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The Fisher information F gives a limit to the ultimate precision achievable in a phase estimation protocol.
It has been shown recently that the Fisher information for a linear two-mode interferometer cannot exceed
the number of particles if the input state is separable. As a direct consequence, with such input states the
shot-noise limit is the ultimate limit of precision. In this work, we go a step further by deducing bounds on F

for several multiparticle entanglement classes. These bounds imply that genuine multiparticle entanglement is
needed for reaching the highest sensitivities in quantum interferometry. We further compute similar bounds on the
average Fisher information F for collective spin operators, where the average is performed over all possible spin
directions. We show that these criteria detect different sets of states and illustrate their strengths by considering
several examples, also using experimental data. In particular, the criterion based on F is able to detect certain
bound entangled states.
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I. INTRODUCTION

Entanglement is a distinguishing feature of quantum theory
and will play a key role in the development of future
technologies. Indeed, by using many-particle entangled states
it is possible to perform several tasks better than feasible
with any classical means [1]. A valuable example is the
estimation of a phase shift θ as done in quantum interferometry
[2–4]. In this case, by using a probe state of N classically
correlated particles it is possible to reach, at maximum, a
phase uncertainty which scales as �θ ∼ 1/

√
N . This bound,

generally indicated as the shot noise limit, is not fundamental
and can be surpassed by preparing the N particles in a proper
entangled state. It is therefore important to have a precise
classification of entangled states and study their usefulness for
specific applications.

While the structure of the set of entangled bipartite
quantum states is understood quite well, less is known about
the classification and quantification of the entanglement of
multipartite quantum states [5–8]. Commonly applied criteria
to distinguish between different entanglement classes include
entanglement witnesses [9–12], criteria inspired by or derived
from Bell inequalities [13–21], and spin-squeezing inequalities
[22–25]. Recently, other approaches have led to criteria which
can be evaluated directly from elements of the density matrix
[26,27]. Further recent work on the detection of multiparticle
entanglement can be found in Refs. [28–31] and in the recent
review Ref. [8].

In this paper, we introduce criteria which can distinguish
between different multipartite entanglement classes and which
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are deeply connected to phase estimation. This extends previ-
ous works [22,32–36] on the interplay between entanglement
and phase sensitivity. Our criteria are based on the quantum
Fisher information (QFI) for linear two-mode transformations
and can be easily computed for any density matrix ρ of an
arbitrary number of particles. The first set of criteria is obtained
by optimizing the QFI for different multipartite entanglement
classes. We discuss bounds on the QFI that can be beaten
only by increasing the number of entangled particles in the
probe state. Our classification distinguishes quantum phase
estimation in the sense that genuine multiparticle entanglement
is necessary to accomplish this quantum task in the best
possible way. The second set of criteria is based on the QFI
for linear collective spin operators, averaged over all spin
directions in the Bloch sphere. The sets of states detected by
the two criteria are different and not contained in each other.
We consider several examples in order to assess the strength
of the criteria. In particular, using experimental data we apply
our criteria for several states of N = 4 photons.

The article is organized as follows. We start by introducing
the basic concepts related to general phase estimation proto-
cols, linear two-mode interferometers, and the classification
of multiparticle entanglement in Sec. II. In Sec. III we derive
and compare the entanglement criteria based on the QFI and
on the average QFI. In Sec. IV, we apply the criteria to several
families of entangled states, including experimental data. We
conclude in Sec. V.

II. BASIC CONCEPTS

A. Phase estimation and entanglement

In a general phase estimation scenario, a probe state ρ

is transformed into ρ(θ ) = e−iθĤ ρ e+iθĤ , depending on the
(unknown) phase shift θ and the operator Ĥ . The phase shift
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is inferred as the value assumed by an estimator, θest({μi}m),
depending on the results {μi}m = {μ1, . . . ,μm} of m inde-
pendent repeated measurements of a positive operator valued
measurement (POVM) with elements {Êμ}μ. We indicate
with 〈θest〉 and (�θest)2 = 〈θ2

est〉 − 〈θest〉2 the mean value and
variance of the estimator, respectively, calculated over all
possible sequences {μi}m. If the estimator is unbiased, that
is, its mean value coincides with the true value of the phase
shift, 〈θest〉 = θ , then its minimal standard deviation is limited
by the bounds [37,38]

�θest � 1√
mF

� 1√
mFQ

. (1)

The quantity F in the first inequality is the Fisher information,
defined as

F =
∑

μ

1

P (μ|θ )
[∂θP (μ|θ )]2, (2)

where P (μ|θ ) = Tr[ρ(θ )Êμ] are conditional probabilities.
The maximum likelihood estimator is an example of an
estimator which is unbiased and saturates �θest = 1/

√
mF

in the central limit, for a sufficiently large m [39]. According
to Eq. (1), F thus quantifies the asymptotic usefulness of a
quantum state for phase estimation, given the operator Ĥ and
the chosen final measurement. Maximizing F over all possible
POVMs leads to the so-called QFI FQ, and thus to the second
inequality in Eq. (1). For a mixed input state ρ = ∑

l λl|l〉〈l|
(with λl > 0,

∑
l λl = 1) the QFI is given by [40]

FQ[ρ; Ĥ ] = 2
∑
l,l′

(λl − λl′)2

λl + λl′
|〈l|Ĥ |l′〉|2, (3)

where the sum runs over indices such that λl + λl′ > 0.
For pure input states this reduces to FQ = 4(�Ĥ )2, where
(�Ĥ )2 = 〈Ĥ 2〉 − 〈Ĥ 〉2 is the variance of the generator of the
phase shift, Ĥ [41].

