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Bose-Einstein condensate as a quantum memory for a photonic polarization qubit
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A scheme based on electromagnetically induced transparency is used to store light in a Bose-Einstein
condensate. In this process, a photonic polarization qubit is stored in atomic Zeeman states. The performance
of the storage process is characterized and optimized. The average process fidelity is 1.000 ± 0.004. For long
storage times, temporal fluctuations of the magnetic field reduce this value, yielding a lifetime of the fidelity of
(1.1 ± 0.2) ms. The write-read efficiency of the pulse energy can reach 0.53 ± 0.05.
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I. INTRODUCTION

Optical quantum memories [1] based on electromagneti-
cally induced transparency (EIT) [2] are a very active research
area. Specifically, storage of classical light pulses [3–5] and of
single photons [6,7] was demonstrated. In addition, different
polarizations of light were stored either using extended atomic
level schemes [8,9] or by converting the polarization into other
degrees of freedom before storage [10–13]. The vast majority
of applications envisioned for quantum memories requires that
quantum entanglement is first generated between two or more
particles and that the quantum states of one or several of these
particles are subsequently stored in a quantum memory. The
crucial point is that this entanglement must survive the storage.
Recently, this aspect was experimentally demonstrated in three
independent experiments [14–16].

Here we report in detail on the performance of the quantum
memory used in one of these experiments [16]. The experiment
uses an 87Rb Bose-Einstein condensate (BEC) to realize
a quantum memory for the polarization qubit of a single
photon. A Raman scheme based on EIT is used to implement
storage and retrieval of the photon. The atomic level-scheme
is extended to allow for storage of the photonic polarization
qubit in two atomic spin states. Quantum process tomography
is used to determine the process fidelity which quantifies how
well the polarization is maintained during storage. In addition,
the decay of the process fidelity with increasing storage time
is monitored.

All experiments reported here use classical light pulses
instead of single photons, thus profiting from count rates
which are much higher than in Ref. [16]. These increased
count rates yield a more precise value of the process fidelity.
Reference [16] reports that storage and retrieval cause no
discernible deterioration of the fidelity of the entangled state
within an error bar of several percent. The present experiment
still observes a process fidelity compatible with unity, but now
with an error bar that is an order of magnitude smaller, thus
demonstrating more clearly the capabilities of the BEC as a
quantum memory.

In Ref. [16], a single 87Rb atom in an optical high-finesse
cavity was used to generate a triggered single photon in
such a way that the photon’s polarization qubit is entangled
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with the spin state of the single atom. This unparalleled
source is combined with the BEC that serves as a quantum
memory for the single photon. The BEC is well suited for
this purpose because the absence of thermal motion allows
for long storage times, the large optical depth allows for high
write-read efficiencies, and excellent internal-state preparation
allows for high-fidelity storage of a qubit in atomic spin
states. The experiment thus combines two different systems,
each ideally suited for its purpose. The resulting hybrid
character of the system poses an experimental challenge
because the dipole traps that hold the single atom and the
BEC in place have depths of several millikelvin and several
microkelvin, respectively. Due to the resulting ac Stark shifts,
the single photons generated from the single atom are blue
detuned by typically 70 MHz relative to the free-space atomic
resonance, whereas the ac Stark shifts experienced by the
BEC are negligible on this scale. In the present paper, we
therefore experimentally study the efficiency of light storage
in the regime of 70 MHz single-photon detuning. The regime
of much larger single-photon detunings has been studied
theoretically [17–20] and experimentally [13,21] before, but
those results are not immediately applicable to our system.

The paper is structured as follows: Section II describes
the experimental implementation, Sec. III shows how well the
polarization is maintained during storage, and Sec. IV studies
the write-read efficiency. The Appendix presents a simple
model for coarsely estimating the write-read efficiency.

II. EXPERIMENTAL IMPLEMENTATION

A. Electromagnetically induced transparency

EIT employs a control light beam to manipulate the
propagation of a probe light beam inside a medium. Light
storage in EIT-based schemes relies on the fact that the group
velocity of the probe light vgr can be reduced compared to the
vacuum speed of light c by many orders of magnitude [22] by
choosing a small value for the control intensity. Upon entering
the medium, the temporal duration of the probe pulse remains
unchanged, whereas its spatial length is drastically reduced
due to the small group velocity. A pulse which in vacuum is
much longer than the medium can thus be fully compressed
into the medium.

Once the pulse is fully inside the medium, one can ramp
the control intensity to zero in an adiabatic fashion. In our
experiment, we implement an approximately linear, temporal
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FIG. 1. Atomic level scheme of the D1 line in 87Rb. Probe light
(dashed arrows) with an arbitrary superposition of the polarizations
σ+ and σ− couples the initial population (•) in the hyperfine ground
state |F,mF 〉 = |1,0〉 to the D1-line excited states |F ′,m′

F 〉 = |1,±1〉.
π -polarized control light (solid arrows) couples these states to the
hyperfine ground states |F,mF 〉 = |2,±1〉. This makes it possible to
store the probe-light polarization qubit in the qubit space spanned by
the atomic states |F,mF 〉 = |2,±1〉.

ramp of the control intensity which lasts 30 ns. This is
sufficiently adiabatic according to Ref. [23]. This ramp reduces
vgr all the way to zero and the pulse is stopped inside the
medium. The pulse is stored for a time tstore which can be
chosen freely. After this, we ramp the control intensity back
on and the pulse resumes its propagation [3–5,24]. During the
storage time tstore, the pulse exists in the medium in the form
of an atomic spin wave. If the light pulse is compressed such
that it fits inside the medium, then the spin wave stores the
longitudinal and transverse shape of the light pulse.

B. Atomic level scheme

Figure 1 shows the atomic level scheme used in our
experiment. Control and probe light for EIT are both resonant
with the atomic D1 line of 87Rb at a wavelength of λ = 795 nm.
The atoms are initially prepared in the hyperfine ground state
|F,mF 〉 = |1,0〉. The σ± polarized components of the probe
light couple this population to the excited hyperfine states
|F ′,m′

F 〉 = |1,±1〉. The π -polarized control light transfers this
population to the ground hyperfine states |F,mF 〉 = |2,±1〉.

