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Temperature-independent quantum logic for molecular spectroscopy
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We propose a fast and nondestructive spectroscopic method for single molecular ions that implements quantum
logic schemes between an atomic ion and the molecular ion of interest. Our proposal relies on a hybrid coherent
manipulation of the two-ion system, using optical or magnetic forces depending on the types of molecular levels
to be addressed (e.g., Zeeman, rotational, vibrational or electronic degrees of freedom). The method is especially
suited for the nondestructive precision spectroscopy of single molecular ions and sets a starting point for new
hybrid quantum computation schemes that combine molecular and atomic ions, covering the measurement and
entangling steps.
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I. INTRODUCTION

Recent advances in trapping and cooling of molecules and
molecular ions are opening new perspectives in fields as varied
as cold chemistry, quantum dynamics of complex systems,
metrology, and quantum computation [1–4]. In this context, the
sympathetic cooling of molecular ions represents a particularly
attractive approach which enables the performance of chemical
and spectroscopic experiments on the single-particle level [5].
With the recent breakthrough in the production of cold molec-
ular ions in well-defined internal states [6–9], fully coherent
experiments with single molecular ions now come within
reach. Precise knowledge and control of the internal quantum
state of molecular ions is relevant for quantum controlled
chemistry [5,10], frequency metrology of single ions [11,12],
and prospective applications in quantum-information process-
ing, where a lot of progress has already been made with trapped
atomic ions [13,14]. However, readout procedures of the
internal quantum state have thus far relied on methods such as
laser-induced charge transfer [8,9] or photodissociation [6,7]
because of the lack of closed cycling transitions in molecular
systems. These techniques are inherently destructive and not
suitable if repeated measurements on a single molecular ion
are required, for instance, in quantum computation [14] or
frequency metrology [11].

In this work we propose a fast, efficient, and accurate
molecular spectroscopy scheme based on quantum logic and
coherent control theory able to address a variety of internal
degrees of freedom of the molecules. Our proposal relies on
a hybrid manipulation of the ion of interest and an atomic
ion, such as 40Ca+ or 9Be+, that acts as a probe. Optical or
magnetic forces are used on the ions at will, depending on
the precise internal states which are involved in the quantum
operations. They are arranged in optimized gates that take a
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time from 50 μs up to 1 ms, are insensitive to the temperature
of the ion crystal, and have a number of relevant applications.
The most immediate one is the determination of magnetic
moments or Zeeman shifts in atoms and molecules, such as
14N2

+
or 16O2

+
, for precision-spectroscopic purposes. This

pushes the field along the line of previous experiments with
atomic ions [11], incorporating two important features: greater
versatility (that allows addressing a broader variety of ions
with a complex internal structure) and simpler experimental
requirements, as cooling the ions to the motional ground
state is not necessary. Another application of this work
is to replace the destructive measurement techniques in
current experiments with hybrid atom-molecule systems [8,9].
Moreover, the proposed framework represents the cornerstone
of a hybrid quantum computation scheme which for the
first time combines molecular and atomic ions, covering the
measurement and entangling steps. Finally, in the broader
context of molecular physics, the most important aspect of
the scheme is that it represents an entirely new approach for
molecular spectroscopy which relies on the manipulation of
quantum phases and is tailored to the interrogation of single
trapped particles.

Our manuscript is structured as follows. We start in Sec. II
by reformulating the concept of quantum logic spectroscopy
[11], showing how, by means of control-phase gates and Ram-
sey interferometry, a single ion may probe the state population
or other observables of any other ion in a Coulomb crystal [5].
We then show how to implement those control-phase gates
using state-dependent forces [15–17] in a crystal with different
types of atomic and molecular ions, thus introducing a quantum
protocol for molecular ions. With these tools, in Sec. III we
derive three slightly different variants of this protocol and test
them with accurate calculations for the case of 14N2

+
ions.

