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First-order coherence versus entanglement in a nanomechanical cavity
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The coherence and correlation properties of effective bosonic modes of a nanomechanical cavity composed
of an oscillating mirror and containing an optical lattice of regularly trapped atoms are studied. The system
is modeled as a three-mode system: two orthogonal polariton modes, representing the coupled optical lattice
and the cavity mode, and one mechanical mode, representing the oscillating mirror. We examine separately the
cases of two-mode and three-mode interactions, which are distinguished by suitable tuning of the mechanical
mode to the polariton mode frequencies. In the two-mode case, we find that the occurrence of entanglement
in the system is highly sensitive to the presence of first-order coherence between the modes. In particular, the
creation of the first-order coherence among the polariton and mechanical modes is achieved at the expense
of entanglement between them. In the three-mode case, we show that no entanglement is created between the
independent polariton modes if both modes are coupled to the mechanical mode by the parametric interaction.
There is no entanglement between the polaritons even if the oscillating mirror is damped by a squeezed vacuum
field. The interaction creates first-order coherence between the polaritons, and the degree of coherence can, in
principle, be as large as unity. This demonstrates that the oscillating mirror can establish first-order coherence
between two independent thermal modes. Further analysis shows that two independent thermal modes can be
made entangled in the system only when one of the modes is coupled to the intermediate mode by a parametric
interaction and the other is coupled by a linear-mixing interaction.
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I. INTRODUCTION

The generation of quantum effects in nanomechanical
cavities with movable mirrors has been the subject of great
interest in recent years [1,2]. This interest stems from the
possibility of the development of new practical techniques for
cooling macroscopic objects to very low temperatures and for
engineering entangled states of macroscopic systems. With
the recent progress in laser cooling techniques, fabrication of
low-loss optical elements, and high-Q mechanical resonators,
it is now possible to prepare nanomechanical oscillators that
can be controlled to a very hight precision and can even
reach the quantum level of the oscillations [3]. In these
systems, the vibrations of mechanical oscillators are induced
by radiation pressure that creates a strong nonlinear coupling
of the vibrational mode to radiation modes. Most of these
studies have been done on examples provided by cavity
optomechanical systems with linear or ring cavities [4]. It
has been demonstrated that a high radiation pressure can
be generated in the cavity, which in return may lead to
entanglement between different components of the system. In
particular, stationary entanglement has been predicted between
the cavity mode and a vibrating mirror [5–9], between an
atomic ensemble or a Bose-Einstein condensate located inside
an optical cavity and the vibrating mirror of the cavity [10–13],
between two vibrating mirrors of a ring cavity [14], between
two dielectric membranes suspended inside a cavity [15], and
between a membrane and a trapped atom, both located inside
a cavity [16–18]. Further studies have addressed interesting
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problems of entangling mechanical oscillators [19], entangling
optical and microwave cavity modes [20], and creating a
photon by a vibrating mirror [21]. In this connection, we
should mention the most recent work on the generation of
entanglement in pulsed cavity optomechanics [22] and the
work on the creation of entanglement between two oscillating
mirrors through the coupling of the mirrors to an atomic
system [23].

The purpose of this paper is to explore coherence and
correlation features of an optomechanical system composed
of three bosonic modes realized with an one-dimensional
optical lattice located inside a single-mode cavity with a
movable mirror. We are particularly interested in the effect
of the first-order correlation (first-order interference) on
entanglement between two modes, which is associated with
second-order correlation functions. It is well known that in
parametric down-conversion, which serves as a typical source
of entanglement, the signal and the idler beams are strongly
entangled but always behave as mutually incoherent [24–26].
A similar conclusion applies to the correlations between modes
of the optomechanical system, where it was demonstrated that
the cavity and mechanical modes play the same role as the
signal and the idler of a nondegenerate parametric oscillator
and the modes behave as mutually incoherent [8,11]. This
seems to suggest that entanglement between two modes rules
out first-order coherence between them.

We consider various situations where the modes of the
optomechanical system can be made to be mutually coherent
and to exhibit first-order interference. This leads to the
obvious question of to what extent first-order coherence
could affect entanglement between the modes. To address
this question, we use a polariton model of an optical lattice
coupled to a single-mode cavity field and calculate various
coherence and correlation functions of the optomechanical
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system. We show that the system is capable of generating
a wide class of coherence and correlation effects, ranging
from first-order coherence, to anomalous autocorrelations,
and to anomalous cross-correlations between the modes. In
a series of simple examples we show that the generation of
first-order coherence between two modes of the system is
equally effective in destroying entanglement between these
modes. We illustrate our considerations by examining two-
and three-mode interactions. After establishing the connection
between generation of entanglement and first-order coherence,
we consider the problem of the creation of entanglement
between two independent modes by coupling them to an
intermediate mode. We show that coupling of the modes to
the intermediate mode by a parametric interaction results in no
entanglement between the modes. We then consider a different
coupling configuration and find that entanglement can be
generated between two independent modes if one of the modes
is coupled to the intermediate mode by a parametric interaction
and the other is coupled by a linear-mixing interaction.

The paper is organized as follows. We begin in Sec. II
with a description of the model. We represent the finite-size
optical lattice, which is located inside a single-mode cavity, in
terms of Bloch-type waves called excitons and diagonalize the
interaction Hamiltonian of the excitons plus the cavity mode
to describe the system in terms of bright polaritons. We then
proceed in Sec. III to study the dynamics of the system in terms
of the quantum Langevin equations for relevant variables. We
use the linearization approach to the equations of motion
and arrive at a set of three coupled differential equations
for the fluctuation operators, which we solve for the steady
state. We apply the solution in Sec. IV to the calculation
of the bipartite coherence and correlation functions of the
polariton and mechanical modes. We discuss the conditions
for entanglement in terms of squeezing fluctuations and the
Cauchy-Schwartz inequality. The anomalous autocorrelation
and cross-correlation functions are introduced to discuss
conditions for violation of the Cauchy-Schwartz inequality.
The possibility of generating two-color entanglement is also
discussed. In Sec. V we evaluate irst-order coherence and
entanglement in the case of three coupled modes. Two coupling
configurations of two independent modes to the intermediate
mode are discussed. In Sec. VI, we examine parameter ranges
in which the predicted coherence and correlation effects were
observed in the current experiments. Finally, in Sec. VII we
summarize our results.

II. THE MODEL

We consider a finite-size one-dimensional optical lattice
located inside a single-mode cavity with one fixed partially
transmitting mirror and one movable perfectly reflecting
mirror, as shown in Fig. 1. The optical lattice is composed
of N regularly spaced and nonoverlapping sites located at
positions rn = nd, n = 1, . . . ,N , with total length L = Nd �
w0, where d is the separation between the sites and w0 is the
cavity mode waist at the position of the lattice [27]. The lattice
is formed by two counterpropagating laser beams entering
the cavity from the sides and forming a standing wave in the
direction perpendicular to the direction of the cavity mode.
The cold atoms loaded on the optical lattice are confined
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FIG. 1. (Color online) Schematic of the system. An optical lattice
composed of regularly spaced atoms is located inside a single-mode
cavity driven by a laser field. The cavity is composed of one fixed
and one movable mirror that can undergo harmonic oscillations due
to the radiation pressure induced by the laser field. The atomic sites
have parallel dipole moments �μ oriented in the direction making the
angle α with the lattice direction.

in an array of microscopic trapping potentials, forming a
Mott-insulator-like medium with one atom per site [28,29].

The atoms in the optical lattice are modeled as two-level
systems with ground state |gn〉 and excited state |en〉, separated
by the transition frequency ωa and connected by a transition
dipole moment �μ = 〈en| �μn|gn〉, which can be assumed to be
real with no loss of generality. Since the optical lattice is
formed in the direction perpendicular to the cavity axis, the
effect of the motion of the atoms (center-of-mass motion) on
the coupling strength of the atoms to the cavity mode and on the
radiation pressure on the movable mirror can be ignored. The
situation would be different, and the center-of-mass motion
important, if the optical lattice were generated along the
cavity axis by the cavity mode [30] or by a standing wave
formed by running and reflected from the movable mirror laser
beams [31].

The motion of the movable mirror is modeled as a quantum
mechanical harmonic oscillator of mass m and resonant
frequency ωm. The cavity mode is driven by an external laser
field which is treated classically in our calculations and is
characterized by its frequency ωL and amplitude EL. It has
become common to consider the laser field as a source of the
radiation pressure force on the movable mirror.

