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Incoherent dynamics in the toric code subject to disorder
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We numerically study the effects of two forms of quenched disorder on the anyons of the toric code. First,
a class of codes based on random lattices of stabilizer operators is presented and shown to be superior to the
standard square-lattice toric code for certain forms of biased noise. It is further argued that these codes are
close to optimal, in that they tightly reach the upper bound of error thresholds beyond which no correctable
Calderbank-Shore-Steane codes can exist. Additionally, we study the classical motion of anyons in toric codes
with randomly distributed on-site potentials. In the presence of repulsive long-range interaction between the
anyons, a surprising increase in the lifetime of encoded states with disorder strength is reported and explained
by an entirely incoherent mechanism. Finally, the coherent transport of the anyons in the presence of both forms
of disorder is investigated and a significant suppression of the anyon motion is found.
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I. INTRODUCTION

A working quantum computer performing meaningful
calculations unarguably requires information processing to be
carried out in a fault-tolerant manner [1,2]. This means not
only protecting the information from the action of imperfect
gates, but also storing it in a reliable way during the course
of computation. In the theory of quantum error correction,
the state of a logical qubit can be encoded in the code space
of a number of physical qubits [3]. The resulting redundancy
allows one to implement fault-tolerant quantum gates and to
periodically check for the occurrence of single-qubit errors
using syndrome measurements. However, this kind of active
error monitoring imposes an additional overhead on an already
deeply involved vision. Therefore, the idea of manipulating
and storing quantum states in systems that already provide
“built-in” protection from errors has gained a lot of attention
recently [4–7]. A promising approach in this direction is to
encode information in the degenerate topologically ordered
ground state of a suitable many-body Hamiltonian. Infor-
mation is encoded in an entangled state distributed across a
large number of qubits and can be distinguished and modified
only in a nonlocal manner. In this context, Kitaev’s toric
code [4] is arguably the best-studied model to date. It is
robust against local perturbation at zero temperature, as well
as against thermal errors if long-range interaction between its
fundamental excitations is present [8–10].

Recent studies have focused on coherent phenomena in
the toric code that arise due to the additional presence of
various forms of quenched disorder [11–14]. Conversely,
this work is primarily concerned with a numerical study of
incoherent (classical) effects caused by two particular forms
of randomness. First, we consider a class of models similar to
the toric code, but differing from the latter in that the syndrome
check operators are chosen randomly from a set of three-body
and six-body operators. These correspond to a generalization
of the (square-lattice) toric code to randomized lattices. We
find that these models have an advantage over the toric code
for biased noise, where bit-flip and phase-flip errors occur
with different probabilities. We also present strong evidence
that these codes are almost optimal, in the sense that they

reach error thresholds close to the overall upper bound valid
for any Calderbank-Shore-Steane (CSS) code [15,16]. Second,
we investigate the effect of random on-site potentials on the
lifetime of states encoded in the regular toric code coupled
to a thermal bath. We identify and describe an interesting
regime, where, in the presence of long-range interactions, the
lifetime of this quantum memory is enhanced for increasing
disorder strength. Finally, the effects of the random lattices
on coherent anyon transport are investigated, both with and
without additional randomness in the on-site potentials. The
resultant slowdown of the anyonic motion is determined and
its effect on the stability of the quantum memory is discussed.

The paper is organized as follows: Section II reviews the
toric code, which is the basis of all further studies in this work.
We then show in Sec. III how to simulate the classical dynamics
of excitations in the systems considered subsequently and
also give some details of the numerics. Our main results are
presented in Secs. IV, V, and VI, followed by a conclusion in
Sec. VII.

II. REVIEW OF THE TWO-DIMENSIONAL TORIC CODE

The starting point of our investigation is Kitaev’s two-
dimensional (2D) toric code [4] which will be modified in
the following sections to incorporate randomness. We provide
here a brief outline of the original model for the sake of
completeness. The 2D toric code consists of 2L2 spins 1

2 with
each spin placed on an edge of an underlying L × L square
lattice with periodic boundary conditions. One then defines
two sets of mutually commuting four-body operators, called
plaquettes and stars, respectively, in the following way [see
Fig. 1(a)]. A plaquette is the product of the Pauli σz operators
associated with the four spins belonging to a single face of
the square lattice, whereas a star is the product of the four σx

operators of the spins on edges adjacent to a single vertex of
the lattice. In this way, one obtains two sets of L2 plaquette and
star operators, out of which L2 − 1 in each set are independent.
Note that these operators can only have eigenvalues +1
and −1.
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One can then define a subspace C of the total Hilbert space
given by the 2[2L2−2(L2−1)] = 4 states which are simultaneous
eigenstates of all independent plaquettes and stars with eigen-
value +1. This space can thus accommodate two logical qubits,
and measuring the plaquette and star operators allows one to
gather information about possible spin- and phase-flip errors
without disturbing the encoded state. A negative plaquette
(star) indicates the presence of one or three σx (σz) spin errors.
The toric code belongs to the class of stabilizer codes, and the
plaquettes and stars are in that context often referred to simply
as stabilizer operators.

Notably, the code space C is the degenerate ground space
of the Hamiltonian

H = −J
∑

s

As − J
∑

p

Bp. (1)

Here, J > 0 is the energy gap, and As and Bp are the stars and
plaquettes, respectively, explicitly given by

As =
∏

i∈adj(s)

σ i
x, (2)

Bp =
∏

i∈adj(p)

σ i
z , (3)

where adj(s) [adj(p)] denotes the set of spins on edges adjacent
to the star (plaquette) s (p). The elementary excitations of
the Hamiltonian Eq. (1) are stabilizer operators with negative
eigenvalue and are referred to as “anyons.”