In the first version, the probe and the target ions are subject
to pulsed optical forces generated by AC Stark shifts. This
fast protocol is targeted at the determination of electronic,
rotational, and vibrational states of the target molecular ion. In
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the second version, the ions are subject to oscillating magnetic
fields, allowing the determination of Zeeman states. The final
version relies on femtosecond laser pulses acting on the control
ion, leading to an order of magnitude greater sensitivity of the
detection scheme. We draw our conclusions in Sec. IV.

II. QUANTUM LOGIC SPECTROSCOPY

Roughly speaking, spectroscopy studies the reaction of a
physical system under periodic drivings, forces, or radiation of
various frequencies. The most common approach is to watch
the back-action of the system on the radiation that drives
it, measuring the absorption, the emission, or the phase in
those fields. The field of quantum logic spectroscopy (QLS),
introduced in Ref. [11], advocates a very accurate study of the
changes suffered by the driven system, using quantum gates
to enhance the precision of those studies. In this section we
extend these ideas to the field of molecular spectroscopy. To
this end, we have to overcome the two main limitations of the
original QLS protocol, which are the temperature requirements
and its speed.

A. Phase-sensitive QLS protocol

The original experiment for QLS [11] employed two atomic
ions that allow optical manipulation, 9Be+ and 27Al+. By
means of sideband transitions, the state of the target ion, 27Al+,
which cannot be directly measured with spectroscopic accu-
racy because it lacks cycling transitions, was mapped onto the
control ion, 9Be+, which was later measured using the accurate
technique of electron shelving. Hence, in this pioneering work,
quantum logic addressed the lack of cycling transitions in
27Al+ at the price of imposing accurate coherent operations
(sidebands) and ground-state cooling of the motional state of
the ions in the trap. Both requirements are experimentally
demanding and have been addressed in later experiments with
atomic ions (see, e.g., Refs. [18,19]). However, they have
not yet been achieved for sympathetically cooled molecular
species.

One can dramatically enhance the versatility of the QLS
protocol by using geometric gates based on state-dependent
forces [15–17]. These are quantum gates that are insensitive
to the motional state of the ions and, thus, may be applied
to sympathetically cooled molecular ions. The underlying
physical principle of these gates, explained in Sec. II B, is that
when a chain of ions is shaken by some external forces, the
quantum state acquires a phase that depends on those forces.
Moreover, when the forces experienced by the ions are “state
dependent,” that is, when they have different magnitudes or
signs depending on the internal state of the ions, then the
quantum phase carries precise information on the state of those
atomic or molecular ions. This information is the one we use
for the QLS algorithm.

More precisely, assume that we have two ions, a control or
logic ion, labeled C, and a target or spectroscopy ion, labeled T,
confined in the same ion trap. The C ion is Doppler laser cooled
and sympathetically cools the target ion to form a two-ion
Coulomb crystal. Both ions will be subject to independent
external forces, differing from the laser-cooling process. The
ion C will be a qubit, and the force acting on it will depend on

(a)

(b)

FIG. 1. (Color online) State detection protocol. (a) The probe
ion experiences a series of local gates combined with a two-qubit
control-phase gate in which the control is a property, O, of the target.
(b) Oscillations in the state of the probe ion as a function of the
acquired phase, �O ∝ tO. We plot the mean excitation probability
with the error after 10 repetitions (ξ = 0).

its internal state, fC(t)σ z
C, while the force on T will depend

on some property of this ion, fT (t)O, such as a magnetic
moment or a quantum number. Here, σ z

C is the Pauli z matrix
for the internal state of the C ion. As explained in Sec. II B,
the quantum state of the system will acquire a total nontrivial
phase of the form

�O = σ z
COφCT , (1)

where φCT is a function of the normal modes of the two ions,
ωcom and ωstr,1 and their combined drivings. This phase is
robust, and it does not depend on the motional state of the ions
at the beginning of the gate operation and, thus, is independent
of temperature. Based on this, we design a quantum protocol
which interrogates very accurately the state-dependent phase
�O , obtaining the value of the observable O [cf. Fig. 1(a)] as
follows:

(i) prepare ion C in state |0〉;
(ii) apply a Hadamard gate on C, H = exp(−iσ

y

Cπ/2);
(iii) optionally, apply a reference phase on the control ion,

exp(iφσ z
C);

(iv) apply the state-dependent forces fC,T (t) on the C and
T ions, ensuring that the initial motional state of the ions is
restored (see Sec. III B);

(v) undo the Hadamard gate, H †; and
(vi) measure the state of the control ion.