C. Optical beam path

Figure 2 shows a simplified scheme of the optical beam
path. An 87Rb BEC serves as a quantum memory. The
BEC is illuminated by π -polarized control light propagating
along the y axis with a waist (1/e2 radius of intensity) of
∼100 μm, which is much larger than the Thomas-Fermi
radii of the BEC so that the control light intensity can be
approximated as constant across the BEC. In addition, the
BEC is illuminated by probe light propagating along the z

axis focused to a waist of 8 μm. This is comparable to the
Thomas-Fermi radii so that the probe beam samples some
fraction of the transverse inhomogeneity of the BEC. To
obtain a well-defined transverse mode for the probe light
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FIG. 2. Simplified scheme of the optical beam path. A detailed
description is given in the text.

before impinging onto the BEC, the light is sent through a
single-mode fiber. The polarization of the probe light can be
σ+, σ−, or any superposition thereof.

After storing and retrieving the probe light, we need to
measure its polarization. To this end, the beam path ends
with a polarizing beam splitter (PBS) cube and two identical
detectors, one in each output port of the PBS. A quarter-wave
plate (QWP) followed by a half-wave plate (HWP), both placed
right in front of the PBS allow for the selection of an arbitrary
polarization basis. As detectors, we use photomultiplier tubes
(PMTs) in this paper, instead of the avalanche photodiodes
that we used in Ref. [16].

D. Stray-light filtering

Stray light is an issue in our setup. Much of it is eliminated
using mechanical shielding and temporal gating of the detector
signals. The remaining stray light is dominated by control light
off-resonantly scattered from the BEC during the retrieval of
the probe pulse.

This stray-light level would be unproblematic for the
measurements presented here, but the experiments reported in
Ref. [16] required a substantial suppression. In the beam path
from the BEC to the detectors, our setup therefore includes a
single-mode optical fiber for transverse mode filtering and a
filter cavity for spectral filtering.

The spatial filtering with the single-mode fiber makes use
of the fact that storage and retrieval have little effect on the
transverse mode of the probe light, whereas the control light
is off-resonantly scattered from all positions in the BEC and
into all directions. The fiber reduces the stray-light power that
reaches the detector by a factor of 0.068. In the absence of the
BEC, the fiber reduces the probe light power by a factor of
0.66. Hence, the fiber increases the signal-to-background ratio
by one order of magnitude. Storage and retrieval in the BEC
compromise the transverse mode of the probe beam slightly.
This causes an additional reduction of the probe light power
by a factor of 0.88 at the single-photon resonance and by
a factor of 0.80 for a single-photon detuning of �c = 2π ×
70 MHz. In addition, the fiber suppresses the excitation of
higher transverse modes in the subsequent filter cavity.
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The filter cavity is a near-planar, plane-concave Fabry-Perot
resonator with a finesse of 180 and a free spectral range of
40 GHz. The cavity has a transmission of 0.8 at the resonance,
which is tuned to the probe light frequency. We expect that
the scattered EIT control light is either elastically scattered or
Raman scattered, thereby transferring an atom from F = 1 to
F = 2. Hence, we expect the scattered light to be red detuned
from the probe light by either 6.8 or 13.6 GHz. Transmission
through the cavity suppresses the light power for each of
these frequencies by a factor of 2 × 10−4. The cavity length is
stabilized against long-term drift with a piezo actuator using
a Pound-Drever-Hall technique with light at a wavelength of
830 nm. This light is overlapped with the probe light on a
dichroic mirror in front of the mode-filtering fiber. The 830-nm
light transmitted through the filter cavity is separated from
the probe light using another dichroic mirror behind the filter
cavity. A small fraction of the 830-nm light keeps propagating
toward the detectors. This light is removed with dielectric
interference filters which are not shown in Fig. 2. In addition,
the 830-nm light source is turned off during any time intervals
where relevant detector signals are expected.

The optical fiber for stray-light filtering is not polarization
maintaining because it must work equally well for all possible
input polarizations. Hence, the polarization after transmission
through the fiber is related to the input polarization by a unitary
transformation. As long as the fiber is not moved mechanically
or exposed to temperature changes, this transformation is
temporally stable. The same applies to the polarization trans-
formations caused by the filter cavity, by the dichroic mirrors,
and by other mirrors in the beam path which are not shown
in Fig. 2. We compensate the resulting overall transformation
using two QWPs followed by a HWP, a combination which
can generate any unitary transformation.

E. Preparation of the BEC

We produce an almost pure BEC in the hyperfine state
|F,mF 〉 = |1,−1〉, using radio-frequency (rf)-induced evapo-
rative cooling in a magnetic trap, as described in Ref. [25].
The gas is transferred into a crossed-beam optical dipole trap
operated at a wavelength of 1064 nm. The measured trap
frequencies are (ωx,ωy,ωz)/2π = (70,20,20) Hz with gravity
pointing along the x axis. A magnetic hold field of ∼1 G
applied along the z axis preserves the spin orientation of the
atoms.

We use two consecutive microwave pulses, each with a
pulse area of π , to transfer the population into the internal
state needed for our EIT level scheme. Starting from state
|1,−1〉, the first pulse transfers the population into state |2,0〉.
Subsequently, the second pulse transfers the population to
state |1,0〉. The total process transfers ∼90% of the atoms
into state |1,0〉. Atoms left in the F = 2 hyperfine states are
then removed with blast light. This is followed by temporary
application of a strong magnetic-field gradient which removes
atoms with mF �= 0 from the shallow optical dipole trap. After
this procedure, the total atom number in undesired internal
states lies below the detection limit of our setup which we
estimate to be ∼200 atoms. For the rest of the experiment,
the magnetic hold field is reduced to typically 0.1 G. At
this point, the BEC typically contains N = 1.2 × 106 atoms.