Associated with the two logical qubits encoded in C are
four stringlike operators (products of single-spin σx’s or σz’s)
which wrap around the torus and commute with all plaquettes
and stars, but act nontrivially in the form of logical Pauli X

and Z operators on the two qubits encoded in C. We choose
to label the operators such that X1 is a vertical string on
horizontal edges and Z1 is a horizontal string on horizontal
edges. Correspondingly, X2 and Z2 are horizontal and vertical
strings, respectively, on vertical edges [see Fig. 1(a)].

When the system described by the Hamiltonian Eq. (1) is
coupled to a noisy environment causing single-spin errors,
pairs of anyons are created and can subsequently move
diffusively on the toric surface. Eventually, the creation and
diffusion of anyons leads to a pattern of errors containing
undetectable loops around the torus, acting as unnoticed
logical Pauli operators on the code space C and therefore
corrupting the state contained therein. Measurement of the
plaquette and star operators to locate anyons reveals some, but
not all, information about the underlying error pattern and is
generally ambiguous. It is up to an error-correction procedure
(see Sec. III B) to deal with this problem in a satisfactory way.

The toric code has gained attention due to a series of
interesting and advantageous properties. Namely, the stabilizer
operators are local and independent of the system size L,
while the code distance grows linearly with L. Closely related
is the fact that the ground-state degeneracy is exponentially
protected (in L) against local perturbations. Quite remarkably,
the toric code is in a sense almost optimal within the class of
all CSS codes [5], even though the latter contains codes with
arbitrarily large stabilizer operators. We will reconsider this
topic in greater detail in Sec. IV C.

(a)

(b)

FIG. 1. (Color online) Toric codes. (a) Kitaev’s original 2D toric
code. Shown is a 4 × 4 subregion of the L × L lattice. The blue solid
dots on the edges of the lattice represent spins, the four-body plaquette
and star operators are shown in light green and orange, respectively
(note that stabilizers containing spins outside the figure are not
shown). All four logical Pauli operator strings are displayed as thick
horizontal and vertical lines. (b) The same region after modifying the
lattice in order to incorporate randomness. The modified plaquette
and star operators are not shown yet; see Fig. 2. The empty circles
indicate the defect positions, i.e., the edges of the lattice where spins
are removed. This requires altering the logical operators Z2 and X2

in the way shown. Note that all commutation relations between the
logical operators are preserved.

III. CLASSICAL DYNAMICS AND NUMERICAL
SIMULATIONS

A. Classical dynamics from single-spin errors

Since the Hamiltonian Eq. (1) does not couple the star and
plaquette operators, we can treat the two corresponding types
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of anyonic excitations independently. Furthermore, because
the stars are simply plaquettes on the dual lattice, it is sufficient
to study the dynamics of only one type, e.g., the plaquette
anyons. We assume that each spin is coupled to an auxiliary
system that can cause the spin to flip via σx errors. In the limit
of weak coupling [17,18], one can derive the following system
of coupled rate equations describing the classical dynamics of
the system [9]:

d

dt
pE (t) =

∑

i

[
γ in

i,E pxi (E)(t) − γ out
i,E pE (t)

]
. (4)

Here, pE (t) is the time-dependent probability of finding the
system in the state |E〉 obtained by applying σx errors to all
spins with indices in E , i.e., |E〉 = ∏

k∈E σ k
x |ψ0〉, where |ψ0〉

is the initial state of the system. Similarly, pxi (E)(t) describes
the probability of being in the state σ i

x |E〉. Finally, γ in
i,E and

γ out
i,E are the transition rates to arrive at or leave the state |E〉,

respectively, via a σx error at the spin with index i.
In this work, we will consider two types of error environ-

ment. The first one is a constant-error-rate model, i.e., we
set γ in

i,E = γ out
i,E = const. In this case, spin flips are caused

independently of any previously existing anyons and σx

errors. The second model mimics the coupling to a thermal
environment, where the transition rates are in general energy
dependent. Consequently, we set γ in

i,E = γ (−ωi,E ) and γ out
i,E =

γ (ωi,E ), where ωi,E = εE − εxi (E) is the energy difference
between the states |E〉 and σ i

x |E〉. An expression for γ (ω)
often found in the literature is given by

γ (ω) = 2κn

∣∣∣∣
ωn

1 − e−βω

∣∣∣∣ e
−|ω|/ωc (5)

and can be derived from a spin-boson model [19,20]. Here,
κn is a constant with units 1/(energy)n setting the time scale,
β = 1/kBT , with T being the temperature of the bath and kB

denoting Boltzmann’s constant, and ωc is the cutoff frequency
of the bath. In the following, we set ωc → ∞ for simplicity.
A bath with n = 1 is called “Ohmic,” whereas one with n � 2
is called “super-Ohmic.” Only the former case is considered
in this work. Unless otherwise stated, all energies will be
expressed in units of kBT . Consequently, the unit of time is
(κ1kBT )−1.

B. Simulations and error correction

Clearly, it is impossible to solve Eq. (4) analytically for
meaningful system sizes, because the number of states pE
grows exponentially with L2. We thus have to stochastically
simulate the system and obtain the quantities of interest, such
as the number of anyons or the expectation values of the logical
operators, by averaging over many (typically several thousand)
instances.

In greater detail, the iteration of the simulation at time t

consists of these steps: (i) Calculate all unnormalized single-
spin-flip probabilities pi = γ (εE − εxi (E)), and then obtain
from them the total spin-flip rate R = ∑

i pi . (ii) Draw the time
	t until the next spin flip from an exponential distribution with
rate R. (iii) Calculate and record all quantities of interest for
time sampling points lying in the interval [t,t + 	t]. Namely,
these quantities are the number of anyons, the number of σx

errors, and the uncorrected and error-corrected (see below)

logical operators Z1 and Z2. (iv) Determine a random spin
according to the probabilities pi/R, flip it, and set t to t + 	t .