At the end of this process the probe and the target ions will get
entangled and the excited state population of the control ion
will oscillate as [cf. Fig. 1(b)]

P↑ = sin2(tOφCT + ξ ). (2)

This allows us, by repeated application of the protocol, to
determine the value of O with very high precision [20].

1Note the different ions experience different trapping frequencies,
and this influences their eigenmodes, ωcom,str.
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We have so far presented the protocol in a very general form,
without clarifying the origin and the time dependence of the
forces that act on the control and target ion. In the following
section we will elaborate on the physics behind the phase
gate (1), developing the formalism to compute and optimize
the control and target forces. Using this we will then work out
the actual implementation of the protocol to detect molecular
electronic, rovibrational, or Zeeman states, using optical or
magnetic fields.

B. Geometric phases

As pointed out in Ref. [17], quantum harmonic oscillators
possess a very simple geometric structure: a continuous
displacement of the oscillator through phase space induces a
global phase on the wave function, and this phase depends only
on the initial and final points of the path, i.e., it is geometric in
nature. Following the framework in Ref. [15], one can show
that when a harmonic oscillator experiences a force h̄f (t) for
a time T , its quantum state acquires a phase

φ[ω,f ] = a2
0

∫ T

0

∫ τ1

0
sin[ω(τ1 − τ2)]f (τ1)f (τ2)dτ2dτ1,

(3)

where ω and a0 are the harmonic oscillator frequency and
length, respectively. This phase is proportional to the area in
phase space covered by a coherent state subject to this force,
whose trajectory is

z(t ; ω,f ) = z(0) − i
a0√

2

∫ t

0
f (τ )eiωτ dτ. (4)

This geometric phase is resilient to temperature, for the area
does not depend on the initial state of the oscillator, z(0).
Moreover, it is also insensitive to random errors in f (t), which
appear only as second-order corrections.

In our protocol we will act with two independent forces,
fC and fT , on two ions. In this case we have not one but
two harmonic oscillators, associated to the center of mass
(com) and stretch mode (str) of the ion crystal. Since the target
and control ions differ, they will, in general, have different
masses and also experience different confinement potentials.
This complicates the final expressions, but we can still write
the effective Hamiltonian

H =
∑

s∈{com,str}

{
h̄ωsa

†
s aa + h̄Fs(t)

1√
2

(as + a†
s )

}
, (5)

where Fcom and Fstr are linear combinations of σ z
CfC(t) and

OfT (t) (cf. Appendix A). The total phase acquired by the
combined system may be written

� = φ[ωcom,Fcom] + φ[ωstr,Fstr]. (6)

In this expression there will be many contributions, but the
only one that will influence the signal of our protocol is
the one proportional to σ z

C × O, for it is the only entangling
phase in this process. This nonlocal phase may be rewritten
as the product (i), with some integral φCT that depends on
the actual driving but which may be computed analytically or
numerically.

III. IMPLEMENTATION OF THE QLS PROTOCOL

In the following sections we will present three different
versions of the protocol that can use different types of forces
and drivings and how they can be used to probe different
properties of the target ion. In order to derive analytical
estimates, we will work with Gaussian pulses having a duration
T and driven at frequency ν,

fC,T (t) = f 0
C,T e−(2t/T )2

cos(νt). (7)

This ansatz does not represent any loss of generality, as
the quantum gates may be further optimized choosing more
sophisticated dependencies. Nevertheless, experience shows
that the limits set by the previous pulses are very close to those
achievable by more general forces [16].