The corresponding Thomas-Fermi radii are (Rx,Ry,Rz) =
(7,25,25) μm.

III. A QUANTUM MEMORY FOR THE
POLARIZATION QUBIT

We now study how well the polarization of the probe light is
maintained during storage. The probe beam propagates along
the z axis. Hence, an arbitrary incoming polarization state can
be expanded as c+|σ+〉 + c−|σ−〉 with coefficients c+ and
c−. With the atomic level scheme shown in Fig. 1, this state
is mapped onto the atomic state c+|2,+1〉 + c−|2,−1〉. The
retrieval process maps the atomic state back to the original
polarization state. In our experiment, both mapping processes
work extremely well, but magnetic-field noise causes a
deterioration of the state for long storage times.

We apply a magnetic hold field of Bz ∼ 0.1 G and orient
it along the z axis. This suppresses undesired transitions
between different Zeeman states caused by components of the
magnetic-field noise perpendicular to the z axis. In Sec. III A
we discuss the Faraday rotation caused by this hold field. In
Sec. III B we use quantum state tomography to characterize
the deterioration of the polarization for long storage times
and show how techniques that reduce the magnetic-field noise
improve the performance of the system.

A. Faraday rotation

The polarization of the probe light can be characterized
using the Stokes parameters [26,27]

S0 = IH + IV , S1 = IH − IV , (1a)

S2 = ID − IA, S3 = IR − IL, (1b)

where IH , IV , . . . denote the intensity detected after a polarizer
that transmits only one polarization, namely horizontal H ,
vertical V , diagonal (+45◦) D, antidiagonal (−45◦) A, right
circular R, or left circular L. Here R and L correspond to
σ+ and σ−. The Stokes parameters can be regarded as the
components of a four-dimensional Stokes vector. S0 describes
the total intensity, whereas the three-dimensional vector

u = 1

S0

⎛
⎜⎝

S1

S2

S3

⎞
⎟⎠ (2)

describes the polarization of the light and is well suited for
graphical visualization, in close analogy to the Bloch vector.
We call u the Poincaré vector. Its unit sphere is called the
Poincaré sphere.

The magnetic hold field along the z axis gives rise to a
Faraday rotation of the Poincaré vector around its z axis at an
angular frequency

ωF = μBgF �mF

h̄
Bz, (3)

where μB = 2πh̄ × 1.40 MHz/G is the Bohr magneton and gF

is the Landé factor. For the levels used in our experiment gF =
1/2 and �mF = 2. The total rotation angle of the Poincaré
vector

φ = ωF [tstore + τd (L)] (4)

022318-3



RIEDL, LETTNER, VO, BAUR, REMPE, AND DÜRR PHYSICAL REVIEW A 85, 022318 (2012)

FIG. 3. Faraday rotation. The normalized Stokes parameter S1/S0 oscillates as a function of storage time due to an applied magnetic hold
field. The line is a fit of Eq. (5). The best-fit value for the e−1/2 damping time is σα = (1.1 ± 0.2) ms. Note the breaks on the horizontal axis.

has one contribution tstore from the storage time with the control
light off and another contribution τd (L) which is the delay of
the probe pulse caused by the propagation through the medium
of length L with the control light on. Note that the rotation of
the polarization vector of the electric field in real space is a
factor of 2 slower than the rotation of the Poincaré vector.

Figure 3 shows experimental data of this Faraday rotation
for a linear input polarization. The line shows a fit of a sinusoid
with Gaussian damping,

S1

S0
= e−t2

store/2σ 2
α cos(φ − φ0), (5)

where σα is the e−1/2 damping time, φ is given by Eq. (4),
and φ0 represents the input polarization. The best-fit values
are ωF = 2π × 0.20 MHz, yielding Bz = 0.14 G, and σα =
(1.1 ± 0.2) ms.

A careful inspection of the experimental data points for
long times in Fig. 3 leads us to an interesting observation,
revealing the physical origin of the damping. Unlike the best-fit
curve, the data points, which represent a single experimental
shot each, do not show a decrease of the peak-to-peak
amplitude. Instead, they are noisy insofar as they do not
form a smooth sinusoid. We attribute this to irreproducible,
temporal fluctuations of Bz, which effectively scatter the data
points along the horizontal axis. Only if we were to average
several experimental shots to represent their mean value would
we observe a reduction of the peak-to-peak values in the
experimental data.

A fit of S1/S0 = A cos(φ − φ0) to the data in Fig. 3 with
tstore � 20 μs yields a best-fit value of A = 1.02 ± 0.04. The
fact that A is consistent with 1 shows that temporal fluctuations
of Bz on a time scale of 20 μs or faster have no discernible
effect. Temporal fluctuations of Bz on slower time scales
manifest themselves in our experiment only as shot-to-shot
fluctuations of φ = (μBgF �mF /h̄)

∫ tstore+τd (L)
0 dtBz(t). In our

experiment, each shot requires the preparation of a new BEC,
which takes 20 s. This suggests that shot-to-shot fluctuations of
Bz probably yield an important contribution to the shot-to-shot
fluctuations of φ.

B. Quantum process tomography

We now turn to a complete characterization of the effect
which the storage and retrieval process has on the polarization.

As the process does not conserve the total intensity, a full
description of the process must use the four-dimensional
Stokes vector, not just the three-dimensional Poincaré vector.
We consider the regime of small probe intensity. Hence, the
dependence of the Stokes parameters Sout

i of the retrieved probe
pulse on the Stokes parameters S in

i of the incoming probe pulse
can be approximated as linear

Sout
i =

∑
j

MijS
in
j . (6)

M is called Müller matrix [26,27].
As shown in Fig. 2, we use a PBS with detectors behind

both output ports. According to Eq. (1), a full characterization
of the Stokes vector requires such measurements for three
different settings of the wave plates in front of the PBS, which
select the measurement basis. This set of three measurements
fully characterizes the quantum state of the polarization and it
can be regarded as quantum state tomography [28].