The error-correction step in the toric code consists of
pairing up all detected anyons and then annihilating them
by connecting each pair with a string of errors from one
partner to the other. The pairing is usually chosen such that
all anyons are annihilated with the smallest total number of
single-spin operators. This is known as the minimal-weight
perfect matching and can be found in polynomial time with
the help of the “blossom” algorithm due to Edmonds [21].
The run-time complexity of this algorithm has been improved
several times since its discovery. We are employing the
library BLOSSOM V [22] which implements the latest version
running in O(mn log n) time, where n is the number of anyons
(vertices) and m the number of connections (edges) between
them.

In order to find the true matching with minimal weight, one
in principle would need to choose the set of edges to include
all connections from every anyon to every other. However,
since the size of this set grows quadratically with the number
of anyons n, the overall scaling of the matching algorithm
becomes O(n3 log n), which is not feasible for large n. We
therefore first perform a Delaunay triangulation in negligible
O(n log n) time using the library TRIANGLE [23]. The result
is that only anyons close to each other are connected using a
number of edges linear in the number of anyons. It turns out
that this is an excellent approximation, yielding results that are
nearly indistinguishable from those obtained from a matching
over the complete graph.

Within the paradigm of active error correction, where the
anyons are detected and corrected periodically on sufficiently
small time intervals, the encoded state can be kept free of
logical errors almost indefinitely. However, since we are
interested in the use of the toric code as a passive quantum
memory, we are mostly concerned with the lifetime τ of the
encoded information in a scenario where error correction is
performed only once at readout. Hence, whenever we show
plots of the “error-corrected” logical operators decaying as
a function of time, we thereby refer to their values if error
correction had been performed at that time, without actually
performing it. We then define the lifetime of the system as the
time it takes for the expectation values of the error-corrected
logical operators to decay to 90% of their initial value.

IV. RANDOM LATTICES

In this section, we study the error thresholds of a family
of models obtained by randomly modifying the toric code in
a way that preserves its basic features. We first describe how
we create our random lattices and then present and discuss
the results of the simulations within the context of optimal
quantum codes.

A. Generating the lattices

Starting from the toric code on an L × L lattice, we
remove 1

2L2 spins at specific and regularly distributed “defect”
locations. The structure of the defect pattern can be easily
understood from Fig. 1(b). Basically, every second vertical
edge is labeled a defect, with the first defect of each row
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alternately being created on the first or second vertical edge
of that row. Note that the height and width of the grid both
must be even in order for this procedure to be consistent with
the periodic boundary conditions. We now have to modify
all plaquettes and stars as well as the logical Pauli X and Z

operators such that all original commutation relations remain
unaltered.

Let us start with the logical operators. Clearly, both X1 and
Z1 (with single-spin operators exclusively on horizontal edges)
are unaffected by the introduction of defects on vertical edges
of the lattice. However, the pair of operators in the original
code acting on the second encoded qubit is defined on vertical
edges and thus needs to be adapted. Clearly, the operators must
remain connected strings wrapping around both dimensions
of the torus. The zigzag pattern shown in Fig. 1(b) achieves
this with the smallest increase in the number of single-spin
operators. It is straightforward to verify that these new X2 and
Z2 operators, together with the unaltered pair acting on the first
encoded qubit, indeed mutually fulfill all original commutation
relations.

We now discuss the modification of the plaquette and star
operators. Removal of one spin, i.e., creation of one defect,
affects exactly two adjacent plaquettes and two adjacent stars.
We will consider two possible ways of dealing with this
situation (see Fig. 2). We can either (i) define two restricted
three-body plaquettes and one “vertical star” consisting of
the product of the remaining six single-spin σx operators, or
(ii) perform the dual operation, namely, defining one large
six-body “horizontal plaquette” and two restricted three-body
stars. The two ways of modifying the original operators are
depicted in Fig. 2(a). It is relatively easy to see that these
new three-body and six-body operators remain mutually com-
muting and furthermore commute with all modified logical
Pauli operators just as in the original code. Note that also
the dimension of the code space is left unchanged since it
generally only depends on the genus of the surface covered
by the anyon operators [4]. We can now create a random
lattice by choosing at each defect site to create a six-body
plaquette with probability pmix and two three-body plaquettes
with probability 1 − pmix. See Fig. 2(b) for a typical example.
The special case pmix = 0 corresponds to a regular lattice of
three-body plaquettes and six-body stars, whereas pmix = 1
conversely yields a regular lattice of six-body plaquettes and
three-body stars. In both cases, the three-body operators are
the vertices of an underlying hexagonal lattice, whereas the
six-body operators form the vertices of its dual, the triangular
lattice.

B. Results

Before we start discussing the results, we would like to
briefly point out a modification to the error-correction scheme
we had to incorporate in order to deal with the random lattices.
Since it would be difficult to adapt the Delauny triangulation to
an irregular graph, we have replaced this step by a breadth-first
search performed on each anyon. This procedure connects
every anyon to at most k of its nearest neighbors, where
distance is measured not in a Euclidean sense, but as the
number of errors in a connecting string. For constant k, this
requires a run time of O(n), where n is the number of anyons.

(a)

(b)

FIG. 2. (Color online) Modifying the stabilizer operators.
(a) When removing a spin (empty circle), we choose between two
ways of adapting the affected stabilizer operators. With probability
pmix we join the two plaquette operators to one large six-body operator
and reduce the two stars from four- to three-body operators. Alter-
natively, with probability 1 − pmix, we perform the dual operation,
namely, we define two three-body plaquettes and one large six-body
star. Spins and operators not affected by removing the central spin are
not shown in this example. (b) Typical 8 × 8 subregion of a (larger)
random lattice with pmix = 0.5. Logical operators as well as some
spins and operators at the edges with the rest of the lattice are not
shown.

We have found that k = 10 is an excellent approximation to
k = ∞ and have used this value in all calculations.