For this time dependence of the driving, and a sufficiently
long pulse, T � 5π/min{|ν − ωcom|,|ν − ωstr|} that ensures
that all motional of freedom are restored to their initial state,
the two-ion state accumulates a total phase as given by Eq. (1)
with (cf. Appendix A)

φCT = 1

4

√
π

2

f 0
Cf 0

T a2T

ω

(ν,ω,μ). (8)

Here we introduced the enhancement function


(ν,ω,μ) := ω2

ω2
com(μ) − ν2

− ω2

ω2
str(μ) − ν2

, (9)

where μ = mT /mC is the mass ratio of the two ions, a2 =
h̄/[(mC + mT )ω], and ω is the frequency of the control ion
trap. Note that our formalism allows the study of arbitrary
drivings, ν, which can be advantageous in some setups, as we
discuss below.

A. Optical kicking protocol to address electronic
and rovibrational states

The first version of the protocol aims at distinguishing
electronic, vibrational, and rotational states of the molecular
ion. For these degrees of freedom it is both advantageous and
very efficient to rely on optical “kicks” as the state-dependent
driving mechanism behind the gate. However, due to the
inherent complexity of the molecular energy-level structure,
we must seek gentle ways to drive the charged particles without
accidentally exciting any undesired internal transitions. For
this purpose, we will employ the dipole forces induced by
two lasers that are detuned from an electronic transition of the
atomic and the molecular ion, respectively. Each ion will sit
on a spot of maximum slope of intensity, experiencing an AC
Stark shift force

fC,T (t) = �(t)2

�

1


, (10)

where � is the laser detuning, � is the Rabi frequency, and
�2 is proportional to the light intensity.2 The force depends

2For simplicity, we assume two independent lasers, each one acting
either on the C or the T ion, with the same Rabi frequency and
detuning but not phase locked. However, none of these assumptions
are essential for the results.
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(a)

(c)

(b)

(d)

FIG. 2. (Color online) Scheme for imparting an optical force on
an ion. [(a) and (c)] A single off-resonant laser beam is focused on the
particle with a radial displacement to achieve the maximum intensity
gradient. [(b) and (d)] Two counterpropagating laser beams create an
optical lattice and the atom sits on the point of maximum slope.

on some characteristic length over which the light intensity
varies, , which ranges from half a wavelength for an optical
lattice, up to  ∼ 5–100 μm for a focused laser beam (see
Fig. 2).

We will work in the pulsed regime, with ν = 0 and T �
2π/ω, applying four kicks on the ions. The kicks will be spread
in time according to

{(�k,−t1),(�k,−t2),(−�k, t2),(−�k, t1)}, (11)

with (t1,t2) = (0.920,0.080)2π/ω; see Fig. 3. This sequence,
which takes two periods of a trap, is similar to the one
developed in Ref. [16] for femtosecond resonant laser pulses,
but the forcing mechanism in that reference cannot be im-
plemented with molecules because spectroscopic addressing
is very difficult. We emphasize that we rely instead on
ultra-fast off-resonant kicks. Interestingly, as we show below,
working with off-resonant kicks does not result in particularly
demanding field intensities.

The momentum kick can be approximately related to the
desired phase (i) as follows:

�k ∼ T

√
f 0

CaCf 0
T aT ∼

√
φCT . (12)

Requiring that the photon scattering probability remains
below the small value ε 	 ��2T /�2 � 1, we can extract
the product of the average Rabi frequency, �, and the kick
duration, T , as a function of the detuning, �, the spontaneous
emission rate of the ions, �C,T , and the error tolerance, ε.

From here we obtain the relation√
φCT ∼ ε

�

�

aC,T


, (13)

which states that we need low trap frequencies, steep light
gradients, and large detunings in order to acquire a large phase
shift.