To determine M experimentally, we use a set of four linearly
independent input Stokes vectors (e.g., H , D, R, and L)
and perform quantum state tomography of the output state
generated for each input state. This set of 12 measurements
allows for a complete determination of M and it can be
regarded as quantum process tomography [28].

Performing such quantum process tomography, we find
that in our experiment the Müller matrix is always well
approximated by

M = η

⎛
⎜⎜⎜⎝

1 0 0 0

0 α cos φ −α sin φ 0

0 α sin φ α cos φ 0

0 0 0 1

⎞
⎟⎟⎟⎠ , (7)

where φ is the angle resulting from the Faraday rotation,
α is a damping factor, and η is the write-read efficiency
which is experimentally found to be independent of the input
polarization.

Above, we concluded from Fig. 3 that the polarization
at short storage times is essentially pure, whereas at long
storage times shot-to-shot fluctuation of φ must be taken
into account. Hence, each individual shot can be described
by some realization of M as in Eq. (7) with α = 1 and with
some value of φ which exhibits shot-to-shot fluctuations. We
assume that the values of φ have a Gaussian distribution with
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FIG. 4. (Color online) The damping factor α of Eq. (7) as a
function of storage time. The lowest damping is obtained when
synchronizing the start of the EIT write-read cycle with the 50 Hz ac
line voltage (�). Alternatively, we can use an open-loop feed-forward
compensation (•). Without any compensation, the damping is much
stronger (�). The lines show Gaussian fits according to Eq. (8).

root-mean-square (rms) width σφ . Averaging over many shots
yields Eq. (7) with α = exp(−σ 2

φ/2).
To develop a simple model for the dependence of α on tstore,

we assume that only shot-to-shot fluctuations of Bz contribute
to the fluctuations of φ; that is we approximate Bz as constant
during each individual shot. With this approximation, the
values of Bz will have a Gaussian distribution with rms width
σB and with σφ = (μBgF �mF /h̄)σBtstore, where we neglected
τd (L) � tstore. This yields

α = exp
(−t2

store

/
2σ 2

α

)
, (8)

with
1

σα

= σB

∂ωF

∂Bz

. (9)

For a linearly polarized input state, Eqs. (7) and (8) reproduce
Eq. (5). The Faraday rotation is a unitary evolution. For any
given tstore, its effect can be compensated, for example, using
wave plates and it is therefore not much of a concern. The
nonunitary damping α, however, irreversibly deteriorates the
performance of the memory.

Experimental results for the time dependence of the
damping parameter α, as determined by quantum process
tomography, are shown in Fig. 4. Data taken without any
reduction of magnetic-field noise (�) yield a value of σα =
0.06 ms for the e−1/2 damping time, corresponding to σB =
2 mG according to Eq. (9). In our experiment, the majority
of this magnetic-field noise is periodic and in phase with the
50 Hz ac line voltage. We can suppress this noise drastically
by synchronizing the start of the EIT write-read cycle with
the ac line voltage. The corresponding data (�) in Fig. 4
yield a best-fit value of σα = (1.0 ± 0.1) ms, corresponding
to σB = 0.1 mG. Evidently, the synchronization improves σα

by a factor of ∼20. The data in Fig. 3 were also taken with this
synchronization and essentially reproduce the improved value
of σα .

Our experiments described in Ref. [16] required a repetition
of EIT write-read cycles at a rate of 10 kHz for a total

time span of several seconds. Hence, write-read cycles had
to occur at essentially all possible phases of the 50 Hz ac line
voltage. To reduce the noise in these measurements, we first
determined the values of Bz(t) for one 50 Hz period in a series
of calibration measurements. We then ran a current through
a coil to compensate the recorded noise with an open-loop
feed-forward circuit. The corresponding data (•) in Fig. 4
yield a best-fit value of σα = (0.49 ± 0.04) ms, corresponding
to σB = 0.2 mG. This compensation was good enough not to
be the limiting factor in the overall experiment of Ref. [16],
where we observed the same lifetime but with an error bar that
was a factor of four larger.

The full information from the quantum process tomography
is contained in M . To compare the overall performance
of different quantum memories, one often uses the average
process fidelity as a figure of merit. In terms of quantum states,
the fidelity can be written as F = Tr(ρinρout), where Tr denotes
the trace, ρ denotes the density matrix, and we assumed that
ρin represents a pure state. For polarization states, this can
be rewritten as F = (1 + uin · uout)/2. When averaging this
quantity over all possible pure input states, that is over the
surface of the Poincaré sphere, we obtain the average process
fidelity 〈F 〉 [1,29]. After compensation of the Faraday rotation,
that is, for φ = 0, Eq. (7) yields

〈F 〉 = 1
3 (2 + α). (10)

The synchronized data in Fig. 4 yield 〈F 〉 = 1.000 ± 0.004
at tstore = 1 μs and 〈F 〉 = 0.90 ± 0.02 at tstore = 800 μs. The
value at tstore = 1 μs shows that the state mapping between
photonic and atomic qubit states works extremely well.

IV. WRITE-READ EFFICIENCY

Now we turn to another important figure of merit for light
storage, namely the efficiency of a complete write-read cycle,

η = Eretr

Ein
, (11)

defined as the energy of the retrieved probe pulse Eretr divided
by the energy of the incoming probe pulse Ein. For our memory,
η is independent of the polarization of the probe field, as seen
in Eq. (7). Hence, for understanding η it suffices to consider
the case where the probe polarization is fixed to σ+. This
simplifies the relevant atomic level scheme to a -type three-
level system. Unlike previous experiments by other groups,
our work has a focus on the regime of 70 MHz detuning from
the single-photon resonance.

We experimentally study the dependence of η on the
intensity of the control laser in Sec. IV A. In Sec. IV B, we
study the decay of the efficiency for long storage times.