We have performed a series of Monte Carlo simulations to
determine the critical fraction of errors f Z

cr independent of any
form of anyon dynamics (see Appendix A for additional results
in the case of thermal errors). If the probability for each spin
to independently be affected by a σx error becomes larger than
this critical value in the limit L → ∞, the error-correction
scheme undergoes a transition from performing fully accurate
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error recovery to randomly guessing the error-corrected state
with the lowest possible success rate of 50%. We can determine
f Z

cr by plotting the expectation values of the error-corrected
logical Z operators as a function of the error probability f

for different lattice sizes and observe at which value of f the
curves intersect [24].

Figure 3(a) displays typical results for a few different values
of pmix. We observe that the expectation values of Z1 and Z2

in general have a different dependence on the error probability
f . This is due to the fact that on a lattice with, e.g., a majority
of six-body plaquettes, it takes on average fewer spins to form
a loop around the horizontal direction of the torus than around
the vertical one. The opposite argument holds in the case of
a three-body plaquette majority. Not surprisingly, Z1 and Z2

decay identically for a 50% mixing of three- and six-body
plaquettes. Note that, despite the typically unequal decays
of Z1 and Z2 as a function of f , the error thresholds for
the two operators are always identical for a given value of
pmix. This is consistent with the general understanding that the
correctability of the memory as a whole is related to the phase
of a corresponding random-bond Ising model [5]. Indeed, our
numerically determined thresholds for the regular three-body
and six-body plaquette lattices agree well with the recently cal-
culated multicritical points in spin-glass models on hexagonal
and triangular lattices, respectively [25]. Specifically, we find
fc ≈ 0.1585 for pmix = 0 (theoretical value: fc = 0.1640) and
fc ≈ 0.0645 for pmix = 1 (theoretical value: fc = 0.0674).
The discrepancy of about 4%-5% between the numerical and
theoretical thresholds is of the same size as in the case of the
toric code on a square lattice (where we found fc ≈ 0.1055
as compared to the theoretical value fc = 0.1092) [9] and can
generically be attributed to the failure of the minimal-weight
perfect matching close to the threshold. Interestingly, our
numerical results suggest that the thresholds of the toric code
and our random lattice models with pmix = 0.5 are identical.

We show in Fig. 3(b) the critical fraction of errors f Z
cr for

the logical Z operators determined in the way described above
as a function of the lattice mixing probability pmix. Since the
plaquette and star lattices are dual to each other (to every
six-body plaquette correspond two three-body stars, and vice
versa), the critical fraction f X

cr of σz errors for which error
correction of the logical X operators fails [also plotted in
Fig. 3(b)] is simply given by

f X
cr (pmix) = f Z

cr (1 − pmix). (6)

At equal mixing, i.e., pmix = 0.5, the threshold values are given
by f X

cr (0.5) = f Z
cr (0.5) ≈ 0.1055.

Consequently, one of the thresholds for the two different
types of Pauli operators is that either f X

cr or f Z
cr is always

smaller than or equal to the threshold of the toric code. Our
random lattices thus bear no advantage over the latter in the
case of a uniform-error model, where σx and σz errors occur
with the same probability. The situation is different, however,
for biased noise. If bit flips and phase flips are created with
different probabilities, we can make use of the asymmetry in
the error thresholds for pmix �= 0.5. Assuming, for instance,
that σx errors are more frequent than σz errors would lead to
an overall lifetime decrease of encoded states in the toric code
due to the shorter lifetimes of the logical Z operators. However,
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pmix
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c
〉
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single-spin error probability

0

0.5

1

Z
e
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0.08 0.09 0.1 0.11 0.12 0.13
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0.5

1

Z
e
c
〉

0.13 0.14 0.15 0.16 0.17 0.18

pmix = 1

pmix = 0.5

pmix = 0

(a)

(b)

FIG. 3. (Color online) Critical error thresholds of random
models. (a) Three example plots of data used to determine
the critical error thresholds. Each plot shows, for a specific
value of pmix, the expectation values of the logical Z1 (dot-
ted lines) and Z2 (dashed lines) operators for grid sizes L =
32 (circles), 64 (triangles), and 128 (squares). The vertical dotted
lines indicate the position of the error threshold. Data points are
obtained by bootstrapping 1000 sample values, each of which is
obtained by averaging over 200 random error distributions on a single
instance of a random lattice. (b) Error thresholds [as determined in
(a)] of Z (circles) and X (triangles) operators as a function of pmix.
The dotted lines are guides to the eye.
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starting from a random model at pmix = 0.5, a decrease in pmix

will lead to an increase of the Z lifetimes and a decrease of the
X lifetimes. If the error frequencies are not too different, the
lifetimes will become identical at some value 0 � pmix < 0.5
and will be larger than the overall lifetime of the toric code.
We thus conclude that the random lattices can be employed to
increase the lifetime of encoded states compared with the toric
code on a square lattice in the presence of biased noise. While
these lattices require both error probabilities to fall in the range
0.0674 � p � 0.1640 (and below the boundary in Fig. 4; see
the next section), it should in principle be possible to extend
this range to 0 � p � 0.5 by defining stabilizers with more
than six single-spin operators in a similar fashion.

C. Relation to optimal quantum codes

We now discuss our random lattices within the context
of optimal quantum coding. It is well known that, assuming
a biased-constant-error model, there is an upper bound on
the fraction of logical qubits k and physical qubits n that
encode them, valid for all CSS codes. This bound is given
by Refs. [5,16,26]

k/n � 1 − H (px) − H (pz), (7)

where H (x) = −x log2 x − (1 − x) log2(1 − x) is the Shan-
non entropy, and px and pz are the probabilities for a single
spin to be affected by a σx and a σz error, respectively. The
bound Eq. (7) can be motivated with the following intuitive
(but somewhat hand-waving) argument we were not able to
find in the literature.

