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Assisted state discrimination without entanglement
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It is shown that the dissonance, a quantum correlation which is equal to quantum discord for separable state,
is required for assisted optimal state discrimination. We find that only one side discord is required in the optimal
process of assisted state discrimination, while another side discord and entanglement is not necessary. We confirm
that the quantum discord, which is asymmetric depending on local measurements, is a resource for assisted state
discrimination. With the absence of entanglement, we give the necessary and sufficient condition for vanishing
one side discord in assisted state discrimination for a class of d nonorthogonal states. As a by-product, we find
that the positive-partial-transposition condition is the necessary and sufficient condition for the separability of a
class of 2 × d states.
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I. INTRODUCTION

Entanglement is regarded as a key resource in quantum
information processing such as teleportation and superdense
coding, etc. [1]. On the other hand, it is shown that a
deterministic quantum computation with one qubit (DQC1)
[2] can be carried out without entanglement, while the
quantum discord [3–7], another type of quantum correlation,
might be the reason for the advantage of this algorithm
that surpasses the corresponding classical algorithms. Besides
quantum entanglement, there are also many quantum nonlocal
properties which can be manifested by separable states or
separable operations [8]. It is thus reasonable to assume that
the quantumness correlation can be viewed from different
aspects. Recently, much effort has been devoted to studying
various measures of nonclassical correlation; see, for example,
Refs. [9–17]. Quantum discord, which is our main concern in
this paper, has been recently pointed out to have operational
interpretations, for example, in terms of the quantum state
merging protocol [18] and as entanglement by an activation
protocol or by measurement [9,10].

Quantum discord [3,4] is measured by the difference
between the mutual information and the maximal conditional
mutual information obtained by local measurement. Explicitly,
let us consider a bipartite quantum state ρAB ; the “right”
quantum discord is given by [3,4]

DB(ρAB) = I (ρAB) − sup
Ek

{
S(ρA) −

∑
k

pA|kS(ρA|k)

}
, (1)

where S(ρ) is the von Neumann entropy, I (ρAB) =
S(ρA) + S(ρB) − S(ρAB) is the quantum mutual information,
and pA|k = Tr(1A ⊗ Ekρ), ρA|k = TrB(1A ⊗ Ekρ)/pA|k; the
supreme is taken over all the von Neumann measurement sets
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{Ek} on system B. Similarly, DA(ρAB) refers to the “left”
discord and is given by

DA(ρAB) = I (ρAB) − sup
Ek

{
S(ρB) −

∑
k

pB|kS(ρB|k)

}
, (2)

with pB|k = Tr(Ek ⊗ 1Bρ) and ρB|k = TrA(Ek ⊗ 1Bρ)/pB|k .
Note that the difference between those two discords is that
the measurement is performed on party A or on party B,
respectively. It is thus expected that this definition of quantum
discord is not symmetric with respect to A and B.

Due to the supremum in the definition (1), quantum discord
does not have analytic or operational expression in general.
However, explicit expression of discord has been found for
cases like the Bell-diagonal state [19,20] and subclass of
so-called X states [21–23]. Numerical results for general
two-qubit states are also presented in Ref. [24]. Moreover,
the quantum discord can be related to the entanglement of
formation (EOF) [25]. This relation can be used to calculate
the quantum discord for the rank-two states [26]. Nevertheless,
zero discord can be easily found by a necessary and sufficient
condition pointed out in Ref. [27]. If ρAB is a quantum state of
(dA × dB)-dimensional bipartite quantum systems, from [27]
ρAB can be written in diagonal form ρAB = ∑L

n=1 cnSn ⊗ Fn,
where {Sn},{Fm}(n = 1, . . . ,d2

A,m = 1, . . . ,d2
B) are the bases

of the respective local spaces and L is the rank of ρ [27]. Then
the necessary and sufficient condition of zero left discord is

[Si,Sj ] = 0, i,j = 1, . . . ,L. (3)

Similarly, the necessary and sufficient condition of zero right
discord is

[Fi,Fj ] = 0, i,j = 1, . . . ,L. (4)

It is shown that almost all quantum states have nonzero discord
[28,29].