We have studied numerically the conditions to perform
these quantum gates with a variety of atomic and molecular
species. As an example, in Fig. 4(a) we plot the required
detunings for making an accurate quantum gate (ε ∼ 0.1%,

dashed) and for running the spectroscopy protocol (ε =
1%, solid) using a setup with 40Ca+ as the control ion
and 14N2

+
as the target ion. For the atomic ion we chose

the cycling transition that is excited in electron-shelving
measurements, 2S1/2 → 2P 1/2, for which existing lasers may

Ω Π
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FIG. 3. (Color online) Effect of the four pulses (11) on a coherent
state of a harmonic oscillator. The red dashed lines correspond to the
unforced motion while the solid blue lines are subject to the kicks.
(Top) Phase-space plot: The trajectory starts at the point indicated
by the small black circle. The arrows indicate the effect of each
successive pulse. (Bottom) Position, Q, and momentum, P , as a
function of time, t . Note how both variables return to their initial
orbit after the fourth kick.

be conveniently reused. For the molecular ion we choose the
strong electronic transition |X 2�+

g ,v′′ = 0,J ′′ = 1/2,F1〉 →
|B 2�+

u ,v′ = 0,J ′ = 3/2,F1〉, which would allow us to detect
states that are already produced in the laboratory [8]. As
expected, if we need greater accuracy in the two-qubit gate
without exceedingly large laser power (ε ∼ 0.1%), it is best
to adopt an optical lattice configuration with the ion sitting
on the slope, cf. Figs. 2(b) and 2(d). If we are only interested
on spectroscopy and state determination, we may increase the
error tolerance to ε ∼ 1% and place the ions at half the waist
from the center of a focused laser beam, cf. Figs. 2(a) and 2(c).
In both cases the duration of the pulse is much shorter than the
trap frequency, and gate times of microseconds are feasible
using laser powers of milliwatts.

B. Magnetic forces for Zeeman states

In order to discriminate Zeeman states within a molecular
rovibrational level, we develop a second version of the
protocol, based on the use of magnetic forces, which result
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(a)

(b)

FIG. 4. Optical kicking protocol acting on a 40Ca+ and a 14N2
+

ion. (a) Required detunings vs. trap frequency for a scattering error
ε = 1% and beam waist  = 5 μm (solid) and ε = 0.1% in an optical
lattice,  = λ/2 = 397 nm (dashed). (b) Gate pulse time (solid)
and total gate duration, including pauses (dash-dot), for ε = 1%,
 = 5 μm, and 1-mW laser power. For simplicity, we assumed
the same detuning for the lasers acting on the 40Ca+ (2S1/2 →
2P 1/2, 397 nm) and 14N2

+ (|X 2�+
g ,v′′ = 0,J ′′ = 1/2,F1〉 →

|B 2�+
u ,v′ = 0,J ′ = 3/2,F1〉, 391 nm) transitions.

from the coupling of a magnetic field gradient with the effective
magnetic moment μ of the particle [21,22],

fT(t) = ∂B(t)

∂x

μ

h̄
. (14)

In this setup spontaneous emission is not a concern, but the
forces are going to be typically much weaker. This may be
compensated by driving the magnetic field close to resonance
with one vibrational mode of the ion crystal as realized in
Ref. [23]: for a driven force [Eq. (7)] with ν = (1 + η)ωcom

close to the center of mass mode, the phase is enhanced,
�(η) ∼ �(0)/η, at the expense of a longer gate, 1/η times
longer.

As a relevant, realistic example, we study the Zeeman
splitting of the hyperfine structure of the 14N2

+
molecular ion

in the rovibrational ground state of the electronic ground-state
potential X 2�+

g [8,9]. The molecular Hamiltonian in the
presence of an external magnetic field reads [24–26]

H = Hrot + Hsr + Hhfs + HeqQ + HZ, (15)

where Hrot is the rotational Hamiltonian, Hsr is the spin-
rotation interaction, Hhfs is the magnetic hyperfine interaction,
neglecting the coupling between the external magnetic field
and the nuclear spin, HeqQ is the nuclear electric quadrupole
interaction, and, finally, HZ is the Zeeman interaction. We have
calculated the lowest Zeeman levels and their respective mag-
netic moments, shown in Fig. 5 (see Appendix B for details). It
is remarkable that almost all states are distinguishable by their
magnetic moments, requiring no more than 10% accuracy in
its determination.
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µ 
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E

/d
B

  (
M

H
z/

G
)

F=3/2

F=1/2

F=5/2

FIG. 5. (Color online) Zeeman energy shifts of the hyperfine
levels of the ground rovibronic state of 14N2

+ (left) and their
derivatives, μ = (∂E/∂B)/h̄ (right), which are needed to estimate
the state dependent force (14).