The total Hamiltonian H of the system can be written as

H = Hc + Hex + H0 + HI , (1)

where

Hc = h̄ωca
†a (2)

is the free Hamiltonian of the cavity mode,

Hex = h̄
∑

n

ωaB
†
nBn + h̄

∑
n�=m

JαB†
nBm (3)

is the Hamiltonian of the electronic excitation in the atoms of
the optical lattice,

H0 = 1
2h̄ωm(q2 + p2) (4)

is the free Hamiltonian of the oscillating mirror, and

HI = h̄
∑

n

gn(B†
na + a†Bn) − h̄G0a

†aq

+ h̄(ELa†e−iωLt + E∗
LaeiωLt ) (5)

022327-2



FIRST-ORDER COHERENCE VERSUS ENTANGLEMENT IN . . . PHYSICAL REVIEW A 85, 022327 (2012)

is the interaction Hamiltonian of the cavity mode with the
electronic excitations, the movable mirror, and the external
laser field, respectively.

Here, a† and a are the creation and annihilation operators
of a cavity mode of frequency ωc. The operators q and p

are, respectively, the dimensionless position and momentum
operators of the oscillating mirror that satisfy the fundamental
commutation relation [q,p] = i. The contribution of electronic
excitations in atoms is expressed as a sum over the normal
Boson creation and annihilation operators, B†

n and Bn, respec-
tively, one for each site n of energy h̄ωa , and

Jα = μ2

4πε0h̄d3
(1 − 3 cos2 α) (6)

represents the contribution of the nearest-neighbor dipole-
dipole interaction between atomic sites, with parallel dipole
moments oriented in the direction making the angle α with the
lattice direction. In a practical situation, the angle α is fixed by
the polarization direction of the cavity mode. At a low number
of electronic excitations, which we consider here, the operators
Bn can be treated as bosonic operators.

The first term in Hamiltonian (5) describes the interaction
of the electronic excitations with the cavity field. The strength
of the interaction is characterized by the Rabi frequency gn.
The interaction retains only the terms which play a dominant
role in the electric-dipole and rotating-wave approximations.
The higher order and antiresonant terms, which would make
much smaller contributions, have been omitted.

The second term in Hamiltonian (5) describes the op-
tomechanical radiation-pressure interaction which couples the
cavity photon number nc = a†a to the position operator q

of the oscillating mirror with the coupling strength G0 =
(ωc/Lc)

√
h̄/mωm, where m is the effective mass of the

mechanical mode and Lc is the length of the cavity. Finally,
the parameter EL describes the coupling strength of the laser
field to the cavity mode.

We now consider the energy states of the optical lattice
that is determined by Hamiltonian (3). It is easily verified that
in the bare basis of the lattice sites, {|U1〉,|U2〉, . . . ,|UN 〉},
where |Ui〉 = |ei〉

∏
j �=i |gj 〉, Hamiltonian (3) is not diagonal

due to the presence of the dipole-dipole interaction Jα .
The diagonalization of Hamiltonian (3) results in eigenstates
described by Bloch-type waves, called the collective excitation
modes or, briefly, excitons. The diagonal Hamiltonian is of the
form

Hex = h̄
∑

k

ωkC
†
kCk, (7)

where

ωk = ωa + 2Jα cos

(
πk

N + 1

)
(8)

is the frequency of the kth exciton mode, and C
†
k and Ck

are the creation and annihilation operators of the excitons,
respectively. The operators C

†
k and Ck are obtained from the

creation and annihilation operators of an electronic excitation
at site n using the transformation

Bn =
√

2

N + 1

∑
k

sin

(
πnk

N + 1

)
Ck. (9)

Simply, the Ck operators are obtained by inverting the above
transformation.

Thus, in terms of the exciton operators, the total Hamilto-
nian of the system can be written in the form

H = H0 + HI , (10)

where H0 is the free Hamiltonian,

H0 = h̄ωca
†a +

∑
k

h̄ωkC
†
kCk + 1

2
h̄ωm(q2 + p2), (11)

and HI is the interaction Hamiltonian,

HI = h̄
∑
odd k

fk(Cka
† + H.c.) − h̄G0a

†aq

+ h̄(ELa†e−iωLt + E∗
LaeiωLt ), (12)

with

fk =
√

ωcμ2

h̄ε0V (N + 1)
cot

[
πk

2(N + 1)

]
. (13)

Note that the interaction involves exciton modes with odd
k only [27]. In addition, the coupling constants fk are not
identical, so that the exciton modes k are not equally coupled
to the cavity mode. Since the cotangent function decreases
rapidly with k, one can easily verify that the strength of the
coupling of the k = 1 mode is stronger by k2 than that of the
k �= 1 modes. This indicates that only the k = 1 mode can
be strongly coupled to the cavity field, with the modes k �= 1
weakly coupled to the field.

The strong coupling of the k = 1 exciton to the cavity mode
prompts us to write the Hamiltonian in the form

H = H1 + H2, (14)

where

H1 = h̄ωca
†a + h̄ω1C

†
1C1 + h̄f1(C1a

† + H.c.) (15)

and

H2 = 1
2h̄ωm(q2 + p2) − h̄G0a

†aq

+ h̄(ELa†e−iωLt + E∗
LaeiωLt ). (16)

We may diagonalize Hamiltonian H1 to find new operators
of the combined k = 1 exciton plus the cavity field system.
The cavity mode can be considered to “dress” the exciton and
to form, along with it, a single-“polariton” quantum system.
This reflects the fact that photons are exchanged between
the exciton and the cavity modes. The dressed operators, the
eigenoperators of Hamiltonian H1, are found by the unitary
transformation

� = (cos φ)C1 − (sin φ)a, � = (sin φ)C1 + (cos φ)a, (17)

where the rotation angle φ is defined by

cos2 φ = 1

2
+ δ

2

, (18)

with δ = (ωc − ω1)/2 and 
 = (f 2
1 + δ2)

1
2 . The angle φ

belongs to the interval [0,π/2]. The polaritons are coherent
superpositions of the exciton and the cavity fields. For
δ = 0, these are equally weighted, maximally entangled
superpositions of the fields, whereas for a large positive
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detuning, δ 	 f1, the exciton and the cavity field disentangle,
then polariton � becomes purely atomic (excitonic), while
polariton � becomes purely photonic.

In terms of the polariton creation and annihilation operators,
Hamiltonian (14) takes the form

H = h̄(ω0 − 
)�†� + h̄(ω0 + 
)�†�

+ 1
2h̄ωm(q2 + p2) − h̄G0a

†aq

+ h̄(ELa†e−iωLt + E∗
LaeiωLt ), (19)

where ω0 = (ωc + ω1)/2 is the midfrequency of the two
polariton modes, and the annihilation operator for the cavity
mode is related to the annihilation operators of the polariton
modes by a = � cos φ − � sin φ.

This shows the familiar coupled exciton-photon mode
splitting [33]. The midfrequency of the polariton modes is
the average value of the cavity frequency and the excitonic
frequency. Thus, ω0 is always between ωc and ω1, so the
frequency ω0 is pulled away from the cavity frequency toward
the excitonic frequency. When the cavity frequency is tuned
to exact resonance with the excitonic frequency, i.e., ωc = ω1,
there is no mode pulling, i.e., ω0 = ωc.