A unified view of quantum correlation based on relative
entropy was introduced in Ref. [30]. Quantum dissonance is a
kind of quantum correlation of separable states. As the closest
state to a separable state ρ as measured by relative entropy is
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the state ρ itself, the dissonance is just the quantum discord in
this case.

It is remarkable that dissonance is found to be useful in
assisted state discrimination recently [31]. Note that disso-
nance is the quantum discord in the optimal case. In this paper,
we further find that actually only one side quantum discord
appears in the optimal process, while discord of another
side can be zero. Hence the role of quantum discord played
in assisted state discrimination might be quite different for
different parties. We show clearly that the quantum discord
is really a useful resource which can be used in assisted state
discrimination. We also extend the study of discord for assisted
state discrimination to more general cases.

The paper is organized as follows. In Sec. II, we first give
a brief review of the model in assisted state discrimination.
We then show that only one side discord is necessary in the
optimal case. In Secs. III and IV, we generalize the model
to discriminate a class of d nonorthogonal states, in which
we still find that one-side discord is required in the process.
Section V is the summary.

II. UNAMBIGUOUS DISCRIMINATION OF TWO
NONORTHOGONAL STATES

Following the model of assisted state discrimination in
Refs. [31–33], consider that a qubit is randomly prepared in
one of the two nonorthogonal states |ψ+〉 or |ψ−〉 with a priori
probabilities p+ and p− with p+ + p− = 1. Our aim is to
discriminate the two states |ψ+〉 or |ψ−〉. The system is coupled
to an auxiliary qubit A by a joint unitary transformation U ,
such that

U |ψ+〉|k〉a =
√

1 − |α+|2|+〉|0〉a + α+|0〉|1〉a,
(5)

U |ψ−〉|k〉a =
√

1 − |α−|2|−〉|0〉a + α−|0〉|1〉a,
where |k〉a is an auxiliary state with orthonormal basis
{|0〉a,|1〉a} and |±〉 ≡ (|0〉 ± |1〉)/√2 are the orthonormal
states of the system that can be discriminated. For convenience,
we adopt the symbols used in Ref. [31]. A priori fixed overlap
is 〈ψ+|ψ−〉 = α = |α|eiθ = α∗

+α−, where α∗
+ is the complex

conjugate of α+ and θ is the phases of α. The mixed state we
consider in discrimination is given by

ρ|α+| = p+U (|ψ+〉〈ψ+| ⊗ |k〉a〈k|)U †

+p−U (|ψ−〉〈ψ−| ⊗ |k〉a〈k|)U †. (6)

By performing a von Neumann measurement on the auxiliary
system by basis, {|0〉a〈0|,|1〉a〈1|}, the auxiliary state in Eq. (6)
will collapse to either {|0〉a〈0|} or {|1〉a〈1|}. In case the
system collapses to {|0〉a〈0|}, we will discriminate successfully
the original state, since we can distinguish deterministically
the states |±〉 as in Eq. (5). The success probability is
given by

P (|α+|) = 1 − p−
|α|2
|α+|2 − p+|α+|2. (7)

For general |α+|, the probability is neither 0 nor 1.
We shall use the positive-partial-transposition (PPT) crite-

rion [34] to characterize the separability of ρ|α+|. For 2 × 2
and 2 × 3 systems, the PPT condition is both necessary and

sufficient for the separability of quantum states [35]. From
the PPT criterion, ρ|α+| is separable if and only if its partial
transposed matrix ρ

TA

|α+| has a non-negative spectrum. Hence

the determinant D of ρ
TA

|α+| should be non-negative also. By
direct calculation, we have

D = −
(

p+
1 − |α+|2

2
+ p−

1 − |α−|2
2

)
(p+|α+|2

+p−|α−|2)

∣∣∣∣p+

√
1 − |α+|2

2
α+ − p−

√
1 − |α−|2

2
α−

∣∣∣∣
2

.

