38], where the min-max method

showed a much better accuracy. This discrepancy may be
explained by the slightly different choice of basis functions
(see (33) vs (6) in Ref. [38]). Nevertheless, the main advantage
of the Rayleigh-Ritz method is the fact that it gives the
whole spectrum directly from the solution of the generalized
eigenvalue problem.

These methods can thus be utilized in many applications.
Among others, they can be used to investigate relativistic laser-
matter interaction: the solution obtained from these methods
can be used as an initial condition for the solution of the
time-dependent Dirac equation. This will be the subject of
future investigations.
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APPENDIX A: EXPLICIT EXPRESSION FOR
THE MIN-MAX METHOD

The explicit expression of matrices A11, A22, and A12 is
obtained by using the Dirac equation in cylindrical coordinates
given in Ref. [40]. Then, combining the ansatz in Eq. (10) with
the basis function expansion, we get

[A11]ij =
∫

d3x

{[(
∂zB

(1)
i

)(
∂zB

(1)
j

) + (
∂rB

(1)
i

)(
∂rB

(1)
j

)
+ μ2

1

r2
B

(1)
i B

(1)
j − μ1

r
B

(1)
i

(
∂rB

(1)
j

)
− μ1

r

(
∂rB

(1)
i

)
B

(1)
j

]
c2

E + mc2 − V

+ (V + mc2 − E)B(1)
i B

(1)
j

}
, (A1)

[A22]ij =
∫

d3x

{[(
∂zB

(2)
i

)(
∂zB

(2)
j

) + (
∂rB

(2)
i

)(
∂rB

(2)
j

)
+ μ2

2

r2
B

(2)
i B

(2)
j + μ2

r
B

(2)
i

(
∂rB

(2)
j

)
+ μ2

r

(
∂rB

(2)
i

)
B

(2)
j

]
c2

E + mc2 − V

+ (V + mc2 − E)B(2)
i B

(2)
j

}
, (A2)

[A12]ij =
∫

d3x

{[(
∂zB

(1)
i

)(
∂rB

(2)
j

) + μ1

r
B

(1)
i

(
∂zB

(2)
j

)
− (

∂rB
(1)
i

)(
∂zB

(2)
j

) + μ2

r

(
∂zB

(1)
i

)
B

(2)
j

]

× c2

E + mc2 − V

}
. (A3)
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The last expression can then be expressed in prolate spheroidal
coordinates by using

∂r =
√

(ξ 2 − 1)(1 − η2)

R(ξ 2 − η2)
[ξ∂ξ − η∂η], (A4)

∂z = (ξ 2 − 1)

R(ξ 2 − η2)
η∂ξ + (1 − η2)

R(ξ 2 − η2)
ξ∂η, (A5)

and the integration measure is given by

d3x = R3(ξ 2 − η2)dξdηdθ. (A6)

APPENDIX B: EXPLICIT EXPRESSION FOR
THE NAIVE RAYLEIGH-RITZ METHOD

The explicit expression of matrices C(1), C(2), and C(3) is
obtained by starting with the Dirac equation in cylindrical
coordinates. By assuming that the basis functions are the same
for the large and small components, we get

[
C(1)

11

]
ij

=
∫

d3x
{
(V + mc2)B(1)

i B
(1)
j

}
, (B1)

[
C(1)

22

]
ij

=
∫

d3x
{
(V + mc2)B(2)

i B
(2)
j

}
, (B2)

[
C(2)

11

]
ij

=
∫

d3x
{
(V − mc2)B(1)

i B
(1)
j

}
, (B3)

[
C(2)

22

]
ij

=
∫

d3x
{
(V − mc2)B(2)

i B
(2)
j

}
, (B4)

[
C(3)

11

]
ij

=
∫

d3x
{
B

(1)
i ∂zB

(1)
j

}
, (B5)

[
C(3)

22

]
ij

= −
∫

d3x
{
B

(2)
i ∂zB

(2)
j

}
, (B6)

[
C(3)

21

]
ij

=
∫

d3x

{
B

(2)
i

[
∂r − μ1

r

]
B

(1)
j

}
, (B7)

[
C(3)

12

]
ij

=
∫

d3x

{
B

(1)
i

[
∂r + μ2

r

]
B

(2)
j

}
. (B8)

We also have

[
S(1)

11

]
ij

=
∫

d3x
{
B

(1)
i B

(1)
j

} = [
S(2)

11

]
ij
, (B9)

[
S(1)

22

]
ij

=
∫

d3x
{
B

(2)
i B

(2)
j

} = [
S(2)

22

]
ij
. (B10)

The last expressions can then be expressed in prolate
spheroidal coordinates with (A4), (A5), and (A6).