A. Dependence on the control intensity

Figure 5 shows the experimentally observed dependence of
η on the Rabi frequency of the control light �c. Data were
taken for a storage time of 1 μs with an incoming probe pulse
that has a Gaussian intensity profile

Iin(t,z) = I0 exp

[
− 1

2τ 2
p

(
t − z

c

)2]
. (12)
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FIG. 5. Write-read efficiency η vs Rabi frequency of the control
light �c. All data were taken at the two-photon resonance. Data
taken on the single-photon resonance �c = 0 (◦) display a clear
maximum as a function of �c. Data taken at a single-photon detuning
of �c = 2π × 70 MHz (•) display a lower maximum efficiency. The
lines are fits of the simple model from the Appendix to the data.

Here I0 is the peak intensity and τp is the temporal rms width
of the intensity. Data in Fig. 5 were taken for τp = 94 ns. The
control light was turned off t0 = 230 ns after the maximum
probe intensity entered the medium.

Data taken at the single-photon resonance
�c = 0 (◦) show a maximum of η at �c ∼ 2π ×
20 MHz. This value of �c agrees fairly well with the
prediction of the simple model developed in the Appendix.
The observed maximum efficiency of η ∼ 30%, however, is
a factor of ∼2 lower than the expectation from the simple
model. We attribute this discrepancy to the simplicity of the
model and to experimental issues, such as inaccuracies in
the determination of the experimental parameters. Note that
because of the results of Fig. 5, the data in Figs. 3 and 4 were
taken at �c = 2π × 20 MHz, where η is maximized.

We find experimentally that the write-read efficiency η

is increased if we slowly decrease the intensity of the
control beam while the probe pulse enters the medium. This
observation agrees with a more rigorous optimization of η for
a homogeneous medium in Ref. [30]. Hence, all data in Fig. 5
were taken with a linear ramp of the intensity of the control
beam applied, with a ramp speed that is experimentally found
to maximize η. This ramp is not included in our simple model.
For storage, the control light is on for 300 ns because prior to
this, there is no probe light inside the medium. The horizontal
axis in the figure shows the Rabi frequency corresponding to
the time-averaged value of the control intensity during this
300-ns control pulse.

In a measurement independent from Fig. 5, we achieved a
write-read efficiency of η = (53 ± 5)%. The gain in efficiency
compared to the data in Fig. 5 resulted from two changes in
the experimental procedure. First, we removed the filter cavity
and the mode-filtering fiber after the BEC and, second, we
truncated the Gaussian input probe pulse in time, such that it
misses exactly that part of its falling edge that cannot be stored

anyway because it reaches the BEC after �c is already ramped
to zero.

For reasons discussed in the Introduction, our experiments
in Ref. [16] had to be operated at a single-photon detuning
of �c = 2π × 70 MHz. An investigation of η at this detuning
was therefore necessary. Experimental results (•) are shown
in Fig. 5. These data display a maximum value of η ∼ 20% at
�c ∼ 2π × 20 MHz. The value of �c at which the maximum
occurs is essentially identical to the data at the single-photon
resonance, whereas the maximum efficiency is further reduced.
The physical origin of this reduction is discussed in Sec. 3 of
the Appendix.

The lines in Fig. 5 show fits to the data, based on the
simple model developed in the Appendix. More precisely, the
dash-dotted line from Fig. 8 was taken and two fit parameters
were introduced, each representing a linear scaling, one for η

and one for �c.

B. Dependence on the storage time

Our experiments in Ref. [16] also required an investigation
of the time scale on which η decays during storage. Thermal
motion is known to be the limiting physical effect in many
experiments. Using a BEC or an optical lattice, however,
thermal motion can be suppressed drastically, resulting in a
very slow decay of η(tstore) [31–33]. Unlike those experiments,
our experiment does not use copropagating probe and control
beams. Instead, the level scheme shown in Fig. 1 requires
the two beams to propagate perpendicularly to each other.
The resulting differential photon recoil is much larger than
for copropagating beams. In our experiment, the lifetime of
η(tstore) is predominantly limited by this recoil, similar to
Ref. [34].

As a result of the photon recoil, atoms in hyperfine states
F = 1 and F = 2 move relative to each other. If after tstore

these two atomic clouds do not overlap any more, the retrieval
does not produce a directed beam and hardly any signal reaches
the detector. In our experiment, the control and probe beams
propagate along the y and z axes, respectively. Hence, the
differential photon recoil incurred in the Raman transition is
directed in the yz plane, where the BEC is symmetric with
Thomas-Fermi radii Ry = Rz = 25 μm.

The single-mode fiber between the BEC and the detector
poses an additional constraint, also related to the photon recoil.
Not only do the two atomic clouds need to overlap, the emitted
light must also match the transverse mode of the single-mode
fiber, resulting in a spatial filtering in the xy plane. The fiber is
pretty well mode matched to the incoming probe beam, which
has a beam waist of w = 8 μm, thus setting a length scale
for the spatial filtering that is more stringent along y than the
Thomas-Fermi radius Ry .

To obtain a simple estimate for η(tstore), we approximate
the medium as homogeneous, which is justified by w � Ry

and w � Rz. In this approximation, only the recoil along the
y axis is relevant; that is, the photon recoil of the probe laser is
irrelevant. As the mode of the optical fiber has a Gaussian
transverse profile, the decay of η(tstore) is expected to be
Gaussian,

η(tstore) = η(0)e−t2
store/2σ 2

η , (13)
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FIG. 6. Decay of the write-read efficiency η as a function of
storage time in a pure BEC. The line shows a Gaussian fit according
to Eq. (13), yielding a best-fit value ση = 0.48 ms for the e−1/2 time
of η. The dominant mechanism that sets this time scale is given
by spatial filtering caused by the single-mode fiber combined with
photon recoil incurred during the storage process.

with a e−1/2 time ση = mw/
√

2h̄kc = 1.0 ms, where m is the
atomic mass and kc = ωc/c is the wave vector of the control
beam. Note that the factor

√
2 here has nothing to do with the

modulus of the differential photon recoil.
Figure 6 shows experimental data for η(tstore), recorded for

an essentially pure BEC and a single-photon detuning of �c =
2π × 70 MHz. The line shows a fit of Eq. (13) to the data,
yielding a best-fit value of ση = 0.48 ms. This is a factor of
∼2 less than expected, probably owing to the simplicity of the
model. Note that the decay of η observed here is unproblematic
for our experiment in Ref. [16], where we took data only
for tstore � 300 μs. Furthermore, the decay of α observed in
Fig. 4 is much slower than the decay of η observed in Fig. 6.
This means that at long storage times, only very little light is
retrieved but it still has the correct polarization.