D � 0 implies that

p+

√
1 − |α+|2

2
α+ = p−

√
1 − |α−|2

2
α−, (8)

that is,

p+

√
1 − |α+|2

2
|α+|2 = p−

√
1 − |α−|2

2
α, (9)

where α = α∗
+α−. From Eq. (9), we know that α must be

a real number. Equation (9) is a necessary condition for the
separability of ρ|α+| and is actually also a sufficient condition.
It is in fact the same as Eq. (7) in Ref. [31].

That the condition (8) is also a sufficient condition for
separability can be seen from the following separable form
of ρ|α+|:

ρ|α+| = (1 − p+|α+|2 − p−|α−|2)ρS
1 ⊗ |0〉a〈0|

+ (p+|α+|2 + p−|α−|2)|0〉〈0| ⊗ ρA
2 , (10)

where ρS
1 and ρA

2 are the density matrices of the principal
system and the auxiliary system, respectively,

ρS
1 = 1

1 − p+|α+|2 − p−|α−|2 [p+(1 − |α+|2)|+〉〈+|

+p−(1 − |α−|2)|−〉〈−|],
ρA

2 = 1

p+|α+|2 + p−|α−|2 [(p+|α+|2 + p−|α−|2)|1〉a〈1|

+
√

2p+α+
√

1 − |α+|2|1〉a〈0|
+

√
2p+α∗

+
√

1 − |α+|2|0〉a〈1|].

From Eq. (10) and the necessary and sufficient condition of
zero discord given by Eqs. (3) and (4), we have that state ρ|α+|
has zero right quantum discord when the components of the
right reduced density operators are commuting, [ρA

2 ,|0〉a〈0|] =
0. This can be satisfied only when α+ = 0 or |α+| = 1. Since
|ψ+〉 and |ψ−〉 are different nonorthogonal states, we do not
need to consider those two cases because they correspond
to either the same state or two orthogonal states. Hence, as
pointed out in Ref. [31], the right discord is always nonzero.
On the other hand, ρ|α+| has zero left quantum discord if and
only if [ρS

1 ,|0〉〈0|] = 0, that is,

p+(1 − |α+|2) = p−(1 − |α−|2). (11)
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Combining Eqs. (9) and (11), we have the following: α is a real
number, and α � 0; p+ = p− = 1

2 ; |α+| = |α−| = √|α| =√
α. It is interesting that those three conditions coincide exactly

with the optimal assisted state discrimination case in Ref. [31]
with a priori probabilities and θ = 0, in which it is shown
that the dissonance is required in the discrimination. Thus we
obtain one of our main results: the assisted state discrimination
of two nonorthogonal states can be performed with the absence
of entanglement. The right quantum discord is required for
assisted state discrimination. However, the left discord is not
necessarily to be nonzero. In particular, in the assisted optimal
state discrimination, the left discord is found to be zero. Here
we remark that it is not surprising that the left discord is
nonzero except for the optimal case, since quantum discord in
general is nonzero [11,28].

Recall that the motivation of quantum discord is to find the
difference between total correlations, including both quantum
and classical correlation quantified by mutual information, and
the accessible classical correlation, which is quantified by the
maximal conditional entropy obtained by local measurement
[4]. While the mutual information is symmetric, the asymmetry
of the quantum discord is due to local measurements. The
protocol of assisted state discrimination in this paper and in
Ref. [31] is exactly assisted by local measurements on the
right party so as to distinguish nonorthogonal states of the
left party. Thus the corresponding right quantum discord is
necessary, while the left discord, which is quantified by a
local measurement on the left party, is useless. Thus we can
find that, in the optimal assisted state discrimination, the left
discord is zero. Indeed, the deep reason that quantum discord
is required for assisted state discrimination is that it is really
used as a consuming resource in such quantum information
processing.