In this paper we focus on linear two-mode interferometers
and input states of N particles. In this case,

Ĥlin = 1

2

N∑
l=1

σ̂
(l)
�nl

, (4)

where σ̂
(l)
�nl

= �nl · �̂σ (l) = αlσ̂
(l)
x + βlσ̂

(l)
y + γlσ̂

(l)
z is an operator

decomposed as the sum of Pauli matrices acting on the particle
l, and �nl ≡ (αl,βl,γl) is a vector on the Bloch sphere (α2

l +
β2

l + γ 2
l = 1). If all local directions are the same, �nl = �n, then

Ĥlin ≡ Ĵ�n = �n · �̂J , where �̂J ≡ 1
2

∑N
l=1

�̂σ (l) is a collective spin
operator. The operators Ĵx , Ĵy , and Ĵz fulfill the commutation
relations of angular momentum operators. As an example for
a linear, collective, two-mode interferometer, we mention the
Mach-Zehnder interferometer, whose generator is Ĥlin = Ĵy

[42].
For linear phase shift generators Ĥlin as in Eq. (4), the

QFI provides a direct connection between entanglement and
phase uncertainty. We remind the reader that a state of N

particles is entangled if it cannot be written as a separable
state ρsep = ∑

α pα

⊗N
l=1 |ψ (l)

α 〉〈ψ (l)
α |, where {pα} forms a

probability distribution [43]. It has been recently shown that
the QFI for separable states and linear generators is [33,34]

FQ[ρsep; Ĥlin] � N. (5)

Taking into account Eqs. (1) and (5) and the definition of QFI,
FQ � F , we conclude that the phase uncertainty attainable
with separable states is �θest � �θSN, where

�θSN = 1√
mN

. (6)

This bound holds for any linear interferometer and any final
measurement and is generally called the shot-noise limit. It
is not fundamental and can be surpassed by using proper
entangled states. For general probe states of N particles, we
have [33,34]

FQ[ρ; Ĥlin] � N2, (7)

where the equality can only be saturated by certain maximally
entangles states. From the maximum value of the QFI we
obtain the optimal bound for the phase uncertainty, called the
Heisenberg limit,

�θHL = 1√
m N

. (8)

We thus expect that, in order to increase the QFI and the
sensitivity of a linear interferometer, it is necessary to increase
the number of entangled particles in the probe state. The
purpose of this paper is to quantitatively investigate this effect
and to derive bounds on the QFI for multiparticle entanglement
classes.

B. Multiparticle entanglement

We consider the following classification of multiparticle
entanglement from Ref. [16,44,45] (see also [22]; alternative
classifications can be found in Refs. [46,47]). A pure state of
N particles is k-producible if it can be written as |ψk-prod〉 =
⊗M

l=1|ψl〉, where |ψl〉 is a state of Nl � k particles (such
that

∑M
l=1 Nl = N ). A state is k-particle entangled if it is k-

producible but not (k − 1)-producible. Therefore, a k-particle
entangled state can be written as a product |ψk-ent〉 = ⊗M

l=1|ψl〉
which contains at least one state |ψl〉 of Nl = k particles which
does not factorize. A mixed state is k-producible if it can be
written as a mixture of (kl � k)-producible pure states, that is,
ρk-prod = ∑

l pl|ψk-prod〉〈ψk-prod|, where kl � k for all l. Again,
it is k-particle entangled if it is k-producible but not (k − 1)
producible. We denote the set of k-producible states by Sk .
We later use that Sk is convex for any k. Note that, formally, a
fully separable state is 1-producible and that a decomposition
of a k < N -particle entangled state of N particles may contain
states where different sets of particles are entangled.

Let us illustrate the classification by considering states
of N = 3 particles. A state |ψ1-prod〉 = |φ〉1 ⊗ |ϕ〉2 ⊗ |χ〉3 is
fully separable. A state |ψ2-ent〉 = |φ〉12 ⊗ |χ〉3 which cannot
be written as |ψ1-prod〉 (i.e., |φ〉12 does not factorize, |φ〉12 
=
|φ〉1 ⊗ |ϕ〉2) is two-particle entangled. A state |ψ3-ent〉 which
does not factorize is three-particle entangled.
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III. CRITERIA FOR MULTIPARTICLE ENTANGLEMENT
FROM THE QUANTUM FISHER INFORMATION

Now we are in a position to derive the desired bounds. We
start by computing the maximum of the QFI FQ[ρk-prod; Ĥlin]
for k-producible states and linear Hamiltonians Ĥlin, including
the case of collective spin operators Ĥlin = Ĵ�n. Then we derive
similar bounds for the QFI for a generator Ĵ�n, now averaged
over all directions �n. At the end of this section, we investigate
the question of whether or not the criteria are different by
comparing the sets of states they detect.

A. Entanglement criterion derived from FQ

Observation 1 (Fk+1
Q criterion). For k-producible states and

an arbitrary linear two-mode interferometer Ĥlin defined in
Eq. (4), the QFI is bounded by

FQ[ρk-prod; Ĥlin] � sk2 + r2, (9)

where s = �N
k
� is the largest integer smaller than or equal

to N
k

and r = N − sk. Hence, a violation of the bound (9)
proves (k + 1)-particle entanglement. The bounds are uniquely
saturated by a product of s GHZ states of k particles and
another GHZ states of r particles, where [48]

|GHZν〉 = 1√
2

(|0〉⊗ν + |1〉⊗ν), (10)

known as the Greenberger-Horne-Zeilinger (GHZ) [49] or
NOON [50] state of ν particles.

Proof. The basic ingredients of the derivations are the
following. (i) The sets Sk of k-producible states are convex.
(ii) The Fisher information is convex in the states; that is,
for any fixed phase transformation and any fixed output mea-
surement the relation F [pρ1 + (1 − p)ρ2] � pF [ρ1] + (1 −
p)F [ρ2] holds for p ∈ [0,1] [51]. Since the QFI is equal to
the Fisher information for a particular measurement, this holds
also for FQ. (iii) It is easy to see that for a product state |φA〉 ⊗
|χ〉B , (�Ĥ

(AB)
lin )2

|φ〉A⊗|χ〉B = (�Ĥ
(A)
lin )2

|φ〉A + (�Ĥ
(B)
lin )2

|χ〉B . Here

Ĥ
(AB)
lin acts on all the particles while Ĥ

(A)
lin acts on the particles

of |ψ〉A only and in analogy for Ĥ
(B)
lin . (iv) For a state with

N particles, 4(�Ĥlin)2 � N2 holds [33]. The inequality is
saturated uniquely by the GHZ state.