An ideal CSS code would be able to detect for each physical
qubit if it was suffering from a σx or a σz error. Assuming
that these errors are uncorrelated, the number of classical bits
required to store this information is asymptotically given by
nH (px) + nH (pz). If we are to store the same information in
qubits instead of bits, the Holevo bound [1] requires the usage
of at least as many qubits to do so. Since our optimal CSS code
needs to store the information of k encoded qubits, as well as
all possible occurrences of errors, we have

n � k + nH (px) + nH (pz). (8)

Division by n and rearrangement of terms yields the desired
bound Eq. (7).

For unbiased errors with p = px = pz, the right-hand side
of Eq. (7) becomes zero at p ≈ 0.110 028, implying that there
cannot be any CSS code coping with an error rate larger than
this value. Quite remarkably, the critical error probability for
the toric code has been determined to be fcr = 0.109 187 [25].
This is astonishingly close to the upper bound, especially when
taking into account that all stabilizers are local four-body
operators. Moreover, insertion of the error thresholds for
the regular six-body plaquette lattice and its dual lattice of
three-body stars (pmix = 1) into the right-hand side of Eq. (7)
gives

1 − H (0.0674) − H (0.1640) ≈ 6 × 10−5, (9)

which is virtually zero, indicating that the code is close to
optimal for this particular biased-error model. Due to the
symmetry of Eq. (7) with respect to the error probabilities
and the duality of the triangular and hexagonal lattices, the

0.05

0.075

0.1

0.125

0.15

0.175

p
z

0.08 0.1 0.12 0.14 0.16
px

FIG. 4. (Color online) Theoretical upper bound on biased noise
correctable by CSS codes. Given an error model of independent σx and
σz errors occurring with constant probabilities px and pz, respectively,
there exists no CSS code able to cope with pairs of error probabilities
lying above the solid line given by the zero contour of Eq. (7). The
crosses are the numerically determined pairs of thresholds of the
random models for pmix = 1 down to pmix = 0 from left to right.
The dotted line is a guide to the eye.

same argument holds for a lattice with three-body plaquettes
and six-body stars (pmix = 0) with the values of px and pz

exchanged. With our random lattices, we can thus continuously
interpolate between two optimal models by changing pmix.
This suggests that the random models are optimal for all values
of pmix, in the sense that for every 0.0674 � px � 0.1640 there
is a random model with a theoretically (close to) maximal
possible threshold for pz. The results plotted in Fig. 4 strongly
support this claim. The solid line is the zero contour of
the upper bound Eq. (7) and the crosses are the threshold
pairs of the random lattices determined numerically. Note
that the numerical data are within the typical 5% distance
of the theoretical bound. This can once again be explained by
the failure of the minimal-weight error-correction algorithm
close to the thresholds. This observation, together with the
knowledge from theory that the models are virtually optimal
for pmix = 0 and pmix = 1, leads us to conjecture that the
random models are virtually optimal for all values of pmix.
However, to carry out a theoretical study in the fashion of
Ref. [25] is outside of the scope of the present work and is
deferred for future research.

V. RANDOM ON-SITE POTENTIALS

This section is devoted to the study of the classical dynamics
of anyons in the regular toric code on a square lattice, but
with randomly modified anyon on-site energies. We are also
particularly interested in the case where long-range anyon-
anyon interaction is present, as this has been shown to generally
enhance the lifetime of the memory due to the suppression of
the anyon density with increasing system size [9]. For this,
it is convenient to introduce the modified stabilizer operators
ns = (1 − As)/2 and np = (1 − Bp)/2, where As and Bp are
the usual star and plaquette operators, respectively. These
operators are zero in the absence of an anyon on the respective
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site and equal to 1 otherwise. The more general Hamiltonian
can then be written as

H = 1

2

∑

pp′
Upp′npnp′ + 1

2

∑

ss ′
Vss ′nsns ′ , (10)

where Upp′ and Vss ′ contain the on-site energy and repulsive
anyon interaction terms. Since in this model plaquette and star
anyons are still independent, we can set Vss ′ = 0 and note
again that all results for the plaquette anyons hold equally for
the stars. We then set

Upp′ = 2Jpδpp′ + A

(rpp′)α
(1 − δpp′ ), (11)

where Jp is the on-site energy of an anyon on the plaquette
with index p, A is the interaction strength, rpp′ is the shortest
distance on the torus between plaquettes p and p′, and 0 � α <

2 is the (long-range) interaction exponent. The on-site energies
Jp are chosen randomly from a distribution with mean zero in
order to discriminate effects caused by the randomness from
those potentially caused by the system having a nonzero mean
gap.

We focus on the case of constant interaction, i.e., α = 0,
and Ising-like randomness, meaning that the Jp are chosen
from {−σ,+σ } with equal probabilities. We refer to σ � 0 as
the disorder strength. This model is interesting mostly for two
reasons. First, it is the most convenient system incorporating
randomness with respect to numerical simulation. Since the
interaction is constant and thus simply depends on the total
number of anyons, only six different single-spin-flip rates
need to be updated at each iteration step, depending on the
number and configuration of adjacent anyons and on-site
energies, respectively. Second, this simple model already
displays all dynamical effects also present in more complicated
systems (e.g., α �= 0 and a Gaussian distribution of Jp’s;
see Appendix B) and thus serves as an ideal playground for
studying and understanding these effects. Naively, one would
expect that the presence of negative on-site energies in the
system simply favors the creation of anyons and is thus always
disadvantageous for the lifetime of the memory. While this is
indeed true for a noninteracting system, we find a regime in
the interacting case where, quite surprisingly, the lifetime is
enhanced for increasing disorder strength.