III. UNAMBIGUOUS DISCRIMINATION
OF d NONORTHOGONAL STATES

In the following, we generalize the previous model to
d-dimensional system. Let us consider that a qudit is randomly
prepared in the d (d � 2) nonorthogonal and linearly inde-
pendent states, |ψ1〉,|ψ2〉, . . . ,|ψd〉, with a priori probabilities
p1,p2, . . . ,pd with p1 + · · · + pd = 1. The system is coupled

to an auxiliary qubit A by a joint unitary transformation U1

such that

U1|ψ1〉|k〉a =
√

1 − |α1|2|1〉|0〉a + α1
|1〉 + · · · + |d〉√

d
|1〉a,

U1|ψ2〉|k〉a =
√

1 − |α2|2|2〉|0〉a + α2
|1〉 + · · · + |d〉√

d
|1〉a,

...

U1|ψd〉|k〉a =
√

1 − |αd |2|d〉|0〉a + αd

|1〉 + · · · + |d〉√
d

|1〉a,
(12)

where {|1〉,|2〉, . . . ,|d〉} is the orthogonal basis in the state
space. Note that the auxiliary state is still two-dimensional. For
d = 2, we can apply a Hadamard gate on the first qubit, and the
model returns to the one given in Sec. II. This model is a natural
generalization of discrimination of two nonorthogonal states.
To ensure that there exists the unitary transformation U1, the
inner product of vectors on the right-hand side should be equal
to the overlap of the corresponding original states [36], that is,
α∗

i αj = 〈ψi |ψj 〉. For convenience, we denote αij = 〈ψi |ψj 〉.
The mixed state we consider in discrimination is given now

by

ρ = p1U1(|ψ1〉〈ψ1| ⊗ |k〉a〈k|)U †
1

+p2U1(|ψ2〉〈ψ2| ⊗ |k〉a〈k|)U †
1 + · · ·

+pdU1(|ψd〉〈ψd | ⊗ |k〉a〈k|)U †
1 . (13)

The success probability to discriminate the state is given by

P = 1 − p1|α1|2 − p2|α2|2 − · · · − pd |αd |2. (14)

In general, it is not zero. If ρ is a separable state, the partial
transposed matrix must be positive. Then all the principal
minor determinants of ρTS are non-negative, where ρTS is the
partial transposed matrix with respect to the qudit system.
In the following, as a necessary condition for separability,
we calculate those 4 × 4 principal minor determinants that
should be non-negative. Let Mij be the principal minor matrix
of ρTS by selecting the 〈i| ⊗a 〈0|,〈i| ⊗a 〈1|,〈j | ⊗a 〈0|,〈j | ⊗a

〈1| rows, and the |i〉 ⊗ |0〉a,|i〉 ⊗ |1〉a,|j 〉 ⊗ |0〉a,|j 〉 ⊗ |1〉a
columns. By straightforward calculations, we have

Mij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pi(1 − |αi |2) piα
∗
i

√
1−|αi |2

d
0 pjα

∗
j

√
1−|αj |2

d

piαi

√
1−|αi |2

d
1
d

(p1|α1|2 + · · · + pd |αd |2) piαi

√
1−|αi |2

d
1
d

(p1|α1|2 + · · · + pd |αd |2)

0 piα
∗
i

√
1−|αi |2

d
pj (1 − |αj |2) pjα

∗
j

√
1−|αj |2

d

pjαj

√
1−|αj |2

d
1
d

(p1|α1|2 + · · · + pd |αd |2) pjαj

√
1−|αj |2

d
1
d

(p1|α1|2 + · · · + pd |αd |2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

The determinant Dij of Mij is given by

Dij = Det[Mij ]

= − 1

d2
[pi(1 − |αi |2) + pj (1 − |αj |2)](p1|α1|2 + · · ·

+pd |αd |2)|piαi

√
1 − |αi |2 − pjαj

√
1 − |αj |2|2.