It follows from (i) and (ii) that the maximum of FQ for
a fixed Hamiltonian Ĥlin and k-producible mixed states is
reached on pure k-producible states |ψk-prod〉 [52]. Therefore,
our task is to maximize FQ[|ψk-prod〉; Ĥlin] = 4(�Ĥlin)2

|ψk-prod〉
with respect to the probe state |ψk-prod〉 and linear operator
Ĥlin. Since the local directions of Ĥlin [Eq. (4)] can be
changed by local unitary operations [36], which do not change
the entanglement properties of the state, we can, without
loss of generality, fix Ĥlin = Ĵz. Due to (iii) and (iv), we
obtain max|ψk-prod〉(�Ĵz)2

|ψk-prod〉 = max|ψk-prod〉
∑M

l=1(�Ĵ (l)
z )2

|ψl〉 =
max{Nl}

1
4

∑M
l=1 N2

l . Since (N1 + 1)2 + (N2 − 1)2 � N2
1 + N2

2
if N1 � N2, the QFI is increased by making the Nl as large
as possible. Hence, the maximum is reached by the product of
s = �N

k
� GHZ state of Nl = k particles and one GHZ state of

FIG. 1. (Color online) F k+1
Q criterion. The solid line is the bound

FQ[ρ; Ĥlin] = sk2 + r2 which separates k-producible states (below
the line) from (k + 1)-particle entangled states (above the line). For
comparison, the function FQ[ρ; Ĥlin] = Nk is plotted (dotted line).
Here N = 100.

r = N − sk particles. Therefore, for k-producible states, the
QFI is bounded by Eq. (9). �

Given the operator Ĥlin and the probe state ρ, the cri-
terion (9) has a clear operational meaning. If the bound is
surpassed, then the probe state contains useful (k + 1)-particle
entanglement: When used as input state of the interferometer
defined by the transformation e−iθĤlin , ρ enables a phase
sensitivity better than any k-producible state. A plot of the
bound Eq. (9) is presented in Fig. 1 as a function of k and
for N = 100. Since the bound increases monotonically with
k, the maximum achievable phase sensitivity increases with
the number of entangled particles. For k = 1 we recover the
bound (5) for separable states. For k = N − 1, the bound is
FQ[ρ(N−1)−prod; Ĥlin] � (N − 1)2 + 1 and a QFI larger than
this value signals that the state is fully N -particle entangled.
The maximum value of the bound is obtained for k = N (thus,
s = 1 and r = 0), when FQ[ρN−ent; Ĥlin] = N2, saturating the
equality sign in Eq. (7).

Given the probe state ρ, the Fk+1
Q criterion can be used

to detect (k + 1)-particle entanglement. In order to maximize
FQ[ρ; Ĥlin], it is advantageous to optimize the local directions
�nl in Ĥlin [36] [see Eq. (4)]. While the general problem needs
to be solved numerically, a simple analytic solution can be
obtained if we restrict ourselves to collective spin operators
Ĥlin = Ĵ�n. In this case we have [36]

FQ[ρ; Ĵ�n] = �nT �C �n. (11)

The matrix �C is real and symmetric and has the entries

[�C]ij = 2
∑
l,l′

(λl − λl′)2

λl + λl′
R[〈l|Ĵi |l′〉〈l′|Ĵj |l〉], (12)

where the states |l〉 and the variables λl are defined by the
eigenvalue decomposition of the input state, ρ = ∑

l λl|l〉〈l|,
and R(z) is the real part of z. The sum runs over indices where
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λl + λl′ > 0. Maximizing Eq. (11) with respect to �n leads to

F max
Q [ρ] ≡ max

�n
FQ[ρ; Ĵ�n] = λmax(�C), (13)

where λmax(�C) is the maximal eigenvalue of �C . In the case
of collective operations, the criteria Eq. (9) can be substituted
by

λmax(�C) � sk2 + r2. (14)

For any pure symmetric input state this is the optimal
value of F also if arbitrary local unitary operations can be
used [36]. Note that while this optimization increases FQ, it
might happen that for a fixed output measurement the Fisher
information F is actually reduced by this optimization because
the measurement would have to be adapted as well [40].

Finally, note that the result Eq. (9) can be obtained directly
by using the Wigner-Yanase information I [53]. The bound
(9) has been derived previously for I in Ref. [44] and directly
applies to the QFI since I is convex in the states and agrees
with the Fisher information on pure states, F [|ψ〉; Ĥ ] =
4I (|ψ〉,Ĥ ). See Ref. [54] for a more general discussion of
convex quantities which are equal to the Fisher information
on the pure states. Note also that a bound similar to Eq. (9)
has been discussed for the class of so-called spin-squeezed
states [22].

B. Entanglement criterion derived from F Q

Let us now consider the estimation of a fixed (unknown)
phase shift θ with an interferometer that, in each run of the
experiment, is given by exp[−iĴ�νθ ] with a random direction
�ν of probability P (�ν). For m � 1 independent repetitions
of the phase measurement, the phase estimation uncertainty
approaches

�θest � 1√
mFP [ρ]

, (15)

where

FP [ρ] =
∫

|�ν|2=1
d3�ν P (�ν) F [ρ; Ĵ�ν ; {Êμ}], (16)

and P (�ν) is normalized to one. The direction-averaged Fisher
information [Eq. (16)] is bounded by

FP
Q [ρ] =

∫
|�ν|2=1

d3�ν P (�ν) FQ[ρ; Ĵ�ν]. (17)

The latter quantity can be used to introduce an infinite set of
multiparticle entanglement criteria, depending on the function
P (�ν). If P (�ν) = δ�ν,�n, then we recover the standard situation
of a fixed collective spin direction and the criteria Eq. (13).
We here consider the opposite case, P (�ν) = 1/4π , where all
directions �ν on the Bloch sphere appear with equal probability.
We indicate the corresponding average of the QFI as FQ[ρ]. It
can be written as FQ[ρ] = 1

4π

∑
ij [�C]ij

∫
|�ν|2=1 d3�ν νiνj [see

Eq. (11)] and evaluating the integrals leads to

FQ[ρ] = Tr[�C]

3
= FQ[ρ; Ĵx] + FQ[ρ; Ĵy] + FQ[ρ; Ĵz]

3
.