III. LINEARIZED FLUCTUATION ANALYSIS

Given the Hamiltonian of the system, we now proceed to
study the dynamics of the system in terms of the Heisenberg
equations of motion for relevant variables, the polariton modes
and the mirror mode operators. However, proper analysis of
the system must include losses due to the coupling of the
cavity mode, the polaritons, and the oscillating mirror to
their local environments. Therefore, we introduce so-called
phenomenological damping terms: the cavity field amplitude
is damped at a rate κ , the amplitude of the exciton’s field
is damped at an atomic spontaneous emission rate γa , and
the oscillations of the cavity mirror are affected by quantum
Brownian noise acting on the mirror, leading to the damping
of its oscillations at a rate γm. Inclusion of the losses in the
Heisenberg equations of motion results in a set of nonlinear
Langevin equations that, written in the frame rotating at laser
frequency ωL, have the form

q̇ = ωmp,

ṗ = −γmp − ωmq + Gs�
†� + Gc�

†�

− 1
2G(�†� + �†�) + √

2γmξ,

�̇ = −E∗
L sin φ − [γ + i(�L − 
)]� + iGsq�

− 1
2 iGq� + √

2γ�in,

�̇ = E∗
L cos φ − [γ + i(�L + 
)]� + iGcq�

− 1
2 iGq� + √

2γ�in, (20)

along with the corresponding equations for the adjoint opera-
tors �† and �†. Here, �L = ω0 − ωL, Gs = G0 sin2 φ, Gc =
G0 cos2 φ, G = G0 sin(2φ), and we have chosen γa = κ = γ .
Moreover, the laser field is assumed to be tuned close to the
cavity and atomic resonance, in the sense that the detuning �L

is small compared to the optical frequency ωL. We assume,
additionally, that the input noises to the polariton modes, �in

and �in, which are the sum of the input noises to the cavity and
to the excition modes, are frequency-independent Gaussian

(white) vacuum noises, so that all first moments vanish,
〈�in〉 = 〈�†

in〉 = 〈�in〉 = 〈�†
in〉 ≡ 0, and only the following

second moments are nonzero:

〈�in(t)�†
in(t ′)〉 = 〈�in(t)�†

in(t ′)〉 = δ(t − t ′). (21)

Similarly, for the quantum Brownian noise ξ (t), which arises
from the coupling of the oscillating mirror to its local
environment, we assume that it is a frequency-independent
Gaussian thermal white noise, so that all first moments
vanish, 〈ξ (t)〉 ≡ 0, and only the following second moments
are nonzero:

1
2 (〈ξ (t)ξ (t ′)〉 + 〈ξ (t ′)ξ (t)〉) = (

n̄ + 1
2

)
δ(t − t ′), (22)

where n̄ = [exp(h̄ωm/kBT ) − 1]−1 is the mean number of
thermal excitations at the frequency of the mechanical mode,
kB is the Boltzmann constant, and T is the temperature of the
environment.

Polaritons � and � might reasonably be called “bright”
polaritons since they are damped at the rate γ . It is clear
from Eq. (20) that, in the absence of a mechanical oscillator,
the system would consist of two completely decoupled bright
polaritons. The effect of the mechanical oscillator that interests
us most here is to introduce both shifts in the frequencies and
coupling between the polaritons.

Exact treatment of the problem, which involves quantum
properties of the mechanical oscillator, requires us to deal
with a system of nonlinear differential equations. The system
of equations is difficult to solve. Therefore, we use the
linearization approach [32] by assuming that each operator
in the system can be written as the sum of its steady-state
mean value and a small fluctuation around the steady state:

q = qs + δq, p = ps + δp,
(23)

� = �s + δ�, � = �s + δ�.

Note that this linearization approach is equivalent to the
assumption of Gaussian distributions that describe fluctuations
of the system around its stationary state. In this approach,
Eq. (20) decouples into a set of nonlinear equations for the
steady-state values and a set of differential equations for the
fluctuation operators.

We first determine the average steady-state values of the
operators. By taking the mean values of the operators, and
then setting the left-hand sides of Eqs. (20) to 0, we obtain the
steady-state solutions for the oscillator variables,

ps = 0, qs = G0

ωm

|�s cos φ − �s sin φ|2, (24)

and the steady-state values of the polariton fields are found
from the solution of two coupled nonlinear equations,

−E∗
L sin φ = [γ + i(�q − 
̃)]�s + 1

2 iGqs�s,
(25)

E∗
L cos φ = [γ + i(�q + 
̃)]�s + 1

2 iGqs�s,

where �q = �L − 1
2qsG0 and 
̃ = 
 − 1

2qsG0 cos(2φ).
Under the linearization procedure, and introducing the

annihilation operator of the oscillating mirror, δb = (δq +
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iδp)/
√

2, the Langevin equations for the fluctuation operators
satisfy the set of differential equations

δḃ = −(
1
2γm + iωm

)
δb + 1

2γmδb† − 1
2 iG�(δ� + δ�†)

+ 1
2 iG�(δ� + δ�†) + √

γmξ,

δ�̇ = −(γ + i��)δ� − 1
2 iG� (δb + δb†)

− iGqδ� +
√

2γ�in, (26)

δ�̇ = −(γ + i��)δ� + 1
2 iG�(δb + δb†)

− iGqδ� +
√

2γ�in,

where we have chosen �� = (�q − 
̃) and �� = (�q + 
̃)
and have introduced the abbreviations G� =√

2( 1
2G�s −

Gs�s), G� =√
2(Gc�s − 1

2G�s), and Gq = Gqs/2. Then we
can get G� = G� tan φ. Also, we see that G� and G� are
the effective coupling constants of polaritons � and � to the
cavity field, respectively.

IV. NANOMECHANICAL ENTANGLEMENT

We now apply Eqs. (26) explicitly to search for entangle-
ment and correlations between the modes. Notice the presence
of three different frequencies at which the fluctuation operators
oscillate: ωm, �� , and ��. Thus, depending on whether we
would like to entangle one or both polaritons to the oscillating
mirror, we should choose ωm to match either the frequency
of one of the polaritons or the frequency �q , which is the
midfrequency of the two polaritons. To illustrate this, we
introduce a rotating frame through the relations

δb̃ = δb eiωmt , δ�̃ = δ� ei��t , δ�̃ = δ� ei��t (27)

and find that, in the rotating frame, Eqs. (26) become

δ ˙̃b = − 1
2γmδb̃ + 1

2γmδb̃†e2iωmt + √
γm ξ eiωmt

− 1
2 iG� (δ�̃e−i(��−ωm)t + δ�̃†ei(��+ωm)t )

+ 1
2 iG�(δ�̃e−i(��−ωm)t + δ�̃†ei(��+ωm)t ),

δ ˙̃� = −γ δ�̃ − 1
2 iG�(δb̃ei(��−ωm)t + δb̃†ei(��+ωm)t )

− iGqδ�̃ei(��−��)t +
√

2γ�ine
i��t ,

δ ˙̃� = −γ δ�̃ + 1
2 iG�(δb̃ei(��−ωm)t + δb̃†ei(��+ωm)t )

− iGqδ�̃ei(��−�� )t +
√

2γ�ine
i��t . (28)

We see that the coupling terms of polaritons δ�̃ and δ�̃ to the
mirror operator oscillate in time at frequencies �� ± ωm and
�� ± ωm, respectively. When the equations are integrated over
any measurable time interval, these oscillatory terms make a
negligible contribution and can be ignored if they are different
from 0. Therefore, in order for the coupling effects to be
significant, we must have �� = ±ωm or �� = ±ωm, when
either of these terms becomes independent of time. These are
optimal conditions for coupling of the mirror to either polariton
� or polariton �.

An alternative choice of the new rotating frame,

δb̃ = δb eiωmt , δ�̃ = δ� ei�q t , δ�̃ = δ� ei�q t , (29)

results in the following transformed equations:

δ ˙̃b = − 1
2γmδb̃ + 1

2γmδb̃†e2iωmt + √
γm ξ eiωmt

− 1
2 iG� (δ�̃e−i(�q−ωm)t + δ�̃†ei(�q+ωm)t )

+ 1
2 iG�(δ�̃e−i(�q−ωm)t + δ�̃†ei(�q+ωm)t ),

δ ˙̃� = −(γ − i
̃)δ�̃ − iGqδ�̃ +
√

2γ�ine
i�q t

− 1
2 iG� (δb̃ei(�q−ωm)t + δb̃†ei(�q+ωm)t ), (30)

δ ˙̃� = −(γ + i
̃)δ�̃ − iGqδ�̃ +
√

2γ�ine
i�q t

+ 1
2 iG�(δb̃ei(�q−ωm)t + δb̃†ei(�q+ωm)t ).

Now the exponential factors have a frequency centered on
�q , and in marked contrast to the previous situation, the
choice of either �q = ωm or �q = −ωm would result in the
simultaneous coupling of both polaritons to the oscillating
mirror. It is interesting to note that the coupling between the
polaritons is independent of the choice of frequency ωm.