Dij � 0 implies that

p1α1

√
1 − |α1|2 = · · · = pdαd

√
1 − |αd |2. (16)

In the protocol of assisted state discrimination, p1,p2, . . . ,pd

are the priori probabilities. Since the overlap α1i = 〈ψ1|ψi〉 =
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α∗
1αi is fixed, without loss of generality, we can rewrite Eq. (16)

as

p1α1

√
1 − |α1|2 = p2

α12

α∗
1

√
1 −

∣∣∣∣α12

α1

∣∣∣∣
2

= · · ·

= pd

α1d

α∗
1

√
1 −

∣∣∣∣α1d

α1

∣∣∣∣
2

. (17)

There is only one variable α1 in Eq. (17) but d − 1 equalities.
By using the condition (16), we successfully write ρ in the
following separable form:

ρ = ρ1 ⊗ |0〉a〈0| + ρ2 ⊗ ρa, (18)

where

ρ1 = p1(1 − |α1|2)|1〉〈1| + · · · + pd (1 − |αd |2)|d〉〈d|,
ρ2 = 1

d
(|1〉 + · · · + |d〉)(〈1| + · · · + 〈d|),

ρa = (p1|α1|2 + · · · + pd |αd |2)|1〉a〈1|
+

√
dp1

√
1 − |α1|2(α1|1〉a〈0| + α∗

1 |0〉a〈1|).
Thus condition (16) is actually also the sufficient condition for
separability.

From the necessary and sufficient condition of zero discord
proposed by Eqs. (3) and (4), ρ has vanishing right discord
if and only if [|0〉a〈0|,ρa] = 0, which gives rise to α1 = 0 or
α1 = 1. From Eq. (16), it means that the overlap 〈ψi |ψj 〉 can
only be either 0 or 1, namely |ψi〉,|ψj 〉 are either orthogonal
or equal, which contradicts with our assumption. Therefore,
we conclude that, in assisted state discrimination, the right
quantum discord is always required. This agrees with the case
of two nonorthogonal states.

We consider now the left quantum discord. It is easy to
find that ρ1,ρ2 is linearly independent. Hence ρ has vanishing
left discord if and only if [ρ1,ρ2] = 0. With this commuting
condition, i.e., assuming that the left discord is zero, we should
have

p1(1 − |α1|2) = · · · = pd (1 − |αd |2). (19)

It means that ρ1 is an identity and commutes with any density
operators. Combining Eqs. (16) and (19), we obtain

p1 = · · · = pd = 1

d
, (20)

α1 = · · · = αd ≡ γ. (21)

On the other hand, from the unitary transformation (12), the
priori fixed overlaps are equal and should be a real number,

〈ψi |ψj 〉 = α∗
i αj = |γ |2. (22)

To conclude, the right discord is always required for the
assisted state discrimination of d (d � 2) nonorthogonal states,
though the quantum entanglement could be absent, i.e., the
condition (16) is fulfilled. This is a generalization of assisted
state discrimination for two nonorthogonal states [31]. On the
other hand, the left discord is not necessarily required in this
process, since conditions (20) and (21) can be fulfilled for
some cases which lead also to the absence of entanglement.

As a by-product, one may notice that the PPT condition is a
sufficient condition of separability for state Eq. (13) since it can

be written into the form of Eq. (18). On the other hand, PPT is a
necessary condition for separability. Thus PPT criterion is both
the necessary and the sufficient condition for the separability
of a class of 2 × d states of the form (13).