(18)

The sum of three Fisher informations for the phase generators
Ĵx , Ĵy , and Ĵz on the right-hand side appeared already in
Refs. [55,56] as a criterion for entanglement. We would like to
determine bounds on FQ for k-producible states in analogy to
the bounds that we found for FQ. We directly state the results
and derive them afterwards.

Observation 2 (F
k+1
Q criterion). For k-producible states, the

average QFI defined in Eq. (18) is bounded by

FQ[ρk-prod] � 1
3 [s(k2 + 2k − δk,1) + r2 + 2r − δr,1], (19)

where s = �N
k
�, r = N − sk, and δ is the Kronecker δ.

Hence, a violation of the bound (19) proves (k + 1)-particle
entanglement. For separable states, corresponding to k = 1,
the bound becomes

FQ[ρsep] � 2
3N. (20)

The maximal value for any quantum state is given by

FQ � 1
3 [N2 + 2N ]. (21)

Proof. Let us first prove Eq. (21). Since FQ can be
written as the sum of three QFIs, it is also convex in
the states. Therefore, the maximum is again reached for

pure states. Hence, FQ � 4
3 max|ψ〉[〈 �̂J 2〉|ψ〉 − |〈 �̂J 〉|ψ〉|2] �

4
3j (j + 1), where 〈 �̂J 2〉 ≡ 〈 �̂J · �̂J 〉 = 〈Ĵ 2

x 〉 + 〈Ĵ 2
y 〉 + 〈Ĵ 2

z 〉 and

|〈 �̂J 〉|2 = 〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2. This leads to Eq. (21) because

|〈 �̂J 〉|ψ〉|2 � 0 and

〈 �̂J 2〉|ψ〉 � j (j + 1) (22)

holds in general, while equality is reached by the symmetric
states of N particles [57].

For the k-producible pure state |ψk-prod〉 = ⊗M
l=1 |ψl〉, the

average QFI is given by FQ[|ψk-prod〉] = 4
3

∑M
l=1[〈 �̂J 2

l 〉|ψl〉 −
|〈 �̂Jl〉|ψl〉|2] � 1

3

∑M
l=1[N2

l + 2Nl − 4|〈 �̂Jl〉|ψl〉|2], where �̂Jl is the
vector of collective spin operators acting on the particles
contained in state |ψl〉. The inequality is due to Eq. (22). In the
same way as it was for FQ, in order to maximize the bound it
is advantageous to increase the Nl as much as possible. This
is true even though if Nl = 1 then FQ is reduced by 1

3 since

|〈 �̂J 〉|ψl〉|2 = 1
4 in this case. For k ∈ [1,N ], we obtain the bound

(19), where s = �N
k
� and r = N − sk as above, and we obtain

Eq. (20) for k = 1. �
The bound in Eq. (19) is shown in Fig. 2 as a function of k.

Let us note that the bound for k = N − 1 is

FQ[ρ(N−1)−prod] � 1
3 [N2 + 1]. (23)

Again, the bounds for a given k are saturated by using s GHZ
states of k particles and one GHZ state of r particles. However,
as we discuss presently, these states are not uniquely saturating
the bounds, in contrast to what happens in the case of the Fk+1

Q

criterion.

C. Fk+1
Q criterion vs F

k+1
Q criterion

To start the comparison, let us first discuss states with
extremal values for the criteria. In particular, we consider
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FIG. 2. (Color online) F
k+1
Q criterion. The solid line shows the

bound in Eq. (19) [F
k+1
Q -criterion] as a function of k. For comparison,

the function N (k + 2)/3 is plotted (dotted line). Here N = 100.

the cases k = 1, where the criteria detect any kind of entan-
glement, and k = N − 1, where the criteria detect genuine
multiparticle entanglement. The states we use to illustrate
the criteria are the N -particle GHZ state from Eq. (10), the
fully separable state |1〉⊗N , and the Dicke state with N/2
excitations [57],∣∣D(N/2)

N

〉 = S(|0〉⊗N/2 ⊗ |1〉⊗N/2), (24)

known as twin-Fock state for indistinguishable particles [60].
In Table I, we list the �C matrices for these states for all
N . Since all states are symmetric under the exchange of any
two particles, we can directly read off the optimal values of
FQ and FQ from these matrices [36]. For the pure separable
state, FQ[|1〉⊗N ; Ĵ�n] = N for any direction �n in the x-y plane
because |1〉 is an eigenstate of σ̂z. Hence, this state saturates
the bound for separable states both for FQ and for FQ. As
noted before, the GHZ state maximizes both FQ and FQ. The
Dicke state |D(N/2)

N 〉 has a N2 scaling in FQ as the GHZ state
with a prefactor 1

2 ; therefore, it does not saturate the maximum
value FQ = N2. However, it saturates the maximal value of
FQ from Eq. (21). In fact, the criterion FN

Q detects |D(N/2)
N 〉

as N -particle entangled if N � 5 only, while the criterion F
N

Q

detects the state as N -particle entangled for any value of N .
Hence, FQ is not uniquely saturated by the GHZ state as FQ.
We use this fact in the proof of the following Observation
which shows that the two criteria in general detect strictly
different sets of states.

Observation 3. (a) For all pairs (k,N ) with k < N , the Fk+1
Q

criterion detects the entanglement of some states for which the

TABLE I. Comparison of the maximal values of FQ and F Q for
three different input states.