A. Bipartite polariton-mirror coupling

Let us first examine a bipartite coupling between polariton
� and the oscillating mirror. According to Eq. (28), this can
be achieved by choosing �� = −ωm, which has been shown
to be a necessary condition for entanglement between two
bosonic modes [8]. In this case, the two modes are coupled
by a parametric interaction [34,35]. The tuning of �� = ωm

would not produce entanglement between the mirror and the
polariton modes, since in this case the two modes are coupled
by a linear-mixing interaction.

By choosing �� = −ωm, after discarding the rapidly
oscillating terms, we find from Eqs. (28) that the set of
differential equations (28) can be simplified to two separate
sets of coupled differential equations for pairs (δb̃†,δ�̃) and
(δb̃,δ�̃†). The equations of motion for the pair (δb̃†,δ�̃) are

δ ˙̃b
† = −γ δb̃† + 1

2 iG�δ�̃ + √
2γ ξ̃ †(t),

(31)
δ ˙̃� = −γ δ�̃ − 1

2 iG�δb̃† + √
2γ �̃in(t),

where ξ̃ †(t) = ξ † exp(−iωmt), �̃in(t) = �in exp(−iωmt), and
we have put γm = 2γ . Note that the two coupled modes
oscillate at the same frequencies. This may result in so-
called one-color entanglement, i.e., entanglement between two
modes of the same frequency.

B. Identification of entanglement from the squeezing condition

In order to show that entanglement and squeezing can be
created between the � and the b modes, we introduce in-phase
and out-of-phase quadrature components of the fluctuation
operators

δ�̃x = 1√
2

(δ�̃e−iψ + δ�̃†eiψ ),

δ�̃y = 1√
2i

(δ�̃e−iψ − δ�̃†eiψ ),

(32)

δ�̃x = 1√
2

(δ�̃e−iψ + δ�̃†eiψ ),

δ�̃y = 1√
2i

(δ�̃e−iψ − δ�̃†eiψ ),
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and

δ�x = 1√
2

(δ�̃x − δq), δϒx = 1√
2

(δ�̃x + δq),

(33)

δ�y = 1√
2i

(δ�̃y − δp), δϒy = 1√
2i

(δ�̃y + δq).

In order to see if correlations exist between polariton �

and mechanical mode b, we must examine properties of the
sum operators, either δϒx or δϒy , and the difference operators,
either δ�x or δ�y , that act on both systems. The variances in
the sum and difference operators are given by

�(δϒx)2 = 〈
δϒ2

x

〉 − 〈δϒx〉2 = 1
2 [�(δ�̃x)2

+�(δq)2 + 2(〈δ�̃xδq〉 − 〈δ�̃x〉〈δq〉)],
�(δ�x)2 = 〈

δ�2
x

〉 − 〈δ�x〉2 = 1
2 [�(δ�̃x)2

+�(δq)2 − 2(〈δ�̃xδq〉 − 〈δ�̃x〉〈δq〉)]. (34)

The product of these two variances is

�(δϒx)2�(δ�x)2 = 1
4 [�(δ�̃x)2 + �(δq)2]2

− (〈δ�̃xδq〉 − 〈δ�̃x〉〈δq〉)2. (35)

Hence, we have the uncertainty relation√
�(δϒx)2�(δ�x)2 � 1

2 [�(δ�̃x)2 + �(δq)2], (36)

with equality holding only if the systems are uncorrelated.
Solving Eq. (31) for the steady state (t → ∞), we find

�(δϒx)2 = γ (n̄ + 1)

2
(
γ − 1

2G�

) ,

(37)

�(δ�x)2 = γ (n̄ + 1)

2
(
γ + 1

2G�

) ,

and

�(δ�̃x)2 = 1

2

[
γ 2(n̄ + 1)(
γ 2 − 1

4G2
�

) − n̄

]
,

(38)

�(δq)2 = 1

2

[
γ 2(n̄ + 1)(
γ 2 − 1

4G2
�

) + n̄

]
.

It is seen that the variances �(δ�̃x)2 and �(δq)2 are both
larger than their vacuum limits, i.e., 1/2. Thus, both modes
are not themselves squeezed and display thermal fluctuations.
However, substituting Eqs. (37) and (38) into Eq. (36), we find
that the polariton and the mechanical modes are correlated
when

γ 2(
γ 2 − 1

4G2
�

) > 1, (39)

which is always satisfied as long as G� �= 0. We stress that
the above inequality is a necessary but not sufficient condition
for squeezing (entanglement) between the modes. In other
words, the modes could be correlated but not enough to beat
the quantum limit for fluctuations. Equivalently, we may say
that the modes are correlated classically and the quantum limit
can be beaten only if the modes exhibit quantum correlations.

The sufficient condition for squeezing is that the variance
�(δϒx)2 is reduced below the limit for quantum fluctuations,
i.e., below 1/2. It is easily verified from Eq. (37) that the

correlations between the modes will lead to squeezing in
the superposition δϒx when G� > 2n̄γ . However, there is
an upper limit on G� imposed by the condition of stable
steady-state solutions of Eqs. (31). One can easily find from
Eqs. (31) that the stability of the steady-state solutions requires
G� < 2γ . Thus, combining the stability and squeezing con-
ditions, we find that the necessary and sufficient condition for
entanglement between polariton � and the vibrating mirror
mode is

2n̄γ < G� < 2γ, (40)

which, on the other hand, indicates that the modes can be
entangled only if n̄ < 1.

Since the modes are correlated for any G� < 2γ and the
condition for squeezing (entanglement) is that G� must be
greater than 2n̄γ , there is evidently a significant restriction
on the strength of the coupling of the vibrating mirror to the
polariton mode. Condition (40) for entanglement is essentially
similar to that of a microcavity mode and a vibrating mirror
treated by Vitali et al. [8].

C. Violation of the Cauchy-Schwartz inequality and
anomalous correlations

An alternative and, in fact, more elegant way to study
entanglement between two modes (A,B) is the Cauchy-
Schwartz inequality [36]:

χ(A,B) = g
(2)
A g

(2)
B(

g
(2)
AB

)2 > 1. (41)

Here, χ(A,B) is the so-called Cauchy-Schwartz parameter,

g
(2)
AB = 〈A†B†AB〉

〈A†A〉〈B†B〉 (42)

is the normalized second-order cross-correlation function, and

g
(2)
A = 〈A†2A2〉

〈A†A〉2
, g

(2)
B = 〈B†2B2〉

〈B†B〉2
(43)

are the normalized intensity autocorrelation functions of
modes A and B, respectively.

Since the modes obey Gaussian statistics, the correlation
functions can be readily related to the coherence functions

g(2)
n = 2 + |η(n,n)|2, n = A,B,

(44)
g

(2)
AB = 1 + |γ(A,B)|2 + |η(A,B)|2,

where |γ(A,B)|, defined as

|γ(A,B)| = |〈A†B〉|√
〈A†A〉〈B†B〉

, (45)

is the degree of first-order coherence,

|η(A,A)| = |〈A2〉|
〈A†A〉 , |η(B,B)| = |〈B2〉|

〈B†B〉 (46)

are degrees of the so-called “anomalous” autocorrelation, and

|η(A,B)| = |〈AB〉|√
〈A†A〉〈B†B〉

(47)
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is the degree of the anomalous cross-correlation [37–42].
Equation (44) shows that the second-order autocorrelation
functions depend on the anomalous autocorrelation, whereas
the second-order cross-correlation function depends on the
first-order coherence and the anomalous cross-correlation.

We now determine conditions under which the correla-
tion between polariton � and mechanical mode b violates
the Cauchy-Schwartz inequality (41). Following the method
introduced in Ref. [43], we can easily solve Eqs. (31) to find
that in the steady-state,

〈δ�2〉 = 〈δb2〉 = 0, 〈δ�†δb〉 = 0, (48)

and

〈δ�δb〉 = − i

4
(n̄ + 1)

γG�

γ 2 − 1
4G2

�

, (49)

which, together with

〈δ�†δ�〉 = 1

8
(n̄ + 1)

G2
�

γ 2 − 1
4G2

�

,

(50)

〈δb†δb〉 = 1

2

[
(n̄ − 1) + (n̄ + 1)γ 2

γ 2 − 1
4G2

�

]
,

give the following condition for violation of the Cauchy-
Schwartz inequality:

|η(�,b)|2 = (n̄ + 1)γ 2[
2n̄γ 2 − 1

4 (n̄ − 1)G2
�

] > 1. (51)

We emphasize that inequality (51) is the necessary and
sufficient condition for entanglement between the modes. It
is easily verified that the inequality is satisfied as long as
n̄ < 1 and G� < 2γ . This shows that the Cauchy-Schwartz
inequality is violated under the same conditions that squeezing
is generated between the modes; see Eq. (40). Moreover,
inequality (51) implies that violation of the Cauchy-Schwartz
inequality is achieved simply by the requirement that the
anomalous cross-coherence is greater than the product of the
intensities of the modes. It is interesting to note that condition
(51) corresponds to the case of each of the modes being in
the thermal state, g(2)

� = g
(2)
b = 2, with nofirst-order coherence

between them, |γ(�,b)| = 0. Thus, the fields of the polariton and
mechanical modes are entangled but there is no interference.