IV. OPTIMAL UNAMBIGUOUS DISCRIMINATION
OF d NONORTHOGONAL STATES

Next, we will try to determine the exact form of the optimal
success probability given by Eq. (14). As p1,p2, . . . ,pd are
the priori probabilities and the overlap α1i = 〈ψ1|ψi〉 = α∗

1αi

is known, the success probability in Eq. (14) can be rewritten
as

P = 1 − p1|α1|2 − p2|α12|2 + · · · + pd |α1d |2
|α1|2 . (23)

There is only one variable |α1| in Eq. (23). In order to find the
optimal probability, we define

ᾱ = 4

√
p2|α12|2 + · · · + pd |α1d |2

p1
. (24)

The optimal probability can be found by dealing with ᾱ in
three different regions.

(1) If max{|α12|, . . . ,|α1d |} � ᾱ � 1, then when |α1| = ᾱ,
we have the optimal probability,

P = 1 − 2
√

p1

√
p2|α12|2 + . . . + pd |α1d |2.

(2) If ᾱ � max{|α12|, . . . ,|α1d |}, then when |α1| =
max{|α12|, . . . ,|α1d |}, P reaches its optimal point,

P = 1 − p1 max{|α12|2, . . . ,|α1d |2}
− p2|α12|2 + · · · + pd |α1d |2

max{|α12|2, . . . ,|α1d |2} .

(3) If 1 � ᾱ, when |α1| = 1, we can obtain the optimal
probability,

P = 1 − p1 − p2|α12|2 − · · · − pd |α1d |2.
As we have found, the right discord is always required for

assisted state discrimination, but left discord can be zero. In
the following, we will show that the left discord vanishes in
the optimal process.

As we already show that Eqs. (20) and (21) are the condi-
tions for vanishing left discord, in assisted state discrimination,
a qudit is randomly prepared in one of the d nonorthogonal
states |ψi〉 (i = 1, . . . ,d) with an equal priori probability
pj and an equal priori and nonzero overlap 〈ψi |ψj 〉 = |γ |2
for all i �= j . Since |ψi〉 is selected in d dimension Hilbert
space, this can always be achieved. In this case, the parameter
ᾱ = 4

√
d − 1|γ |, and we also have max{|α12|, . . . ,|α1d |} =

|γ |2 � ᾱ; thus the optimal probability can be expressed as

Popt =
⎧⎨
⎩

1 − 2
√

d−1
d

|γ |2, 0 � |γ | � 1
4√d−1

,

d−1
d

(1 − |γ |4), 1
4√d−1

� |γ | � 1.
(25)

We see that the assisted optimal state discrimination can
be accomplished with a vanishing left discord. Also from
Eq. (25), we have that, for any d, the optimal probability
is monotonically decreasing with the non-negative parameter
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|γ |, i.e., the smaller the overlap, the larger probability we
can discriminate. This is understandable; when they are
orthogonal, i.e., the overlap is zero, we can discriminate
them deterministically; when they are close to each other,
it is difficult to discriminate them. In short, we have shown
that the optimal assisted state discrimination of d (d � 2)
nonorthogonal states can be performed with the absence of
entanglement and left discord, while the right discord is always
required.

V. SUMMARY AND DISCUSSIONS

It is recently known that, besides quantum entanglement,
other quantum correlations such as the quantum discord are
also useful in quantum information processing. The physical or
operational interpretations of quantum discord are still under
exploration from different points of view; see, e.g., [9,10].
On the other hand, in the assisted state discrimination [31],
it is known that the quantum discord is required. Further,

in this paper, we find that only the right quantum discord
is necessary, while the left quantum discord can be zero.
This clarifies the role of quantum discord in assisted state
discrimination. In particular, we find that, as a resource for
quantum information processing, the use of quantum discord
depends on the specified processing task. Explicitly in the
process of assisted state discrimination, the measurement on
the right-hand side is performed, so the right quantum discord
is necessary. In the absence of entanglement, if one side
quantum discord is zero, depending on this specified one side
measurement, the quantum correlation of discord is like a
classical state. If applied in the assisted state discrimination, it
means that the process is like a classical type. Thus the right
quantum discord is really a useful resource in this process.
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