State �C F max
Q F Q

|1〉⊗N diag(N,N,0) N 2
3 N

|GHZN 〉 diag(N,N,N 2) N 2 1
3 (N 2 + 2N )

|D(N/2)
N 〉 1

2 (N 2 + 2N )diag(1,1,0) 1
2 (N 2 + 2N ) 1

3 (N 2 + 2N )

F
k+1
Q does not detect entanglement. (b) For all pairs (k,N )

with 2 < k < N , the F
k+1
Q criterion detects the entanglement

of some states for which the Fk+1
Q criterion does not detect

entanglement.
The proof can be found in the Appendix. Part (b) of

Observation 3 can be extended also to cases where k = 1 < N

and k = 2 < N , as shown in Secs. IV D and IV E below.

IV. EXAMPLES

We now turn to illustrate the strength of the described
criteria for their utilization in entanglement detection and in
quantum metrology applications. To this end, we evaluate the
criteria for different sets of states. We first consider an actual
experimental setting of different types of entangled four-qubit
states. Second, we will consider various three-qubit entangled
states including bound entangled states. We will compare
different means to detect their entanglement by computing the
amount of detected states. Finally, we construct an example
extending Observation 3 before we examine two families of
bound entangled states.

A. Experimental GHZ and Dicke states

We start by applying the above criteria to entangled
states of N = 4 photonic qubits produced experimentally by
parametric downconversion from the Refs. [61,62]. The qubits
are encoded in the polarization with |0〉 ≡ |H 〉 and |1〉 ≡ |V 〉,
where H stands for horizontal and V for vertical polarization.
In Ref. [61], a large family of entangled states of N = 4
qubits has been produced. We investigate the data of the state

1√
2
(|0011〉 + |1100〉), which can be converted to a GHZ state

[cf. Eq. (10)] by flipping the state of the last two qubits, and the
state |ψ+〉 ⊗ |ψ+〉, where |ψ+〉 = 1√

2
(|01〉 + |10〉) = |D(1)

2 〉.
Hence, this state is a product of two-particle Dicke states [57].
Note that by flipping the state of the second and of the fourth
qubit, this state can be transformed into |GHZ2〉 ⊗ |GHZ2〉.
Finally, we also use the data of Ref. [62], where the Dicke state
|D(2)

4 〉 has been produced. The states were observed with fideli-
ties FGHZ4 = 0.8303 ± 0.0080, F(D(1)

2 )⊗2 = 0.9255 ± 0.0091
[61], and F

D
(2)
4

= 0.8872 ± 0.0055 [62]. For comparison, the

data of the separable state |+〉⊗4 measured in Ref. [62] is used,
which was observed with a fidelity F|+〉⊗4 = 0.9859 ± 0.0062.
Here |+〉 = 1√

2
(|0〉 + |1〉).

The optimized Fisher information F max
Q and FQ for the

different states are calculated from the measured density
matrices. We compare the experimental results with the
ideal cases and with the bounds on k-producible states from
Observations 1 and 2 for N = 4. In order to do so, we apply
the bit flips mentioned above to the experimental data where
necessary. The results are shown in Fig. 3. For the N = 4 GHZ
and Dicke states, four-particle entanglement is proven with a
high statistical significance by FQ. In particular, for the Dicke
state, the statistical significance for the proof of four-particle
entanglement from F max

Q is much lower. This is a consequence
of the fact that the ideal Dicke states reaches the maximal
value of FQ for any N , while the deviation of F max

Q from
the maximal value increases with increasing N [cf. Table I].

022321-5



PHILIPP HYLLUS et al. PHYSICAL REVIEW A 85, 022321 (2012)

FIG. 3. (Color online) Black dots are the values of F max
Q [in panel (a)] and of F Q [in panel (b)] for states generated experimentally, calculated

from the experimental density matrices. Error bars are calculated with a parametric bootstrap method [63] (see also the supplementary material
of Ref. [62]). The red dots are ideal values. More explicitly, we have F max

Q = 11.681 ± 0.238 and 3F Q = 19.296 ± 0.256 for the |GHZ4〉
state; F max

Q = 10.291 ± 0.094 and 3F Q = 20.004 ± 0.131 for the |D(2)
4 〉 state; F max

Q = 7.495 ± 0.070 and 3F Q = 14.713 ± 0.141 for the

|GHZ2〉⊗2 state; F max
Q = 7.612 ± 0.058 and 3F Q = 15.174 ± 0.089 for the |D(1)

2 〉⊗2 state; F max
Q = 4.002 ± 0.025 and 3F Q = 7.902 ± 0.015

for the separable state |+〉⊗4. In panels (a) and (b), the vertical lines are bounds for the F k+1
Q and F

k+1
Q criteria, respectively.

The very high fidelity of the experimental product of two
N = 2 Dicke states is reflected in the fact that F max

Q and

FQ nearly reach the optimal values for the states |D(1)
2 〉⊗2

and |GHZ2〉⊗2, and entanglement is clearly proven, while the
bounds for two-particle entangled states are not violated.

As a final remark, we would like to point out that the
multiparticle entanglement of the states could be proved
with less experimental effort and a generally larger statistical
significance by witness operators [61]. However, in this case
this does not give any direct information about the usefulness
for a given task, in particular for phase estimation (see Ref. [62]
for a detailed comparison of the FQ criteria with a witness
operator for the state |D(2)

4 〉).