Achieving a much slower decay of η during storage would
be possible when using copropagating or almost copropagating
beams, as mentioned above. This would be incompatible with
the present atomic level scheme. However, a conversion of the
polarization qubit into different wave vectors of the control
light, as in Ref. [12], could solve this problem. However, our
experiments in Ref. [16] would not immediately profit from
a slower decay of η for two reasons. First, very long storage
times would drastically slow down the rate at which write-read
cycles can be repeated, which would result in an unrealistically
long data acquisition time for the complete experiment, due
to low count rates. Second, in the setup used in Ref. [16],
the limiting factor when extending the storage time was the
deterioration of the fidelity due to magnetic-field noise acting
on the single atom inside the high-finesse cavity.

To illustrate how our experiments profit from the use
of a BEC, we deliberately prepare an atomic gas with a
noticeable uncondensed fraction. Figure 7 shows that in this
case η(tstore) decays much faster. More specifically, η is the
sum of two contributions, one from the BEC and one from the
uncondensed fraction. These two contributions to η decay on
quite different time scales. On the time scale shown in Fig. 7

FIG. 7. (Color online) Decay of the normalized write-read ef-
ficiency η in the presence of a noticeable uncondensed fraction
of the gas. Thermal motion causes a rapid initial decay of η. The
decay settles to the long-lived level of η that is caused by the BEC
fraction. The data sets were taken for different BEC fractions and,
correspondingly, for different temperatures.

the contribution of the uncondensed fraction decays almost
completely, whereas the contribution of the BEC is essentially
constant. The overall decay of η is sensitive to the first-order
spatial coherence function of the gas [34,35]. A bimodal decay
of the first-order coherence similar to Fig. 7 was previously
observed in Ref. [36] using a different technique.

Comparing the data in Fig. 7 to the temperatures extracted
from the size of the uncondensed fraction in time-of-flight
images, we confirm that λdB/vrel can be used as a coarse
estimate for the time scale of the decay of η caused by the
uncondensed fraction of the gas. Here vrel = h̄(kp − kc)/m

is the velocity of the F = 2 atoms relative to the F = 1
atoms during tstore, kp is the probe-light wave-vector, λdB =√

2πh̄2/mkBT is the thermal de-Broglie wavelength, T is
the temperature, and kB is the Boltzmann constant. The data
in Fig. 7 were taken with a waist of the probe beam of
w = 30 μm and after removing the filter cavity as well as the
single-mode fiber between the BEC and the detector. Without
these modifications, η would be sensitive only to the central
region of the gas, where the uncondensed fraction contributes
less.

V. CONCLUSION

To conclude, we characterized and optimized the BEC as
a quantum memory and showed that a write-read efficiency
above 50% can be reached. Its decay over storage time results
from the differential photon recoil in the Raman transfer
combined with spatial filtering of the retrieved light. This could
be mitigated using copropagating light beams. We also showed
that the mapping between photonic and atomic qubit has an
impressive average process fidelity. Its decay over storage time
is due to magnetic-field noise and is suppressed by appropriate
techniques.
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APPENDIX: MODELING THE EFFICIENCY

In this appendix, we derive a simple estimate for the write-
read efficiency η. This estimate was used for fitting to the
experimental data in Fig. 5. To set the stage for this calculation,
Sec. 1 briefly summarizes the theoretical background from the
literature. We then develop a simple, largely analytic model
for η in Sec. 2. In Sec. 3, we discuss why a large single-photon
detuning reduces η.

1. Theoretical background

Our notation largely follows Ref. [2], except for the sign
of all detunings. We denote the probe and control Rabi
frequencies as �p and �c and the corresponding detunings
as �p = ωp − ωp,res and �c = ωc − ωc,res, where ωp and ωc

are the angular frequencies of the light fields and ωp,res and
ωc,res are the corresponding atomic resonances, respectively.
We consider the regime of small probe intensity and neglect
dephasing. The propagation of the probe light can then be
described by the linear susceptibility [2]

χ = χ0
2δ2�

�2
c − 4δ2(�c + δ2) − 2iδ2�

, (A1)

with

χ0 = ngr�
2
c

ωp�
(A2)

and the group index [2]

ngr = �p

�2
c

�σc. (A3)

Here δ2 = �p − �c is the two-photon detuning, � is the total
decay rate of the excited state, �p is the partial decay rate of
the excited state into the ground state involved in the probe
transition, c is the vacuum speed of light, � is the particle
density, and σ = 3λ2

p/2π is the resonant light-scattering cross
section for a cycling transition at wavelength λp = 2πc/ωp.

If the two-photon detuning δ2 is small, then one can expand
Re(χ ) and Im(χ ) to lowest nonvanishing order in δ2, yielding

Re(χ ) = χ0
2�

�2
c

δ2 + O
(
δ2

2

)
, (A4a)

Im(χ ) = χ0

(
2�

�2
c

δ2

)2

+ O
(
δ3

2

)
. (A4b)

Note that this is independent of �c. The group velocity for
probe light can be calculated from Eq. (A4a), yielding [2]

vgr = c

1 + ngr
. (A5)

We consider a medium that extends from z = 0 to z = L with
a density �(z) which varies along the propagation direction
z of the probe beam. If �c is constant in time, the pulse

delay after propagation through the complete medium follows
immediately from Eq. (A5), yielding [2]