We now illustrate the above-predicted limitations for the
occurrence of entanglement and also provide the quantitative
value of the bipartite entanglement. For this, we use the
logarithmic negativity, which is known as the necessary and
sufficient condition for entanglement of two-mode Gaussian
states [44,45],

EN = max{0, − log2[2Vs]}, (52)

where Vs is the smallest sympletic eigenvalue of the partially
transposed correlation (covariance) matrix V, with elements

Vij = 〈ui(∞)uj (∞) + uj (∞)ui(∞)〉/2, (53)

where ui(∞) is the steady-state value of the ith component of
vector �u:

�u = (δq̃,δp̃,δ�̃x,δ�̃y)T , (54)

with δq̃ = (δb̃ + δb̃†)/
√

2, δp̃ = (δb̃ − δb̃†)/
√

2i, and
δ�̃x,δ�̃y defined in Eq. (32).

The steady-state values are readily calculated using equa-
tions of motion (31), from which we get the matrix equation

�̇u(t) = A�u(t) +
√

2γ �η(t), (55)

where the drift matrix A is given by

A =

⎛
⎜⎜⎜⎝

−γ 0 0 − 1
2G�

0 −γ − 1
2G� 0

0 − 1
2G� −γ 0

− 1
2G� 0 0 −γ

⎞
⎟⎟⎟⎠ , (56)

and

�η(t) = (
q̃in(t),p̃in(t),�̃x

in(t),�̃y
in(t)

)T
. (57)

Matrix equation (55) is a simple first-order differential equa-
tion with time-independent coefficients and is solved by direct
integration. The formal solution is given by

�u(t) = �u(0)eAt +
√

2γ

∫ t

0
dt ′ �η(t − t ′)eAt ′ , (58)

where �u(0) is the vector of initial values of the components.
For the steady state, we take the limit of Eq. (58) as t → ∞.

Since the noise ξ (t) is δ correlated, so that it describes a
Markovian process, the steady-state correlation matrix is then
derived from the equation [32]

AV + VAT = −D, (59)

where D = diag[(2n̄ + 1)γ,(2n̄ + 1)γ,γ,γ ] is the diffusion
matrix stemming from the noise correlations.

Figure 2 illustrates the dependence of the logarithmic
negativity on n̄ and G� . It is apparent that the modes are
entangled for n̄ < 1 and G� < 2γ . Once n̄ is greater than 1,
entanglement becomes impossible irrespective of G� .

The dependence of second-order correlation functions
(44) on different kinds of coherence functions allows us to
determine which of the coherences work for and which work

0
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1.5
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0.5
1

1.5
2

0

0.25

0.5

0.75

1

Gψ/γn̄
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N

FIG. 2. Variation of the logarithmic negativity EN with n̄ and
G�/γ .
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against the creation of a strong entanglement between the
modes. A simple analysis of Eqs. (41) and (44) shows that,
in general, the Cauchy-Schwartz inequality is violated when

(2+|η(A,A)|2)(2+|η(B,B)|2) < (1+|γ(A,B)|2+|η(A,B)|2)2.

(60)

It follows from Eq. (60) that the general condition for
violation of the Cauchy-Schwartz inequality cannot be viewed
as being exclusively dependent on |η(A,B)|2. One can notice
that the Cauchy-Schwartz inequality would be easier to
violate if the first- and second-order cross-correlations were
simultaneously created while the anomalous autocorrelations
were kept at 0. However, we demonstrate below that this
situation is unfounded, that the simultaneous creation of the
cross-correlation functions is equally effective in creating the
anomalous autocorrelations.

D. Squeezed vacuum environment

When evaluating the correlation function 〈δ�†δb〉, one
finds that the function depends solely on the noise two-
photon correlation functions 〈�†

in(t)�†
in(t ′)〉 and 〈ξ̃ †(t)ξ̃ †(t ′〉.

Therefore, the correlation function 〈δ�†δb〉 can be different
from 0 when either the polariton or the mirror is located in
an environment whose modes exhibit nonzero two-photon
correlations. An example of such an environment is a squeezed
vacuum field, which, in the case of a mirror environment, is
determined by Eq. (22) and the second moments

〈ξ̃ (t)ξ̃ †(t ′)〉 = (n̄+1)δ(t − t ′), 〈ξ̃ †(t)ξ̃ (t ′)〉 = n̄δ(t − t ′),
〈ξ̃ (t)ξ̃ (t ′〉 = mδ(t + t ′), 〈ξ̃ †(t)ξ̃ †(t ′〉 = m∗δ(t + t ′),

(61)

where n̄ is the squeezing photon number and |m| �
√

n̄(n̄ + 1)
measures the strength of two-photon correlations [46]. Thus,
if the mirror were oscillating in a squeezed vacuum field, this
would create first-order coherence between the modes.

Let us apply these considerations explicitly to the first-
order correlation function 〈δ�†δb〉. If the mirror oscillates in
a squeezed vacuum field, we readily find that

〈δ�†δb〉 = iγmG�

4
(
γ 2 − 1

4G2
�

) , (62)

which is nonzero as long as the polariton and the mirror
are coupled to each other. When Eq. (62) is substituted into
Eq. (45), we find, for the degree of first-order coherence,

|γ(�,b)| = γ |m|{
(n̄ + 1)

[
2n̄γ 2 − 1

4 (n̄ − 1)G2
�

]}1/2 , (63)

which is <1 in general and becomes unity only in the limit
of G� = 2γ and n̄ 	 1. Expression (63) shows that the
interaction of the oscillating mirror with the squeezed vacuum
field results in first-order coherence between the polariton and
the mechanical modes. This happens because the two-photon
correlations present in the squeezed field have the effect of
inducing stimulated two-photon processes that, it turns out,
are sufficient for the polariton and mirror fields to become
mutually coherent. Equivalently, the oscillating mirror that
scatters photons from the squeezed vacuum to the polariton

mode gives rise to phase locking between the polariton
and mechanical modes. The correlations in the squeezed
vacuum field have therefore induced coherence between the
polariton and the mechanical modes. It is interesting to note
that the squeezed correlations do not effect the anomalous
cross-correlation 〈δ�δb〉.

Creation of the first-order coherence should, according
to Eq. (60), enhance the violation of the Cauchy-Schwartz
inequality. However, this is not the case, because the squeezed
vacuum creates not only the first-order coherence but also the
anomalous autocorrelations. It is easy to find that

〈δ�2〉 = −1

8
m

G2
�(

γ 2 − 1
4G2

�

) ,

(64)

〈δb2〉 = 1

2
m

[
1 + γ 2(

γ 2 − 1
4G2

�

)]
,

which shows that in both modes the anomalous autocorrela-
tions are induced by the squeezed vacuum. The degrees of the
anomalous coherences are then given by

|η(�,�)| = |〈δ�2〉|
〈δ�†δ�〉 = |m|

n̄ + 1
,

(65)

|η(b,b)| = |〈δb2〉|
〈δb†δb〉 = |m|(2γ 2 − 1

4G2
�

)
[
2n̄γ 2 − 1

4 (n̄ − 1)G2
�

] .

Clearly the squeezed vacuum conspires to create the
anomalous autocorrelation functions. Note that |γ(�,b)| �√|η(�,�)||η(b,b)| and the equality holds at the threshold
value of G� = 2γ . It can also be seen that the anomalous
autocorrelation of the mechanical mode is greater than that of
the polariton mode and equality between the autocorrelations
is achieved when G� = 2γ .