B. Pure states of three particles

In order to get an impression of the strength of the criteria,
we randomly choose a three-qubit state |ψ〉 and analyze
it using various criteria. First, we evaluate the criteria F 2

Q

and F
2
Q which detect entanglement. Further, we compare

several criteria detecting multiparticle entanglement: (i) the
entanglement witness W = 1

21 − |GHZ〉〈GHZ|, which has
a positive expectation value for all two-particle entangled
states [9], (ii) the density matrix element (DME) condition
which states that

|ρ18| � √
ρ22ρ77 + √

ρ33ρ66 + √
ρ44ρ55 (25)

for all two-entangled states (ρij denote coefficients of a given
density matrix ρ = |ψ〉〈ψ |) [26], and (iii) the multiparticle

criteria F 3
Q and F

3
Q.

To generate a random pure state [64], we take a vector
of a random unitary matrix distributed according to the Haar
measure on U(8):

|ψ〉 = (cos α7, cos α6 sin α7e
iφ7 , cos α5 sin α6 sin α7e

iφ6 ,

. . . , sin α1 · · · sin α7e
iφ1 ), (26)

where αi ∈ [0,π/2] and φk = [0,2π ). The parame-
ters are drawn with the probability densities P (αi) =
i sin(2αi)(sin αi)2i−2 and P (φi) = 1/2π . The calculations
were performed for a set of 106 states. The results are presented
in Table II. The averaged criteria seem to detect more states
in general. It is surprising that the witness condition detects

nearly as many states as the criteria F 3
Q and F

3
Q. This may be

an artifact of the small N we chose.

TABLE II. Percentage of detected two-particle and three-particle
entangled pure three-qubit states. See text for details. DME′ denotes
the whole family of DME conditions, which is obtained by permuting
the qubits of the state.

Criterion Detected two-particle entangled (%)

F 2
Q 94.32

F
2
Q 98.38

Detected three-particle entangled (%)
W 18.99
DME 80.63
DME′ 82.61
F 3

Q 22.93

F
3
Q 27.99
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TABLE III. Percentage of GHZ-diagonal three-particle entangled
states which are detected by the entanglement witness, the criterion

F 3
Q and the criterion F

3
Q. In the middle column, only states violating

the DME condition (25) have been generated, while in the last column,
also states violating any of the other DME conditions obtained by
permutations of the particles have been generated.

Criterion Detected DME (%) Detected DME′ (%)

W 50.56 12.27

F 3
Q 19.45 4.77

F
3
Q 13.14 3.25

C. GHZ-diagonal states

The DME criterion (25) and the criteria obtained thereof by
permutations of the qubits completely characterize the GHZ-
diagonal states of three qubits [26], which can be written as

1

N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 0 0 0 0 μ1

0 λ2 0 0 0 0 μ2 0

0 0 λ3 0 0 μ3 0 0

0 0 0 λ4 μ4 0 0 0

0 0 0 μ4 λ5 0 0 0

0 0 μ3 0 0 λ6 0 0

0 μ2 0 0 0 0 λ7 0

μ1 0 0 0 0 0 0 λ8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

with real coefficients λi and μi , where N is a normalization
factor. If λi = λ9−i for i = 5,6,7,8, then these states are
diagonal in the GHZ basis |ψ±

l1l2
〉 = 1√

2
(|0l1l2〉 ± |1l̄1 l̄2〉),

where l1 and l2 are equal to 0 or 1, and 1̄ = 0 and 0̄ = 1. We
generated 106 random states of this form violating Eq. (25)
directly, which states |μ1| � λ2 + λ3 + λ4 in this case. The
results are shown in Table III in the middle column. Then we
generated again 106 states violating Eq. (25) or its other forms
obtained by permuting the qubits. The results are shown in
the right column of Table III. The witness criterion detects
significantly more states than the criteria based on the Fisher
information. Contrary to the case of pure states, the F 3

Q

criterion detects more states than F
3
Q in this case. Note that

the percentage of detected states reduces significantly for all
criteria in the DME′ case. The reason is that all criteria work
best for the symmetric GHZ state 1√

2
(|000〉 + |111〉), which

has the highest weight in the state if only condition (25) is
used [26].

The family of states (27) also comprises bound entangled
states if λ1 = λ8 = μ1 = 1 and λ7 = 1/λ2, λ6 = 1/λ3, λ5 =
1/λ4, and μ2 = μ3 = μ4 = 0, as long as λ2λ3 
= λ4. Then
the states have a positive partial transpose (PPT) [65] for any
bipartition of the three particles while still being entangled
[47]. It follows that the state cannot be distilled to a GHZ
state [46,66]. We generated again 106 random states of this

class and applied F 2
Q and F

2
Q, but neither criterion detected

any of these states. However, we will see presently that FQ is,
in fact, able to detect bound entanglement.

D. Extension of the observation 3 for N = 4

Observation 3(b) can be extended to pairs (k,N ), where
1 � k < N . We now construct an explicit example for the
cases N = 4 and k = 1,2. The basic idea is to use states
with the property �C = cN1 which are extremal in the sense
that they saturate the inequality max�n FQ[ρ; Ĵ�n] � FQ[ρ].
Hence, they provide the minimal F max

Q compared to FQ.
One way of constructing such states is by considering a
symmetric state |ψS〉 = ∑

μ γμ|j,μ〉 [57], and by choosing the

γμ such that 〈 �̂J 〉 = 0 and 〈Ĵ 2
x 〉 = 〈Ĵ 2

y 〉 = 〈Ĵ 2
z 〉. If γμ 
= 0 and

γμ′ 
= 0 only if |μ − μ′| > 2 then 〈Ĵx〉 = 〈Ĵy〉 = 〈Ĵi Ĵj 〉 = 0
for (i,j ) = (x,y), (i,j ) = (x,z), and (i,j ) = (y,z). For N = 4,
all the conditions above are fulfilled by the states

∣∣ψ4
S ± 〉 =

√
1

3
|2, ± 2〉 +

√
2

3
|2, ∓ 1〉, (28)

leading to �C = 81, and hence F max
Q = FQ = 8. With this

state, FQ reaches the maximal value possible for N = 4
[cf. Eq. (21)], while F max

Q saturates the bound of Eq. (9)
for k = 2. This provides the example for Observation 3(b)
for (N,k) = (4,2). If we mix |ψ4

S±〉 with the identity, then
using Eq. (A2) from the Appendix it can be shown that
for p∗ = 7

32 (1 + √
113/7) we obtain �C[ρ(p∗)] = 41. Hence,

ρ(p∗) saturates the Fk+1
Q criterion but violates the F

k+1
Q

criterion for k = 1. This provides the example for Observation
3(b) for (N,k) = (4,1).