Using the magnetic moments one can easily compute the
field intensities required to perform interferometry using a
40Ca+ and a 14N2

+
ion, as a function of the trap frequency.

As shown in Fig. 6, a trap with ω = 2π × 574 kHz requires a
magnetic field gradient of 10 T/m for a 250-μs gate using
a driving ν = 1.01ω, values which do not seem disparate
[23,27]. However, note that for the same duration there exists
another configuration for ν = 0 which produces the same
gate at a lower value of B ′ = ∂B/∂x, using a smaller trap
frequency. More precisely, if we can make a gate with field

Ω Π

Ω Π

Μ

FIG. 6. (Top) Gradient and (bottom) time required to achieve
maximum entanglement between 40Ca+ and 14N2

+ ions, using an os-
cillating magnetic field gradient ∂B/∂x = exp[−(2t/T )2]B ′ cos(νt)
in a harmonic trap, ω, for drivings ν/ω = 0, 1.1, and 1.01 (dash-
dotted, dashed, and solid).
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gradient B ′ using ν = (1 + η)ωcom in a time Tν ∼ 5π/ηω,
we can perform the same gate using a smaller trap frequency
ων=0 ∝ η2/3ων and a significantly shorter time Tν=0 ∝ η1/3Tν .
This setup may be advantageous for larger traps, where
achieving a large B ′ may be difficult and would otherwise
require long gate times; using in this case ν = 0 would reduce
the gate time, thus avoiding heating problems [28,29].

C. Optomagnetic protocol

Both of the preceding methods may hit an important
problem with certain molecules which due to their mass or
their internal structure respond more weakly to the external
optical and magnetic forces. For such cases, we propose a
third protocol that combines the application of ultrashort laser
pulses on the control ion with arbitrary optical or magnetic
forces on the target. Driving the control ion with a sequence
of N femtosecond π pulses [16] we will be able to inject
an almost arbitrary amount of momentum �kC ∼ N × 2π/λ

to the system. The enhanced pushing capability of the pulse
train compensates the smaller kicks, �kT , suffered by the
target particle, as the total phase is proportional to the product,
φCT ∼ �kC�kT . This simple idea may be used in an ultrafast
combined optomagnetic protocol to lower the magnetic field
requirements by various orders of magnitude.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have introduced a spectroscopy pro-
tocol based on quantum logic that is applicable to a wide
range of ions without accessible cycling transitions, such as
molecular ions. We have presented numerical results, based
on original molecular structure calculations, showing that
the requirements to implement this protocol with molecular
ions of current interest are within experimental reach. This
protocol, which combines magnetic and optical forces, enables
the realization of measurements and entanglement on hybrid
atom-molecule ion systems without the need for cooling to
the trap vibrational ground state, a significant improvement
over previous methods. We consider this approach to high-
resolution spectroscopy of cold molecular ions opens the door
to novel hybrid quantum computation schemes.
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APPENDIX A: CALCULATION OF THE
TOTAL PHASE ACQUIRED

We sketch here the derivation of the phase acquired by the
two-ion state due to the forces applied on the ions, Eq. (8).
We start by recalling the total phase acquired by a state of a

harmonic oscillator of frequency ω driven by a force f (t) for
a time T [15]:

φ = 1

2h̄2 Im
∫ T

0
dt

∫ t

0
dτeiω(t−τ )f (t)f (τ ).

For a time dependence as in Eq. (7), and assuming a sufficiently
long pulse so the motional state is restored to its initial value,
T � 5π/min|ν − ω|, this phase takes the form

φ[ω,f ] =
√

π

2

(
f 0a

h̄

)2
ωT

8(ω2 − ν2)
. (A1)

with a = √
h̄/(mω) the harmonic oscillator length.