Figure 5 presents the results for the two cases. The
noninteracting system is stable against disorder strengths that
are roughly equal to the temperature but then decays for larger
σ . This can be understood easily from the detailed balance
condition satisfied by the rates Eq. (5): The ratio of the creation
and annihilation rates of a pair of anyons on two sites with neg-
ative on-site energy is given by γ (2σ )/γ (−2σ ) = exp(2βσ ),
which becomes large for σ ’s exceeding the temperature. It
is thus exponentially more likely for a pair of anyons to
be created than annihilated for σ > kBT , thereby quickly
cluttering the system with anyons and crossing the critical
fraction of errors. This situation changes completely in the
presence of interactions between the anyons. The data shown
in Fig. 5 display a steep increase in the lifetime as a function of
the disorder strength, peaking at around σ ≈ 3.5kBT for that
particular system, followed by a slower decay.
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FIG. 5. (Color online) Influence of disorder on the memory
lifetime. (a) Time evolution of error-corrected Z operators for a
noninteracting (top) and interacting (bottom, α = 0, A = 0.5) model.
Both systems are of size 32 × 32 unit cells (2 × 322 spins) and
are coupled to an Ohmic bath at temperature T = 1. The different
curves display 〈Zec(t)〉 for different disorder strengths σ of Ising-like
randomness with on-site energies Jp = ±σ . In the noninteracting
system, σ is increased from 0 to 10kBT as indicated in the panel. The
inset displays the lifetime of the memory, i.e., the time at which 〈Zec〉
hits 0.9, as a function of σ . The disorder strengths examined in the
interacting case have been chosen as 0 � σ � 15kBT (see main text
and labels in the panel). (b) The lifetimes of the interacting model
extracted from the curves of the lower panel in (a). The dotted line is
a guide to the eye.

022313-7
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FIG. 6. (Color online) Number of anyons (top) and number of
single-spin errors (bottom) as a function of time in an interacting
system (α = 0,A = 0.5kBT ) of size 32 × 32 coupled to an Ohmic
bath. The strength of the Ising-like randomness is increased from
σ = 0 to σ = 15kBT as indicated in the panels (see also main text).

We can shed some light on this effect by additionally
looking at the number of anyons and the number of errors
as shown in Fig. 6. For any fixed value of σ , the number
of anyons again increases quickly but then saturates almost
instantaneously at the equilibrium value. At this point, creating
a new pair of anyons costs an energy penalty due to the
repulsive interaction that can no longer be compensated by
the negative on-site potentials. One can clearly see that the
equilibrium number of anyons increases linearly with σ , which
implies that the corresponding enhanced memory lifetimes
cannot be explained by a suppression of the anyon density.

However, the error creation rate (i.e., the slope of the curves
in the lower panel of Fig. 6) exhibits a pronounced minimum
at the same value σ ≈ 3.5kBT that also yields the maximal
lifetime. Such an initial decrease in the error rate despite
an increasing number of anyons can only be consistently
explained by a suppression of the anyon diffusion.

For disorder strengths σ 
 kBT , processes that create
anyons on two positive sites or that move an anyon from a
negative to a positive site are exponentially suppressed. The
positive sites thus effectively act as infinite barriers that greatly
reduce the mobility of the anyons, and the encoded state is
solely destroyed by diffusing anyons restricted to the negative
sites [27]. As the disorder strength is lowered, two competing

effects come into play. On the one hand, the number of anyons
is reduced linearly. On its own, this would lead to a longer
lifetime due to the presence of fewer diffusing anyons. On
the other hand, the barriers separating the regions of negative
sites are lowered, which facilitates the diffusion across longer
distances and promotes a reduction in lifetime. The observed
maximum in the memory lifetime can thus be understood as
a tradeoff between having few but relatively freely moving
anyons for σ � kBT and more but very restricted anyons for
σ 
 kBT . The interaction merely plays the role of restricting
the anyons to a small enough (for σ � kBT ) and constant
number. Appendix C contains results that further support the
picture described above.

VI. QUANTUM DYNAMICS

The toric code ground state has been shown to be stable
against local perturbations of sufficiently small strength
[28,29]. The effect on exited states, however, is more dis-
astrous. Perturbations allow the hopping of any anyons that
are present, causing the quantum memory to become unstable
[30,31]. It has been found that this problem can be solved
by the presence of disorder in the couplings of the model
[12,13], since the disorder suppresses anyon motion through a
localization effect. In this section we study the effects of the
disorder introduced by using the random lattices.

A. Error model

Consider the toric code Hamiltonian, perturbed by a
magnetic field of strength h. For concreteness, let us choose
this to be of the form

H =
∑

p

Jpnp +
∑

s

Jsns + h
∑

i

σ i
x . (12)

The effects of such a perturbation have been studied using
the methods of Refs. [12,13], where it was noted that, since
the σ i

x do not commute with the np, the perturbation will
have the effect of creating, annihilating, and transporting
plaquette anyons. For h � Jp all these effects apart from
the transport are suppressed by the energy gap, allowing the
system to be modeled as the following many-particle quantum
walk Hamiltonian:

Hp =
∑

p,p′
Mp,p′ tp,p′ + U

∑

p

np(np − 1),

Mp,p′ = δ〈p,p′〉h + δp,p′Jp. (13)

Here δ〈p,p′〉 = 1 only when the plaquettes p and p′ share a
spin. The operator tp,p′ maps a state with an anyon on the
plaquette p to that with the anyon moved to p′, and annihilates
any state without an anyon initially on p. Since the anyons are
hard-core bosons, we are interested in the case of U → ∞.

This effective description in terms of quantum walks of
anyons holds also for a more general magnetic field and other
local perturbations. The effects of anyonic braiding occur at a
higher order of perturbation theory than those of this effective
description, and hence may be ignored. The dynamics of
the plaquette and vertex anyons can therefore be considered
separately. Since they are dual to each other, once again only
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FIG. 7. (Color online) Time evolution of the standard deviation
	(t) of a single quantum walker on lattices with uniform couplings
Jp = J for all p. The different curves correspond to a square lattice
(solid), three-body plaquette lattice (dashed), and six-body plaquette
lattice (dotted). Inset: 	(t) on the random lattices from Sec. IV with
pmix = 0.5, where each point has been averaged over 1000 samples.

the plaquette anyons are considered here, without loss of
generality.