Note that the state |ψ4
S−〉 has appeared also in other contexts

[8]. For instance, it is the most nonclassical state for total spin
j = 2 [67], and it is a maximally entangled state of four qubits
for multipartite entanglement measures based on antilinear
operators and combs [68]. Finally, symmetric states with
�C ∝ 1 have the highest sensitivity to small misalignments of
Cartesian reference frames [69]. The quantity to be optimized
in the derivations is 3FQ. For N = 4, again the state |ψ4

S−〉 is
optimal, and several other examples of symmetric states with
�C ∝ 1 for even N have been found in Ref. [69].

The bound entangled Dür and Smolin states considered
in Sec. IV E below provide further examples, for k = 1 and
any N .

E. Detecting bound entangled states

We consider two families of states where the state has a
PPT with respect to some bipartitions, but not with respect to
others. Due to the PPT bipartitions it is not possible to distill
these states to a GHZ state nonetheless [46]. Both families of
states provide examples for situations where the F

k+1
Q criterion

detects states which the Fk+1
Q does not detect for k = 1 and

for any value of N . This extends the results summarized in
Observation 3 from Sec. III C.

1. Dür states

Interestingly, the F
2
Q criterion (20) can reveal entanglement

of a bound entangled state introduced by Dür [70]:

ρ
(N)
Dür = 1

N + 1

(
|GHZϕ〉〈GHZϕ| + 1

2

N∑
l=1

(Pl + P̄l)

)
, (29)
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TABLE IV. Nonvanishing factors contributing to �C for the Dür
states [Eq. (29)]. The multiplicity is the number of occurrences.

Factor Value Multiplicity

〈GHZ0|Ĵx |1l〉 1√
8

N

〈GHZ0|Ĵx |0l〉 1√
8

N

〈GHZπ |Ĵx |1l〉 1√
8

N

〈GHZπ |Ĵx |0l〉 − 1√
8

N

〈1l |Ĵx |(N − 2)P 〉 1
2 N (N − 1)

〈0l |Ĵx |2P 〉 1
2 N (N − 1)

〈GHZ0|Ĵy |1l〉 − i√
8

N

〈GHZ0|Ĵy |0l〉 i√
8

N

〈GHZπ |Ĵy |1l〉 − i√
8

N

〈GHZπ |Ĵy |0l〉 − i√
8

N

〈1l |Ĵy |(N − 2)P 〉 − i

8 N (N − 1)
〈0l |Ĵy |2P 〉 − i

2 N (N − 1)
〈GHZπ |Ĵz|GHZ0〉 N

2 1

with |GHZϕ〉 = 1√
2
[|0〉⊗N + eiϕ |1〉⊗N ], where ϕ is an arbitrary

phase. We will consider ϕ = 0 in the following. Further, Pl is
the projector on the state |0〉⊗l−1 ⊗ |1〉 ⊗ |0〉⊗N−l ≡ |1l〉 and
P̄l is obtained from Pl by exchanging 0 ↔ 1.

We can directly state the eigenstates and eigenvalues. The
state |GHZ0〉 is an eigenstate with eigenvalue 1

N+1 and the
states |1l〉 and |0l〉 are eigenstates with eigenvalue 1

2(N+1) .
The kernel is spanned by the state |GHZπ 〉 and by all
states of the form |nP〉 ≡ P(|0〉⊗n ⊗ |1〉⊗N−n), where P is
a permutation of the qubits and n = 2,3, . . . ,N − 2. Now
we can compute the elements of the correlation matrix �C

using Eq. (12). The nonvanishing factors 〈l|Ĵi |l′〉 are given in
Table IV. We obtain

�C = Ndiag

(
3N − 1

3N + 3
,
3N − 1

3N + 3
,

N

N + 1

)
. (30)

The matrix �C is diagonal because the factors 〈l|Ĵx,z|l′〉 are
real while the factors 〈l|Ĵy |l′〉 are imaginary and since 〈l|Ĵx |l′〉
vanishes for the eigenstates where 〈l|Ĵz|l′〉 
= 0 and vice versa.
We observe that F max

Q < N for all N while

FQ = 9N − 2

9N + 9
N >

2

3
N (31)

for all N .
Hence, the F 2

Q criterion does not detect the entanglement
in any of these cases [cf. Eq. (5)]. Therefore, these states
represent an example of Observation 3(b) for k = 1 and any
N . In conclusion, the states are not useful for sub-shot-noise
interferometry for any direction �n, even though they are more
useful than separable states when averaging over all directions.

2. Generalized Smolin states

As a second example, we consider the generalized N =
2n-qubit Smolin state [71]

ρ
(N)
Smolin = 1

2N

(
1 + (−1)n

3∑
i=1

σ⊗N
i

)
, (32)

TABLE V. Nonvanishing factors contributing to �C for the Smolin
states [Eq. (32)]. The multiplicity is the number of occurrences.

Factor Value Multiplicity

〈GHZi1,...,iN
0 |Ĵz|GHZi1,...,iN

π 〉 (N−2N1)
2

( N
N1

)
〈GHZi1,...,ir ,...,iN

0 |Ĵx |GHZi1,...,īr ,...,iN
0 〉 1

2 N2N−2

〈GHZi1,...,ir ,...,iN
0 |Ĵy |GHZi1,...,īr ,...,iN

π 〉 (−1)īr i

2 N2N−2

which can be written as a mixture of 2n-qubit GHZ-type states,

ρ
(N)
Smolin = 1

2N−2

∑
∑

j ij even/odd

∣∣GHZi1,...,iN
0

〉〈
GHZi1,...,iN

0

∣∣, (33)

where |GHZi1,...,iN
ϕ 〉 = 1√

2
[|i1,i2,...,iN 〉 + eiϕ|ī1,ī2,...,īN 〉. The

index ij can take the values 0 and 1, and if ij = 0 then īj = 1
and vice versa. For even n, then sum

∑N
j=1 ij ≡ N1 can take

even values {0,2, . . . ,n}, while if n is odd, then the sum can
take odd values {1,3, . . . ,n}. The kernel of ρN

Smolin is spanned
by the states |GHZi1,...,iN

π 〉 for any set {ij } such that N1 =
0,1, . . . ,n, and the states |GHZi1...iN

0 〉 with N1 = 1,3, . . . ,n −
1 if n is even and N1 = 0,2, . . . ,n − 1 if n is odd.