APPENDIX C: EXPLICIT EXPRESSION FOR THE
RAYLEIGH-RITZ METHOD WITH KBBFS

The explicit expression of matrices A11, A22, and A12 is
again obtained by using the Dirac equation in cylindrical
coordinates given in Ref. [40]. Then, combining the ansatz in

Eq. (10) with the basis function expansion, we get

[
C(1)

11

]
ij

=
∫

d3x
{
(V + mc2)B(1)

i B
(1)
j

}
, (C1)

[
C(1)

22

]
ij

=
∫

d3x
{
(V + mc2)B(2)

i B
(2)
j

}
, (C2)

[
C(2)

11

]
ij

=
∫

d3x

{[(
∂zB

(1)
i

)(
∂zB

(1)
j

) + (
∂rB

(1)
i

)(
∂rB

(1)
j

)
+ μ2

1

r2
B

(1)
i B

(1)
j − μ1

r
B

(1)
i

(
∂rB

(1)
j

)
− μ1

r

(
∂rB

(1)
i

)
B

(1)
j

]
(V − mc2)

4m2c2

}
, (C3)

[
C(2)

22

]
ij

=
∫

d3x

{[(
∂zB

(2)
i

)(
∂zB

(2)
j

) + (
∂rB

(2)
i

)(
∂rB

(2)
j

)
+ μ2

2

r2
B

(2)
i B

(2)
j + μ2

r
B

(2)
i

(
∂rB

(2)
j

)
+ μ2

r

(
∂rB

(2)
i

)
B

(2)
j

]
(V − mc2)

4m2c2

}
, (C4)

[
C(2)

12

]
ij

=
∫

d3x

{[(
∂zB

(1)
i

)(
∂rB

(2)
j

) + μ1

r
B

(1)
i

(
∂zB

(2)
j

)
− (

∂rB
(1)
i

)(
∂zB

(2)
j

) + μ2

r

(
∂zB

(1)
i

)
B

(2)
j

]

× (V − mc2)

4m2c2

}
, (C5)

[
C(3)

11

]
ij

=
∫

d3x

{(
∂zB

(1)
i

)(
∂zB

(1)
j

) + (
∂rB

(1)
i

)(
∂rB

(1)
j

)
+ μ2

1

r2
B

(1)
i B

(1)
j − μ1

r
B

(1)
i

(
∂rB

(1)
j

)
− μ1

r

(
∂rB

(1)
i

)
B

(1)
j

}
1

2m
, (C6)

[
C(3)

22

]
ij

=
∫

d3x

{(
∂zB

(2)
i

)(
∂zB

(2)
j

) + (
∂rB

(2)
i

)(
∂rB

(2)
j

)
+ μ2

2

r2
B

(2)
i B

(2)
j + μ2

r
B

(2)
i

(
∂rB

(2)
j

)
+ μ2

r

(
∂rB

(2)
i

)
B

(2)
j

}
1

2m
, (C7)

[
C(3)

12

]
ij

=
∫

d3x

{(
∂zB

(1)
i

)(
∂rB

(2)
j

) + μ1

r
B

(1)
i

(
∂zB

(2)
j

)
− (

∂rB
(1)
i

)(
∂zB

(2)
j

) + μ2

r

(
∂zB

(1)
i

)
B

(2)
j

}
1

2m
. (C8)

We also have [C(3)
21 ]ij = [C(3)

12 ]ji , [S(3)
11 ]ij = 2m[C(3)

11 ]ij ,
[S(3)

22 ]ij = 2m[C(3)
22 ]ij , and [S(3)

12 ]ij = 2m[C(3)
12 ]ij . The latter

expressions can then be expressed in prolate spheroidal
coordinates with (A4), (A5), and (A6).
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T. Stöhlker, J. Phys. B 43, 235207 (2010).
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