The Hamiltonian Hp is difficult to solve in general.
However, note that the dynamics of Hp are driven by the matrix
M , i.e., the Hamiltonian for a single-particle walk. Hence, by
considering the case of a single anyon, important aspects of the
behavior for the many-particle walks can be determined. It is
this approach that is taken here. The Hamiltonian M is applied
to a single anyon, initially placed on an arbitrary plaquette
of the code. The motion of the anyon can be characterized
by the time evolution of its standard deviation 	. Since finite
values of the system size L must be used in the numerics, the
walks will, at some point, interact with the boundary. In order
for this effect to be ignored, the run time of the walks is limited
to ensure that this interference always remains negligible.

The behavior of 	 over time for walks on square, triangular,
and hexagonal lattices for which all Jp are uniform can
be found in Fig. 7. In each case the standard deviation
of the distance increases linearly with time, demonstrating
the ballistic motion expected from quantum walks when no
disorder is present.

The ballistic motion caused by the field is highly damaging
to the quantum information stored within the code. Suppose
that the toric code initially has some density ρ of anyon pairs,
due perhaps to noisy preparation of the state or interaction with
the environment. If ρ is sufficiently small then the pairs will be
far apart, allowing error correction to be performed reliably.
However, when the perturbation is present this will remain
true only for a finite lifetime τ , after which the motion of the
anyons prevents them from being paired reliably. This occurs
when they have moved a distance comparable to the average
distance between pairs, and hence when 	(τ ) ∼ 1/

√
ρ. Since

	(t) grows linearly with time for ordered quantum walks (see
Fig. 7), the quantum memory will fail within a time of order
τ = O(1/

√
ρ). Mechanisms which slow down the anyons are

therefore favorable to the quantum memory, since they lead
to longer lifetimes. It is this effect that is expected from the
disorder.

B. Random lattices

Let us now introduce disorder by using the random lattice
of Sec. IV while still keeping the Jp (and Js) uniform, all
taking the same value J . Specifically the case of pmix = 0.5
is considered, to maintain the symmetry between plaquette
and star anyons. The behavior of the standard deviation of the
distance moved by a single walker is shown for this lattice in
the inset of Fig. 7. Rather than increasing linearly with time
t , as in the ordered case, it is found that 	(t) grows with the
square root of t . The motion of a quantum walker is therefore
diffusive rather than ballistic in this case. As such, the random
lattice leads to a significant slowing of the anyon motion,
increasing the lifetime to τ = O(ρ−1) (note that we always
have ρ � 1). It is possible that the random lattice also induces
Anderson localization [32], in which case the lifetime will be
increased further, but the system sizes which may be probed
are too small for this to be evident.

C. Random lattices together with J disorder

It is known that, when disorder in the Jp couplings is present
in the toric code, Anderson localization is induced [12,13].
This effect exponentially suppresses the motion of the walkers,
and causes the standard deviation of the distance to converge to
a constant value. We therefore have τ → ∞, i.e., the memory
stays stable against the perturbation for an arbitrarily long time.
It is now important to determine whether the combination of
randomness in both the lattice and the Jp couplings enhances
or diminishes this effect.

To study this, disorder in the Jp couplings is considered.
Specifically, each Jp randomly takes either the value J − σ or
J + σ with equal probabilities. The value of J is unimportant,
but the ratio of σ/h characterizes the strength of the disorder
in comparison to the magnetic field. Guided by the numerical
results of Ref. [12], we consider here disorder of strength
σ/h = 250 to ensure that the localization effect is observed
for moderately sized systems.

In Fig. 8, the time evolution of the standard deviation is
shown for the case of J disorder on a square and a random
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FIG. 8. (Color online) Time evolution of the standard deviation
	(t) for a single anyonic walker with disorder in the Jp of σ/h = 250,
on both a square lattice (solid line) and a random lattice (dashed line)
with pmix = 0.5. Each point has been averaged over 1000 samples.
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lattice. In both cases the localization effect is seen, with
the walk unable to move far beyond a few times the length
scale separating neighboring vertices. The walks with and
without the lattice disorder give very similar results, especially
at longer times. The effect of localization in the random
lattice therefore seems the same as that of the square, without
significantly enhancing or diminishing the effect.

VII. SUMMARY

We have studied the influence of quenched disorder on
the incoherent (classical) motion of anyons in modified forms
of the toric code. We have first described a class of random
models that can be obtained from the toric code by removing
a regular sublattice of spins and then for each defect site
randomly choosing one of two ways to adapt the affected
stabilizers with a probability pmix. The critical fractions of
independent errors at which these codes become uncorrectable
have then been determined numerically as a function of pmix.
We have shown that in the presence of biased noise, where
bit flips and phase flips occur at different probabilities, the
models based on random lattices can tolerate higher thresholds
than the toric code in one type of error, given that the other
type is correspondingly lower. These thresholds have been
demonstrated to be close to the upper bound correctable by
any CSS code. Second, we have studied the toric code subject
to randomness in the on-site potentials. Specifically, we have
demonstrated that in the presence of repulsive long-range
interaction between anyons, there is a pronounced maximum in
the lifetime of encoded states as a function of disorder strength.
This effect has been attributed to a reduction of anyon diffusion
due to the sites with positive on-site energy acting as barriers
for the anyons. Finally, the effects of both forms of disorder
are studied for coherent transport of the anyons. It is found
that the random lattices cause the anyons to move diffusively
rather than ballistically, increasing the lifetime of the memory.
Adding randomness in the potentials then causes the anyons
to localize, leading to further stability.