For the case of a two-ion system, we have to take into
account that a force applied on one of the ions will affect the
two common modes, center of mass (com) and stretch (str).
Applying forces F1 and F2 on the two ions, the forces on the
com and str modes are

Fcom = F1 + F2, Fstr = 1

m1 + m2
(m2F1 − m1F2) .

The phase acquired is then given by Eq. (6). Using the
result (A1), we obtain that the only contribution to � that
depends on F1F2 is

� = F1F2

√
π

2

T

8(m1 + m2)h̄

(
2

ω2
com − ν2

− 2

ω2
str − ν2

)
,

which is readily rewritten as Eq. (8) with f 0
C,T = F1,2/h̄.

APPENDIX B: CALCULATION OF 14N2
+

HYPERFINE LEVELS

The complete molecular Hamiltonian for a 2� molecule
such as N+

2 , including the hyperfine structure and the corre-
sponding splittings under a magnetic field B, involves several
angular momenta: the rotational angular momentum N , the
(total) electronic spin S, and the total nuclear spin I . These
momenta are coupled within a Hund’s case (b) scheme, i.e.,
J = N + S and F = J + I . The terms in Eq. (15) are given
by (cf. Refs. [24–26]):

(a) The rotation of the molecule, including the centrifugal
distorsion,

Hrot = Be N2 − De N4. (B1)

(b) The fine-structure spin-rotation interaction,

Hsr = γsr N · S. (B2)

(c) The magnetic hyperfine Hamiltonian that couples the
nuclear spin with the electronic spin and molecular rotation,

Hhfs = HIS + HIN. (B3)

The first contribution can be written as a sum of the Fermi
contact interaction, HF = bF I · S, and the dipolar term,
Hdip = −√

10T (1)(I) · T (1)(S,C2), in spherical tensor notation
(see Ref. [26] for details). The second part, HIN , is similar to
the spin-rotation term but considering the nuclear spin instead,
HIN = cI I · N .
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TABLE I. Values of the molecular Hamiltonian parameters used in the calculations. Be and De are taken from Ref. [30] and are here given
in cm−1, while the other parameters are taken from [24] and given in MHz.

Parameter Be De γ γN bF cdip cI eqQ

Value 1.9223897 5.9758 × 10−6 276.92253 −3.9790 × 10−4 100.6040 28.1946 0.01132 0.7079

(d) The nuclear electric quadrupole interaction, which can
be expressed using spherical tensor notation as

HeqQ = e
∑
i=1,2

T (2)(Qi)T
(2)(∇ · Ei), (B4)

with e the electron charge.
(e) Finally, for the Zeeman interaction we include only the

coupling of the electronic spin with the magnetic field

HZ = gμBBSz, (B5)

where g is the electron gyromagnetic factor (taken g = 2), B

is the magnetic field, μB is the Bohr magneton, and Sz is the
component of the electronic spin along the quantization axis
that is taken in the direction of the external field. Any other

magnetic contributions will be neglected as they are of much
less importance.

We work within the Hund’s case (b) and select the basis
|NSJIFMF 〉 to represent the Hamiltonian. The nuclear spin
of 14N equals I1 = 1, and the calculations have been carried
out for the symmetry block which involves even values of
both the rotational (N = 0,2,4, . . .) and the total nuclear spin
(I = 0,2). For zero magnetic field, our results are in complete
agreement with those appearing in Ref. [24]. We have also
checked that the calculations reported here are converged just
including N = 0,2 in the Hamiltonian matrix.