Now we can compute the elements of the correlation matrix
�C using Eq. (12). The nonvanishing factors 〈l|Ĵi |l′〉 are given
in Table V. We obtain

�C = N · 1 (34)

for any even N . The matrix �C is diagonal for the same reasons
as in the previous case. We observe that F max

Q = N for all N

while

FQ = N > 2
3N (35)

for all N . Therefore, these states represent an example of
Observation 3(b) for k = 1 and any even N .

Hence, similarly as previously, the F 2
Q criterion does

not detect the entanglement in any of these cases [cf.
Eq. (5)], so the states are also not useful for sub-shot-noise
interferometry for any direction �n, even though they are
more useful than separable states when averaging over all
directions.

V. CONCLUSIONS AND OUTLOOK

We have introduced two criteria based on the quantum
Fisher information (QFI) for the detection of entangled
states of different multiparticle entanglement classes, and
consequently of their usefullness for sub-shot-noise phase
estimation. Our first criterion is obtained from FQ[ρ,Ĥlin],
for general linear operators of N qubits. Our second criterion
is related to QFI for collective spin operators, averaged over
all directions on the Bloch sphere. Both sets of criteria can
be easily evaluated for a given state ρ of an arbitrary number
of particles, even if the state is mixed. We considered several
examples, showing in particular that the average QFI can be
used to detect bound entangled states. It remains an interesting
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open question whether or not there exist bound entangled states
which are detected by the QFI, since this would imply that such
states could be used for sub-shot-noise interferometry.

Note added in proof. Independently from our work, an
article on the relationship between multiparticle entanglement
and the Fisher information has appeared [72].
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APPENDIX: PROOF OF OBSERVATION 3

We consider states of the form

ρ(p) = p|ψ〉〈ψ | + (1 − p)
1

2N
, (A1)

mixtures of a pure state and the totally mixed state. It can be
shown directly from Eq. (12) that

�C[ρ(p)] = γp,N�C[|ψ〉], γp,N = p22N−1

p(2N−1 − 1) + 1
(A2)

holds. The criteria (9) and (19) can be rewritten as γp,N � αN,k

and γp,N � ᾱN,k , respectively, where

αN,k = sk2 + r2

FQ[|ψ〉] (A3)

and

ᾱN,k = s(k2 + 2k − δk,1) + r2 − 2r − δr,1

4Tr(�C[|ψ〉] . (A4)

In order to violate the criteria,

p > x · 1 − 21−N

2

[
1 +

√
1 + 1

x

23−N

(1 − 21−N )2

]

has to hold, where x = αN,k or x = ᾱN,k . The right-hand side
is strictly monotonic increasing with x. If, for instance, αN,k <

ᾱN,k , then the FN
Q criterion detects the states as multiparticle

entangled already for a smaller value of p than the F
N

Q

criterion. Therefore, we can prove the claim by comparing the
α coefficients for different states |ψ〉. However, the minimal
x has to be such that at least one criterion detects the state for
p � 1.

For |ψ〉 we employ the GHZ states from Eq. (10) and the
Dicke states from Eq. (24). The results summarized in Table I
ensure the following: (i) There will always be a p ∈ (0,1] such

that Fk+1
Q and F

k+1
Q detect ρ(p) when |ψ〉 = |GHZN 〉, and

(ii) there will always be a p ∈ (0,1] such that F
k+1
Q detects

ρ(p) when |ψ〉 = |D(N/2)
N 〉.

Let us start with the GHZ states. We check whether αN,k <

ᾱN,k is fulfilled. This condition is equivalent to

2sk(N − k) − Ns δk,1 + 2r(N − r) − Nδr,1 > 0. (A5)

Checking explicitly the cases (i) 1 < r < k, (ii) 1 = r < k,
(iii) r = 0,k > 1, and (iv) k = 1 it can be shown that Eq. (A5)
is always fulfilled. Hence, for the family of states ρ(p) from
Eq. (A1) with |ψ〉 = |GHZN 〉, for every N and 1 � k < N the
Fk+1

Q criterion detects always states in addition to the states

that the F
k+1
Q criterion detects. This proves part (a) of

Observation 3.
Let us now consider the Dicke states and check whether

αN,k > ᾱN,k is always fulfilled in this case. The condition is
equivalent to

(sk2 + nδk,1 − 2nk) + (r2 + δr,1 − 2r) > 0. (A6)

Again checking all the cases, it can be seen that this is fulfilled
for k > 2 and any r < k. Hence, in these cases the criterion

F
k+1
Q detects states in addition to those that Fk+1

Q detects. In

fact, the criterion Fk+1
Q may not even detect any of the states

of this family. �
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Ĥ |l′〉〈l′|�Ĥ |l〉. An upper bound to this expression is reached
when the sum is extended to all values of l and l′. This implies
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[64] K. Życzkowski and H. Sommers, J. Phys. A: Math. Gen. 34,
7111 (2001).

[65] A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki, P.
Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).

[66] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett.
80, 5239 (1998).

[67] O. Giraud, P. Braun, and D. Braun, New J. Phys. 12, 063005
(2010).

[68] A. Osterloh and J. Siewert, Phys. Rev. A 72, 012337 (2005).
[69] P. Kolenderski and R. Demkowicz-Dobrzanski, Phys. Rev. A 78,

052333 (2008).
[70] W. Dür, Phys. Rev. Lett. 87, 230402 (2001).
[71] J. A. Smolin, Phys. Rev. A 63, 032306 (2001); R. Augusiak and

P. Horodecki, ibid. 73, 012318 (2006).
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