τd (L) =
∫ L

0
dz

ngr(z)

c
= �

�2
c

dp(L), (A6)

where

dp(L) =
∫ L

0
dz

�p

�
σ�(z) (A7)

denotes the optical depth seen by the probe light.
Irreversible absorption of the probe light inside the medium

can be a serious issue. This is avoided if all relevant frequency
components of the probe light are close to the two-photon
resonance, δ2 = 0. Under this condition, Eq. (A4b) yields
a Gaussian EIT intensity transmission window in frequency
space with rms width σtrans = �ωtrans/

√
8 with [2]

�ωtrans(L) = �2
c

�
√

dp(L)
. (A8)

If �ωp denotes the typical width of the frequency spectrum
of the probe pulse, then the condition for small absorption
reads �ωp � �ωtrans(L). Due to the Fourier limit, the typical
duration τp of the pulse is related to �ωp by τp�ωp ∼ 1.
Combining this with Eqs. (A6) and (A8), the condition for
small absorption can be rewritten as

τd (L)

τp

� √
dp(L). (A9)

Obviously, fully compressing the pulse longitudinally into
the medium requires τd (L)/τp > 1. If one simultaneously
wants to avoid absorption, then according to Eq. (A9) one
needs dp(L) 
 1. The requirement of large optical depth is
independent of �c. However, in the experiment, �c must be
adapted to the values of τp and dp(L), as discussed now.

2. Simple estimate for the efficiency

While various numerical models for a thorough analysis of
η have been published, we find it useful to complement these
elaborate models with a much simpler model that captures only
part of the physics but gives a quick estimate for the efficiency.
Our model assumes that the probe pulse is Gaussian in the time
domain. Using Eq. (A4), the intensity of the propagating probe
pulse can be approximated as

I (t,z) = I0(z) exp

[
− 1

2τ 2
p(z)

(
t − τd (z) − z

c

)2]
, (A10)

where I0 is the peak intensity, τp is the temporal rms width of
the intensity, and τd is given in Eq. (A6). Note that Eq. (A10)
is valid for all z. It simplifies to Eq. (12) for those values of z

where the probe light has not yet entered the medium.
Our simple model separately addresses the issues of

insufficient pulse compression and irreversible absorption.
First, we ignore irreversible absorption. This makes I0 and
τp independent of z. We assume that �c is switched off at a
time t0 and assume that the fraction of the light that is inside the
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FIG. 8. (Color online) Simple theoretical estimate for the write-
read efficiency η vs Rabi frequency of the control light �c. The
dashed, dotted, and solid lines show ηcomp, ηtrans, and ηcompηtrans,
respectively. Parameters are τp = 94 ns, t0 = 230 ns, 1/� = 26 ns,
and dp(L) = 127. The pronounced maximum in the solid line arises
because for small �c, the EIT transmission window in frequency
space is too narrow for the incoming probe pulse, whereas for large
�c, the group velocity is not sufficiently reduced to spatially compress
the complete pulse into the BEC. The dash-dotted line shows the result
of averaging over the transverse profile of the BEC.

medium at this moment is stored and subsequently retrieved.
This yields a write-read efficiency

ηcomp = 1

2

[
erf

(
t0√
2τp

)
− erf

(
t0 − τd (L) − L/c√

2τp

)]
,

(A11)

with the error function erf(x) = (2/
√

π )
∫ x

0 du exp(−u2). This
result for the efficiency quantifies how well the pulse is
compressed into the medium. Note that ngr 
 1 implies
τd (L) 
 L/c.

Second, we turn to irreversible absorption. Here we con-
sider a situation in which �c is constant in time, implying that
no storage takes place. The fraction ηtrans of the pulse energy
that is transmitted through the medium is calculated easily in
the frequency domain. Based on Eqs. (A4b) and (A10), we
obtain

ηtrans =
(

1 + 2

[τp�ωtrans(L)]2

)−1/2

, (A12)

with �ωtrans from Eq. (A8). This result for the efficiency
expresses the issue of irreversible absorption.

To obtain a simple estimate for the overall efficiency,
which must take both effects into account, we simply multiply
the two efficiencies from Eqs. (A11) and (A12). For the
atomic probe transition used in our experiment, we have
�p = �/12. Combination with the atom number and trap
frequencies quoted in Sec. II E yields a peak value of
dp(L) = 127 at x = y = 0. Results for this optical depth and
typical parameters of our experimental pulses are shown in
Fig. 8.

In the model, we explored η as a function of the two-
dimensional parameter space spanned by �c and t0. Figure 8

shows the dependence on �c only for that value of t0 for
which the global maximum of η is reached. A modification of
the pulse duration τp would require a reoptimization of �c and
t0. Considering Eqs. (A6) and (A8), one finds that Eqs. (A11)
and (A12) remain unchanged if the scalings �c ∝ 1/

√
τd and

t0 ∝ τp are used. As a consequence, the maximum value of
η(�c,t0) is insensitive to a change in τd .

The transverse inhomogeneity of the BEC can be accounted
for by calculating a weighted average of η, with the transverse
profile of the probe light intensity as a weighting function

∫
dxdy

2

πw2
e−2(x2+y2)/w2

η(dp(x,y)). (A13)

We assume a Thomas-Fermi parabola for �(x,y,z) with
Thomas-Fermi radii Rx , Ry , and Rz. Calculation of dp(x,y)
by analytic integration over z is straightforward. After a
transformation to new coordinates (ρ̃,ϕ) with x = Rxρ̃ cos ϕ

and y = Ryρ̃ sin ϕ, the integral over ϕ can also be solved
analytically. The remaining integral over ρ̃ is easily computed
numerically. The result is shown as a dash-dotted line in
Fig. 8. This line predicts a maximum of η ∼ 60% at �c =
2π × 15 MHz. For this value of �c and for x = y = 0, the

FIG. 9. (Color online) Linear susceptibility χ as a function of
the two-photon detuning δ2. The solid and dotted lines show the
predictions of Eq. (A1) for the real and imaginary parts of χ at
�c = 3.3� = 2π × 20 MHz. (a) At the single-photon resonance,
�c = 0. (b) At a single-photon detuning of �c = 11.4� = 2π × 70
MHz. Dash-dotted lines (red) show the lowest-order approximations
of Eq. (A4). The range where these approximations become poor
sets an upper bound for the frequency range which is useful for light
storage. This range is much narrower in (b) than in (a). This explains
the reduction of the efficiency observed at �c = 2π × 70 MHz. Note
that the scales on the horizontal axes differ by one order of magnitude.
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theory yields estimated values of χ0 = 0.5, ngr = 5 × 106,
τd (L) = 550 ns, and �ωtrans(L) = 2π × 3.3 MHz.