ACKNOWLEDGMENTS

We would like to thank S. Chesi, K. A. van Hoogdalem,
and D. P. DiVincenzo for fruitful discussions. This work was
partially supported by the EPSRC, the Royal Society, the Swiss
NSF, NCCR Nanoscience Basel, and DARPA.

APPENDIX A: CRITICAL FRACTION OF RANDOM
LATTICES IN CONTACT WITH AN OHMIC BATH

We present here some additional results for the error
thresholds of random lattices in the presence of thermal errors.
Figure 9 shows the fraction of errors f at the lifetime of an
infinitely large system as a function of the lattice mixing pmix

and for different temperatures T . In this section, the energy
scale is set by the anyon gap J . Time is thus measured in units
of (κ1J )−1. For given pmix and temperature T , we first simulate
systems of several different sizes in contact with an Ohmic
bath. We then determine the lifetime τ as the intersection of
the decay curves of the corresponding error-corrected logical
Z operators (see inset of Fig. 9). Since the anyon dynamics
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FIG. 9. (Color online) Critical fraction of errors fcr = f (t = τ )
as a function of lattice mixing pmix at temperatures T = 0.2J

(circles), 0.45J (triangles), 1.0125J (squares), and 2J (diamonds).
The lifetime τ is given by the intersection of error-corrected logical
Z operators for lattice sizes L = 38,56,86. Error bars are due to the
uncertainty in τ . The solid line is determined by the thresholds from
the Monte Carlo simulations of an independent-error model (see main
text). The inset shows an example of crossing logical Z operators for
the particular values pmix = 0.4 and T = 0.45J .

are independent of the system size (note that the anyons are
not interacting with each other), all curves f (t) for different
system sizes collapse and the specific value f (t = τ ) = fcr

can be read off easily. One can see nicely that these thresholds
converge with increasing temperature to the ones given by the
model of independent errors. This can be explained by the loss
of correlations between errors due to an increasing amount of
thermal noise in the form of fluctuating anyons.

APPENDIX B: GAUSSIAN NOISE AND 1/r INTERACTION

We have also performed simulations with 1/r interaction
(α = 1) and plot the results in Fig. 10. Apart from Ising-like
disorder (Jp = ±σ ) we have also looked at a Gaussian
distribution of on-site potentials Jp with mean zero and
standard deviation σ . Generally, the lifetimes are shorter than
for constant interaction because the weaker 1/r interaction
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FIG. 10. (Color online) Lifetime τ as a function of disorder
strength σ in the presence of Gaussian (triangles) and Ising (squares)
noise in an interacting system with α = 1, A = 0.5kBT . The lines
are guides to the eye. The size of this particular system was L = 32.
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FIG. 11. (Color online) Lifetime as a function of Ising polar-
ization P . The parameters for these systems are L = 50, α = 0,
A = 0.5kBT , σ = 5kBT . The dashed line is a guide to the eye.

allows for a larger density of anyons. Nevertheless, the results
are qualitatively similar to the ones discussed in the main text,
namely, showing a pronounced maximum of the lifetime as
a function of σ . This supports the picture that the interaction
is required to limit the number of diffusing anyons, while the
initial increase in lifetime with σ is due to their obscured
diffusion. In the case of Gaussian noise, the latter effect is
even stronger, because anyons are created or get trapped in a
few sites with on-site potentials much lower than −σ , out of
which it is difficult for them to escape again. This explains the
increased lifetime from Ising to Gaussian randomness.

APPENDIX C: SUPPORTING SIMULATIONS

1. Polarized Ising randomness

In order to confirm the picture that it is indeed the sites
with Jp > 0 that restrict the diffusion by acting as barriers
to the anyons, we have determined the lifetime τ of an
interacting system (L = 50, α = 0, A = 0.5 kBT , σ = 5 kBT )
as a function of the Ising polarization P (see Fig. 11). The latter
is defined as P = 1 − 2η, where η is the fraction of sites with
negative on-site energy.

Starting from P = −1, i.e., Jp = −σ for all sites p, the
lifetime moderately increases as more and more positive sites
are randomly added (increasing P ). Around P = 0, where
there is an equal number of sites with positive and negative
on-site energies, the lifetime drastically increases by about two
orders of magnitude. At this point, large connected areas of
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FIG. 12. (Color online) Lifetime as a function of Ising disorder
strength in a noninteracting system of size L = 32 with an artificially
engineered maximal number of anyons equal to 20. The solid line is
a guide to the eye. Inset: The error-corrected logical Z operator as a
function of time for different σ yielding the lifetimes shown in the
main plot.

sites with Jp < 0 can no longer exist, such that the anyons
can move freely only within areas each consisting of just a
few negative sites. Consequently, the diffusion is drastically
reduced. If and how the polarization at this threshold is related
to the site and bond percolation thresholds of the square
lattice, which are η ≈ 0.5927 and 0.5 (see, e.g., Ref. [33]),
respectively, is not completely clear at the time of writing and
remains the subject of future research.

2. Artificial cutoff of number of anyons

We can support the claim that the only relevant effect of
the repulsive interaction is to reduce the number of anyons by
simulating a noninteracting system with an artificial maximal
number of anyons. These data are shown in Fig. 12. Despite
the absence of interaction, the lifetime of encoded states is
still growing with increasing Ising disorder strength, hence
clearly demonstrating that this effect is caused solely by
the disorder. Furthermore, the lifetime saturates for large σ ,
because the energy barriers posed by the sites with Jp = +σ

are essentially infinitely high and increasing them further bears
no more advantage. The observed saturation also confirms that
it is indeed the growing number of anyons that is responsible
for the subsequent decrease in lifetime at large σ in the data
presented in the main text (where the number of anyons was
not artificially restricted).
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