The presence of anomalous autocorrelations alters condi-
tion (60) for violation of the Cauchy-Schwartz inequality. It
is clear that the left-hand-side of Eq. (60) is enhanced by
the anomalous autocorrelation functions. Thus inequality (60)
can be harder to achieve. Needless to say, the creation of
first-order coherence among the modes is achieved at the
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FIG. 3. Variation of the Cauchy-Schwartz parameter χ(�,b) with
n̄ and G�/γ for |m| = √

n̄(n̄ + 1).
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cost of a corresponding decrease in entanglement between
the modes.

Figure 3 illustrates the Cauchy-Schwartz parameter as a
function of n̄ and G� for a maximally correlated squeezed
vacuum field, |m| = √

n̄(n̄ + 1). The effect of including the
squeezing correlations is clearly to restrict the range of n̄ and
G� over which the modes are entangled.

We may conclude this section by stating that the best
condition for entanglement of two degenerate modes is a
situation of mutually incoherent modes, with each being in
the thermal state.

V. THREE-MODE COHERENCE AND ENTANGLEMENT

In this section we determine conditions for correlations
and entanglement when both polariton � and polariton �

are simultaneously coupled to the mechanical mode. This is a
situation of a three-mode interaction and appears in the system
when the frequency of the mechanical mode ωm is tuned to the
midfrequency of the two polaritons, i.e., when ωm = −�q . We
also briefly study the two-color entanglement that may occur
between two modes of different frequencies.

When we choose �q = −ωm and make the secular approx-
imation, we find that Eqs. (30) simplify to two separate sets
of three coupled differential equations for (δb̃†,δ�̃,δ�̃) and
(δb̃,δ�̃†,δ�̃†). For example, the equations of motion for the
set (δb̃†,δ�̃,δ�̃) are

δ ˙̃b
† = − 1

2γmδb̃† + 1
2 iG�δ�̃ − 1

2 iG�δ�̃ + √
γm ξ̃ †(t),

δ ˙̃� = −(γ − i
̃)δ�̃ − iGqδ�̃ − 1
2 iG�δb̃† + √

2γ �̃in(t),

δ ˙̃� = −(γ + i
̃)δ�̃ − iGqδ�̃ + 1
2 iG�δb̃† + √

2γ �̃in(t),

(66)

where �̃in(t) = �in exp(−iωmt). Equations (66) are quite
different from Eq. (31), in that now both polaritons are coupled
to the mechanical mode and the coupling is of the type of a
parametric interaction. Normally, we would expect that this
kind of coupling should result in entanglement between the
polaritons. As we see below, this hope is unfounded; the
coupling of the polaritons with the mechanical mode by
the parametric interaction results in first-order rather than
second-order coherence between the polaritons.

Before going into detailed studies of the conditions for
entanglement between the modes, we first comment on certain
general features of the simultaneous coupling of polaritons
to the mechanical mode that follow from Eq. (66). We see
that the effect of the mechanical mode on the dynamics
of the polaritons is twofold. First, the mechanical mode
couples the polaritons to each other with coupling strength
Gq . This indicates that, in the presence of an oscillating
mirror, polaritons � and � are no longer the eigenstates of
the system. Second, the mirror couples to the polaritons with
different coupling strengths G� and G�. The magnitude of
the coupling strengths depends on whether or not a given
polariton is maximally entangled. When the polaritons are
maximally entangled, G� = G�; otherwise, G� �= G� when
the polaritons are nonmaximally entangled.

The presence of coupling between the polaritons prompts
us to make a unitary transformation to obtain “new” orthogonal

polariton modes. It is easily shown that the annihilation
operators of the orthogonal superposition modes are of the
form

δ� = cos(φ + ϕ)δC1 − sin(φ + ϕ)δa,
(67)

δ� = sin(φ + ϕ)δC1 + cos(φ + ϕ)δa,

where the angle ϕ is defined by

cos2 ϕ = 1

2
+ 
̃

2U
, (68)

with U =
√


̃2 + G2
q . Note that the angle ϕ belongs to the

interval [0,π/4].
Several interesting features occur in Eq. (67). First, we note

that the initially maximally entangled exciton and the cavity
fields, i.e., φ = π/4 and Gq = 0, become nonmaximally
entangled when the mechanical mode is included, Gq �= 0.
Thus, the effect of the mechanical mode on the initial
maximally entangled exciton and the cavity modes is to destroy
the superposition (polariton) modes. Second, if initially the
exciton and the cavity fields are disentangled, i.e., φ = 0, they
remain disentangled even in the presence of the mechanical
mode because in this case Gq = 0 and then ϕ = 0. Third, an
initially nonmaximally entangled state between the exciton
and the cavity modes, 0 < φ < π/2, can be transformed to
a maximally entangled state by the mechanical effect. This
happens when φ + ϕ = π/4. However, a maximally entangled
state can be reached only for initial superpositions with
φ < π/4. Otherwise, for φ > π/4, a superposition cannot
be transformed by the mechanical effect into a maximally
entangled state.

We now turn to calculation of the correlation functions be-
tween the modes, which provide information on coherence and
entanglement between the modes. In terms of the transformed
operators δ� and δ�, equations of motion (66) take the form⎛

⎜⎝ δ ˙̃b
†

δ�̇

δ�̇

⎞
⎟⎠ = −

⎛
⎜⎝

γ − 1
2 iGθ − 1

2 iGπ

1
2 iGθ (γ + iU ) 0
1
2 iGπ 0 (γ − iU )

⎞
⎟⎠

⎛
⎜⎝

δb̃†

δ�

δ�

⎞
⎟⎠

+
√

2γ

⎛
⎜⎝

ξ̃ †(t)

�in(t)

�in(t)

⎞
⎟⎠ , (69)

where Gθ = (G� cos ϕ + G� sin ϕ) and Gπ = (G� sin ϕ −
G� cos ϕ) are effective couplings of the transformed polariton
modes to the cavity mode. It is clear from Eq. (69) that
the transformed polaritons are independent of each other;
they oscillate at different frequencies, shifted from ωm by
an amount ±U ; and both are coupled to the mechanical
mode by the parametric amplification process. Note that
Gθ = −Gπ tan(φ + ϕ).

A. Two-color entanglement

Since the modes oscillate at different frequencies, we may
apply Eq. (69) to the problem of two-color entanglement
[47–53]. If we assume that Gπ = 0, we then can ignore
coupling of the δ� polariton to the mechanical mode and limit
ourselves to consideration of the case of two coupled modes
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of different frequencies. This could take place, for example, if
the cavity-field frequency were on resonance with the exciton
frequency (δ = 0) and the coupling of the mirror to the cavity
mode were much stronger than the coupling of the atoms to
the cavity mode, i.e., Gq 	 
̃. In this case, φ = ϕ = π/4, and
then it is easy to find that Gπ = 0.

To check the conditions for stable steady-state solutions,
we put Gπ = 0 in the 3 × 3 matrix appearing in Eq. (69) and
find the following eigenvalues:

λ1 = γ − iU, λ2,3 = (
γ ±

√
G2

θ − U 2
) + 1

2 iU. (70)

We see that a threshold occurs for the coupling strength at
Gθ = U where the eigenvalues λ2,3 change character. Below
the threshold, Gθ < U , the real parts of the eigenvalues are
positive irrespective of the values of the parameters involved.
Above the threshold, Gθ > U , the real parts are positive

when
√

G2
θ − U 2 < γ . We should stress here that under the

condition Gq 	 
̃, taken here, the inequality Gθ < U ; i.e.,
the below-threshold situation always holds. Therefore, as long
as Gθ < U there are no restrictions on the parameters for
the system to decay into a stable stationary state. However,
we saw in Sec. IV that, in the case of two degenerate
modes, there is the severe restriction that a stable steady state
exists only for very weak optomechanical couplings, Gθ =√

2G� < 2
√

2γ .
After establishing the stability conditions, we now solve the

set of resulting equations of motion for the steady state and
find the following nonzero correlation functions:

〈δb†δb〉 = n̄ + (n̄ + 1)G2
θ

2
(
U 2 − G2

θ + 4γ 2
) ,

〈δbδ�〉 = − i

2

(n̄ + 1)(2γ − iU )Gθ(
U 2 − G2

θ + 4γ 2
) , (71)

〈δ�†δ�〉 = (n̄ + 1)G2
θ

2
(
U 2 − G2

θ + 4γ 2
) .