The absorption represents a filter in frequency space. Due
to the Fourier limit, this causes an increase of the temporal
pulse width τp for increasing z, thus complicating a more
rigorous calculation of ηcomp. We can overestimate the effect
of this increase of τp(z) when using the constant value
τp(L) instead of τp(0) in calculating ηcomp. We find that for
the parameters of Fig. 8, this has little effect. Our model
also neglects that τp(z) should increase due to dispersion
caused by Re(χ ). This increase is given by τ 2

p(z) = τ 2
p(0) +

[τd (z)/τp(0)ωp]2, which is negligible for the parameters of our
experiment.

The simple model developed here neglects that the spatial
cutting during storage broadens the frequency spectrum of
the pulse, thus increasing the absorption after retrieval. The
model also neglects that the transverse inhomogeneity of
the medium might cause a deformation of the wave fronts,
resulting in effects such as focusing of the probe beam. In
addition, this model is fully based on Eq. (A4), instead of
Eq. (A1). If the probe pulse is so broad in frequency space that
Eq. (A4) is not a good approximation, then the applicability of
the model is questionable. Nonetheless, the prediction of the
model agrees reasonably well with our experimental data in
Fig. 5.

3. Reduced efficiency at large single-photon detuning

To understand the physical origin of the reduction of η

at large single-photon detuning, we investigate the frequency
range that is useful for storing light. An upper limit for this
frequency range is set by the frequency range within which

Eq. (A4) is a good approximation. Using Eq. (A1), one can
easily show that the maxima of Im(χ ) are located at

δ2 = 1
2

( − �c ± √
�2

c + �2
c

)
. (A14)

The maximum nearest to δ2 = 0 clearly sets an overoptimistic
upper bound for the useful frequency range for light storage.
For |�c| 
 �c, the nearest maximum lies at δ2 ≈ �2

c/4�c.
Comparison with Eq. (A8) shows that the useful frequency
range is much narrower than �ωtrans unless 4|�c|/�

√
dp � 1.

Our experiment is operated at 4�c/�
√

dp ≈ 4 so that this
issue is obviously relevant. This reduction of the useful
frequency range is to be contrasted with the delay τd in Eq. (A6)
which is independent of �c. As a result, the overall efficiency
is reduced.

To further illustrate this point, we show the
dependence of χ on δ2 in Fig. 9. Panels (a)
and (b) correspond to �c = 0 and �c = 2π ×
70 MHz, respectively. Note the different scales on the
horizontal axes. This figure clearly illustrates that the
frequency range over which Eq. (A4) is a good approximation
differs drastically between the two cases.

The light pulses that we store at �c = 2π × 70 MHz
have the same spectral width as for �c = 0. For �c = 2π ×
70 MHz a considerable part of the frequency components
of the light therefore samples the frequency range where
Eq. (A4) is not a good approximation. Figure 9(b) shows that
for components with negative δ2, the value of dRe(χ )/dδ2

is reduced, resulting in a faster group velocity, which is
disadvantageous. On the other hand, for positive δ2 absorption
can be substantial and dRe(χ )/dδ2 can even change sign,
thus not creating slow light. These problems qualitatively
explain the reduced write-read efficiency that we observe
experimentally for �c = 2π × 70 MHz.

[1] A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photon. 3, 706
(2009).

[2] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.
Phys. 77, 633 (2005).

[3] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature
(London) 409, 490 (2001).

[4] A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser,
B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602
(2001).

[5] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and
M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).

[6] T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan,
T. A. B. Kennedy, and A. Kuzmich, Nature (London) 438, 833
(2005).
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[36] I. Bloch, T. W. Hänsch, and T. Esslinger, Nature (London) 403,
166 (2000).

022318-11

http://dx.doi.org/10.1103/PhysRevA.78.042313
http://dx.doi.org/10.1103/PhysRevA.78.042313
http://dx.doi.org/10.1103/PhysRevA.82.033838
http://dx.doi.org/10.1103/PhysRevA.82.033838
http://dx.doi.org/10.1038/nphoton.2010.30
http://dx.doi.org/10.1038/nphoton.2010.30
http://dx.doi.org/10.1038/17561
http://dx.doi.org/10.1038/17561
http://dx.doi.org/10.1103/PhysRevA.65.022314
http://dx.doi.org/10.1103/PhysRevA.65.022314
http://dx.doi.org/10.1103/PhysRevLett.84.5094
http://dx.doi.org/10.1103/PhysRevLett.84.5094
http://dx.doi.org/10.1103/PhysRevLett.89.283202
http://dx.doi.org/10.1103/PhysRevLett.89.283202
http://dx.doi.org/10.1016/S0375-9601(02)00069-5
http://dx.doi.org/10.1103/PhysRevLett.98.243602
http://dx.doi.org/10.1103/PhysRevLett.98.243602
http://dx.doi.org/10.1103/PhysRevLett.103.033003
http://dx.doi.org/10.1103/PhysRevLett.103.033003
http://dx.doi.org/10.1103/PhysRevLett.103.233602
http://dx.doi.org/10.1103/PhysRevLett.103.233602
http://dx.doi.org/10.1103/PhysRevA.81.041805
http://dx.doi.org/10.1103/PhysRevA.81.041805
http://dx.doi.org/10.1038/nature05493
http://dx.doi.org/10.1038/nature05493
http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1038/35003132
http://dx.doi.org/10.1038/35003132