If we now substitute Eq. (71) into Eq. (47), we arrive at
the following expression for the anomalous cross-correlation
function:

|η(b,θ)|2 = (n̄ + 1)(4γ 2 + U 2)[
2n̄(4γ 2 + U 2) − (n̄ − 1)G2

θ

] . (72)

Expression (72) differs markedly from Eq. (51), although they
become identical in the limit of degenerate modes, when U =
0. Similarly to the case of degenerate modes, the condition
for violation of the Cauchy-Schwartz inequality, |η(b,θ)|2 > 1,
is restricted to n̄ < 1. However, in contrast to the case of
degenerate modes, there is no restriction on Gθ as long as
U > Gθ . For small Gθ , the entanglement is almost insensitive
to U . On the other hand, for large Gt , the entanglement depends
crucially on the extent to which Gθ differs from U . When Gθ ≈
U , the correlation |η(b,θ)|2 ≈ 1, indicating no entanglement
between the modes, but |η(b,θ)|2 	 1 in the limit of U 	 Gθ .

These analyses are illustrated in Fig. 4, which shows the
logarithmic negativity for the case of two-color entanglement
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FIG. 4. Variation of the logarithmic negativity EN with n̄ and
U/γ for Gθ = γ .

calculated from the previously derived expressions, Eqs. (52)–
(58), with the drift matrix A now given by

A =

⎛
⎜⎜⎜⎝

−γ 0 0 − 1
2Gθ

0 −γ − 1
2Gθ 0

0 − 1
2Gθ −γ U

− 1
2Gθ 0 −U −γ

⎞
⎟⎟⎟⎠ . (73)

It is seen that, as before for the degenerate case, entangle-
ment occurs for n̄ < 1. However, in contrast to the degenerate
case, whenever the Cauchy-Schwartz inequality is violated,
entanglement occurs over the entire range of U .

B. Three coupled nondegenerate modes

We now turn to the problem of determining conditions
for correlations and entanglement among three modes. We
are particularly interested in the problem of entangling two
independent modes that are simultaneously coupled to a third
intermediate mode. This situation is encountered in Eq. (69),
where two polaritons that are mutually independent and
nondegenerate in frequency are simultaneously coupled to the
mechanical mode. We note that both polaritons are coupled
to the mechanical mode through a parametric interaction that
can create an entanglement between the polaritons and the
mechanical mode. The interesting question then arises whether
this kind of interaction could result in entanglement between
the polaritons. We solve Eq. (69) for the steady state and see
whether the anomalous cross-correlation function 〈δ�δ�〉,
necessary for entanglement between the polaritons, is different
from 0.

To keep the mathematical complications to a minimum,
we take φ + ϕ = π/4 so that the effective polaritons δ�

and δ� are in the maximally entangled states. In this case,
Gθ = −Gπ ≡ Gt . The situation of φ + ϕ = π/4 holds for the
case of a cavity-field frequency on resonance with the exciton
frequency (δ = 0) and a coupling of the exciton mode to the
cavity mode that is much stronger than the coupling of the
mirror to the cavity mode, i.e., 
̃ 	 Gq .
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Let us first examine the stability conditions for steady-
state solutions of Eq. (69). It is not difficult to find that the
eigenvalues of the 3 × 3 matrix appearing in Eq. (69) are

λ1 = γ, λ2,3 = γ ∓ iB, (74)

where B =
√
U 2 − 1

2G2
t . Since U 	 Gt/

√
2, we have that

parameter B is a real number for all values of the mechanical

constant G0. It is clear that the transformed operators are
damped at a rate γ independent of G0. In other words,
there is no threshold for G0, which means that the three-
mode system will decay to a stabile steady state independent
of G0.

If the mirror oscillates in a thermal field, we then obtain
from Eq. (69) the nonzero steady-state correlation functions

〈δb†δb〉 = n̄ + (n̄ + 1)
[
3G2

t + 8(B2 + γ 2)
]
G2

t

D
, 〈δ�†δ�〉 = 〈δ�†δ�〉 = (n̄ + 1)

[
3G2

t + 8(B2 + γ 2)
]
G2

t

2D
,

〈δ�δb〉 = 〈δ�δb〉∗ = i(n̄ + 1)(γ + iU )
[
3G2

t + 4(B2−2γ 2) + 12iγU
]
Gt

D
,

〈δ�†δ�〉 = (n̄ + 1)
[
3G2

t + 4(B2 − 2γ 2) − 12iγU
]
G2

t

2D
, (75)

with D = 8(B2 + γ 2)(B2 + 4γ 2).
Unfortunately, the anomalous cross-correlation function

〈δ�δ�〉, which is necessary for entanglement between the
polaritons, is equal to 0. Hence, the polaritons remain
uncorrelated and therefore cannot be entangled. In that case,
the indirect two-photon coupling between polaritons which is
provided by an oscillating mirror is effectively 0. The reason
for this is that the oscillating mirror couples to polaritons with
opposite phases, as is evident from Eq. (69). In physical terms,
the oscillating mirror establishes the phase difference φθ − φπ

rather than the phase sum φθ + φπ between the two polaritons.
In this case, that mutual behavior of the polaritons and the
mirror does not create two-photon correlations between the
polaritons.

In order to gain some appreciation of the magnitude of
the first-order coherence, we evaluate the degree of first-order
coherence between polaritons; we find

|γ(θ,π)| =
∣∣3G2

t + 4(B2 − 2γ 2) + 12iγU
∣∣

3G2
t + 8(B2 + γ 2)

. (76)

Thus we see that the oscillating mirror, although not being
able to entangle the polaritons, in turn makes the polaritons
partly coherent. Recall that the polariton modes are in thermal
states, g

(2)
θ = g(2)

π = 2. Thus, two independent thermal modes
can be made mutually coherent by the oscillating mirror, and
the degree of coherence can, in principle, be as large as unity.
Note that |γ(θ,π)| is independent of n̄. The reason for this is
that the coherence depends on the phase relation between the
modes and the information on the phase is not carried out
by the thermal fluctuations. Moreover, expression (76) shows
that the polaritons are not perfectly coherent, the coherence
increases with the coupling strength Gt and becomes unity
only in the limit of Gt 	 
̃,γ .

Since anomalous cross-correlations were not generated
when the mirror was oscillating in the thermal field, we now
evaluate the cross-correlation function 〈δ�δ�〉 assuming that
the mirror oscillates in a squeezed vacuum. We have already
seen that, in the two-mode case, coupling of the mirror to
a squeezed field resulted in the generation of correlation

functions that were 0 in the thermal field. Following this
observation, we recalculate 〈δ�δ�〉 using Eq. (61) and find
that, in a squeezed field, the anomalous cross-correlation
function is now different from 0 and is of the form

〈δ�δ�〉 = mG2
t

2D

[
3G2

t + 8(B2 + γ 2)
]
. (77)

The correlation functions determining the occupation of
polariton modes 〈δ�†δ�〉 and 〈δ�†δ�〉 are not changed by a
squeezed vacuum and are identical to the results found for a
thermal field, Eqs. (75). This leads to a quite simple expression
for the degree of anomalous cross-correlations:

|η(θ,π)| = |m|
n̄ + 1

. (78)

This expression indicates that polaritons can be entangled as
long as |m| �= 0. We note that |η(θ,π)|, which is necessary for the
generation of entanglement between polaritons, is independent
of the cavity and the mirror parameters. It is determined solely
by the parameters of the squeezed vacuum field in which the
mirror oscillates. The reason for this is the broadband nature of
the squeezed vacuum; we have assumed here that all modes of
the vacuum are equally squeezed, independent of frequency.

It should be stressed that the squeezed vacuum creates not
only the anomalous cross-correlation between the modes but
also anomalous autocorrelations in the modes. A straightfor-
ward calculation shows that

〈δ�2〉 = 〈δ�2〉 = mG2
t

2D

[
3G2

t +4(B2−2γ 2)+12iγU
]
,

(79)

and then the degree of anomalous autocorrelations is

|η(θ,θ)| = |η(π,π)| = |m|
n̄ + 1

∣∣3G2
t + 4(B2 − 2γ 2)+12iγU

∣∣
3G2

t + 8(B2 + γ 2)
.

(80)

Hence, the creation of anomalous cross-correlations between
polaritons is accompanied by the creation of anomalous
autocorrelations in the modes. It is easily verified that
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the inequality |η(θ,π)|2 > |η(θ,θ)||η(π,π)| = |η(θ,θ)|2 is always
satisfied regardless of the value of Gt .

Normally, we would expect that the requirement for anoma-
lous cross-correlations to satisfy the inequality |η(θ,π)|2 >

|η(θ,θ)||η(π,π)| is sufficient for entanglement between the
modes. This was suggested by inequalities (51) and (72),
which were sufficient conditions for entanglement between
one of the polaritons and the mechanical mode. However,
substituting Eqs. (76), (78), and (80) into Eq. (41), we find
that the Cauchy-Schwartz parameter is of the form

χ(θ,π) =
[

1 +
(1 − |ϒ |2)

(
1 − |m|2

(n̄+1)2

)
1 + |ϒ |2 + |m|2

(n̄+1)2

]2

, (81)

where

|ϒ |2 = 1 − 24
(
G2

t + 2B2
)
(B2 + γ 2)[

3G2
t + 8(B2 + γ 2)

]2 . (82)

Since |m|2 = n̄(n̄ + 1) < (n̄ + 1)2 and |ϒ |2 � 1, the Cauchy-
Schwartz inequality cannot be violated. We therefore con-
clude that the presence of a strong first-order coherence
between the polariton modes prevents the modes from being
entangled.

We may summarize that the parametric interaction between
the polaritons and the mechanical mode rules out the creation
of entanglement between the polaritons. The effect of these
simultaneous parametric interactions is to create first-order
coherence between the polaritons.

Consider now a different scenario. Suppose that one of the
polaritons is coupled to the mirror by a parametric interaction,
but the other one is coupled by a linear-mixing interaction. We
demonstrate that this kind of coupling can occur in our system
and, it turns out, is sufficient to create entanglement between
two modes that are not directly coupled to each other. For
example, if, instead of the two polaritons, we consider their
linear superpositions,

δA1 = 1√
2

(δ� − δ�), δA2 = 1√
2

(δ� + δ�), (83)

we readily find that Eqs. (69) can be transformed into the
equations

δ ˙̃b
† = −γ δb̃† + i√

2
GtδA1 +

√
2γ ξ̃ †(t),

δȦ1 = −γ δA1 − iUδA2 − i√
2
Gtδb̃

† +
√

2γ Ain
1 (t), (84)

δȦ2 = −γ δA2 − iUδA1 +
√

2γ Ain
2 (t).

It follows that in this case not δb† but δA1 plays the role of
the intermediate mode, the mechanical mode δb† is coupled to
δA1 by a parametric amplification process, and mode δA2 is
coupled to δA1 by a linear-mixing process. There is no direct
coupling between mode δb† and mode δA2. Nevertheless, we
demonstrate that modes δb† and δA2 can be entangled. In order
to illustrate this idea, we proceed to determine the anomalous

cross-correlation function 〈δA2δb〉 from equations of motion
(84). With the help of Eqs. (21) and (22), we solve Eqs. (84)
for the steady-state and find the following nonzero correlation
functions:

〈δb†δb〉 = n̄ + (n̄ + 1)
[
3G2

t + 8(B2 + γ 2)
]
G2

t

D
,

〈δA1δb〉 = −2iγ (n̄ + 1)
[
3G2

t + 8(B2 + γ 2)
]
Gt

D
,

〈δA2δb〉 = −
√

2(n̄ + 1)
[
3G2

t + 4(B2 + γ 2)
]
UGt

D
,

(85)

〈δA†
1δA1〉 = (n̄ + 1)

(
B2 + 4γ 2 − 1

2G2
t

)
G2

t

D
,

〈δA†
1δA2〉 = −6i(n̄ + 1)γUG2

t

D
,

〈δA†
2δA2〉 = 6(n̄ + 1)U 2G2

t

D
.

It is easy to see that the anomalous cross-correlation func-
tion 〈δA2δb〉 is nonzero, indicating that the combination
of parametric and linear-mixing interactions among three
modes may result in entanglement between two modes
that are not directly coupled to each other. Because the
anomalous autocorrelations and the first-order coherence are 0,
|η(A2,A2)|2 = |η(b,b)|2 = |γ(A2,b)|2 = 0, the sufficient condition
for entanglement between mode δb and mode δA2 is that
|η(A2,b)|2 satisfies the inequality |η(A2,b)|2 > 1.

Figure 5 shows the logarithmic negativity EN for fixed
Gt = γ and gradually increasing n̄ and U . As in the case of
two coupled modes, the logarithmic negativity is determined
from the steady-state correlation matrix, which, in the present
case, is a 6 × 6 matrix derived by solving an equation that
is formally identical to Eq. (55), but with the drift matrix A
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FIG. 5. Variation of the logarithmic negativity EN with n̄ and
U , illustrating the creation of entanglement between the indirectly
coupled modes δA2 and δb for Gt = γ .
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given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γ 0 0 − Gt√
2

0 0

0 −γ − Gt√
2

0 0 0

0 − Gt√
2

−γ 0 0 U

− Gt√
2

0 0 −γ −U 0

0 0 0 U −γ 0

0 0 −U 0 0 −γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(86)

and with the diffusion matrix D = diag[(2n̄ + 1)γ,(2n̄ +
1)γ,γ,γ,γ,γ ].

It can be seen from Fig. 5 that entanglement occurs for n̄ <

0.5 where it is present for all U . The degree of entanglement
increases with U , the strength of the linear mixed process.
Note that the entanglement is reduced when U is comparable
to Gt and increases as U departs from Gt .

We conclude this section by stating that two independent
modes may become entangled by a suitable coupling to an
intermediate mode. The entanglement occurs when one of
the modes couples to the intermediate mode by a parametric
interaction process, whereas the other couples by a linear-
mixing interaction.

VI. EXPERIMENTAL CONSIDERATIONS

Finally, we examine the parameter ranges in which the
predicted coherence and entanglement effects were observed
in the current experiments. As a check on the validity of the
limitation to only the k = 1 exciton, we evaluate formula
(13) for fk using experimentally realistic parameters of an
optical lattice composed of 85Rb atoms [27,28]. By taking
N = 103 sites, the cavity mode volume V = 10−10 m3, the
atomic transition dipole moment μ = 5 × 10−29 C m of
the hyperfine transition 5 2S1/2–5 2P3/2 in an 85Rb atom, and the
cavity frequency ωc on resonance with the first k = 1 exciton
mode, which is comparable to the atomic transition frequency
of ωa = 2.5 × 1015 Hz, we obtain f1/h̄ = 1.6 × 108 Hz for
the coupling strength of the first k = 1 exciton and f3/h̄ =
5.3 × 107 Hz for that of the third k = 3 exciton, which is 1
order smaller than the k = 1 coupling strength. This simple
estimation of the coupling strength shows that fk decays very
rapidly with k. Thus, our theory can describe the single-exciton
system quite accurately.

The stability condition for the three-mode coupling case

requires U > Gt/
√

2, where U =
√


̃2 + G2
q and Gt ≈ G0.

Since 
̃ ∼ |f1|/h̄ = 1.6 × 108 Hz and the typical coupling
strengths G0/2π ≈ 106 Hz, the inequality U > Gt/

√
2 can

be satisfied with realistic experimental parameters.

VII. SUMMARY

In summary, we have presented an analytical study of
coherence and correlation effects produced in a single-mode
nanomechanical cavity containing an optical lattice of reg-
ularly trapped atoms. The system considered is equivalent
to a three-mode system composed of two polariton modes
and one mechanical mode. We have shown that the system
is capable of generating a wide class of coherence and
correlation effects, ranging from first-order coherence, to
anomalous autocorrelations, to anomalous cross-correlations
between the modes. We are particularly interested in the
relationship between the generation of entanglement and the
first-order coherence in the system. The results show that
the generation of first-order coherence between two modes
in the system is equally effective in destroying entanglement
between these modes. There is no entanglement between inde-
pendent polariton modes when both modes are simultaneously
coupled to the mechanical mode by a parametric (squeezing-
type) interaction. There is no entanglement between the
polaritons even if an oscillating mirror is damped by a squeezed
vacuum field. The intermediate mechanical mode effectively
creates first-order coherence between the modes. Finally, we
have shown that, in order to effectively entangle independent
modes in this system, one of the modes should be coupled to
the intermediate mode by a parametric interaction but the other
mode should be coupled by a linear-mixing (beamsplitter-type)
interaction.
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