With the values for the parameters of the molecular
Hamiltonian reported in Table I, the matrix elements read
explicitly as follows [24]:

(i) The rotational term:

〈N ′S ′J ′I ′F ′M ′
F |Hrot|NSJIFMF 〉 = δNN ′δSS ′δJJ ′δII ′δFF ′δMF M ′

F
{BeN (N + 1) − De[N (N + 1)]2}. (B6)

(ii) The fine-structure, spin-rotation term:

〈N ′S ′J ′I ′F ′M ′
F |Hsr|NSJIFMF 〉 = δNN ′δSS ′δJJ ′δII ′δFF ′δMF M ′

F

γsr

2
[J (J + 1) − N (N + 1) − S(S + 1)] . (B7)

Here, the coupling constant is defined by γsr = γ + γNN (N + 1).
(iii) The magnetic hyperfine structure terms:

〈N ′S ′J ′I ′F ′M ′
F |HF |NSJIFMF 〉 = δNN ′δSS ′δII ′δFF ′δMF M ′

F
bF (−1)F+I+J+J ′+N+S+1

√
I (I + 1)(2I + 1)

×
√

S(S + 1)(2S + 1)
√

(2J ′ + 1)(2J + 1)

{
I J ′ F

J I 1

}{
S J ′ N

J S 1

}
; (B8)

〈N ′S ′J ′I ′F ′M ′
F |Hdip|NSJIFMF 〉 = δSS ′δII ′δFF ′δMF M ′

F
cdip(−1)F+I+J+N ′+1

√
30 I (I + 1)(2I + 1)S(S + 1)(2S + 1)

×
√

(2J ′ + 1)(2J + 1)(2N + 1)(2N ′ + 1)

{
I J ′ F

J I 1

} ⎧⎨
⎩

N ′ N 2
S S 1
J ′ J 1

⎫⎬
⎭

(
N ′ 2 N

0 0 0

)
; (B9)

〈N ′S ′J ′I ′F ′M ′
F |HIN |NSJIFMF 〉 = δNN ′δSS ′δII ′δFF ′δMF M ′

F
cI (−1)F+I+J ′+J+N+S+1

√
I (I + 1)(2I + 1)

√
N (N + 1)(2N + 1)

×
√

(2J ′ + 1)(2J + 1)

{
J 1 J ′
I F I

} {
N 1 N

J ′ S J

}
, (B10)

with (· · ·· · ·),{· · ·· · ·}, {· · ·· · ·· · ·}, 3-j , 6-j , and 9-j symbols, respectively. All matrix elements couple functions with �J = 0,±1. In
addition, the dipolar interaction, Hdip, mixes states with �N = 0,±2. The values for bF , cdip = t + tNN (N + 1), and cI are
given in Table I. We have neglected the centrifugal distortion term tN because of its very small value.

(iv) The nuclear quadrupole term, which allows for a number of off-diagonal elements (�J = 0,±1,±2; �I = 0,±2; �N =
0,±2):

〈N ′S ′J ′I ′F ′M ′
F |HeqQ|NSJIFMF 〉 = δSS ′δFF ′δMF M ′

F

eqQ

2

(−1)I + (−1)I
′

2
(−1)F+I ′+2J (−1)2I1+S+2N ′

×
√

(2I + 1)(2I ′ + 1)(2J + 1)(2J ′ + 1)(2N + 1)(2N ′ + 1)

×
{
I ′ 2 I

J F J ′

} {
I1 2 I1

I I1 I ′

}{
N ′ 2 N

J S J ′

}(
N ′ 2 N

0 0 0

)(
I1 2 I1

−I1 0 I1

)−1

, (B11)
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where I1 is the nuclear spin of one of the nuclei composing the (homonuclear) molecule, and the value of eqQ is also from
Ref. [24].

(iv) Finally, the Zeeman term [26]:

〈N ′,S ′,J ′,I ′,F ′,M ′
F |HZ|N,S,J,I,F,MF 〉 = δNN ′δSS ′δII ′gμBB(−1)F

′−M ′
F (−1)2J ′+N+S+F+I

√
(2F ′ + 1)(2F + 1)

×
√

(2J ′ + 1)(2J + 1)
√

S(S + 1)(2S + 1)

(
F ′ 1 F

−M ′
F 0 MF

){
F ′ J ′ I

J F 1

} {
J ′ S N

S J 1

}
.

(B12)

[1] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys.
11, 055049 (2009).

[2] M. T. Bell and T. P. Softley, Mol. Phys. 107, 99 (2009).
[3] V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 99, 150801

(2007).
[4] D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).
[5] S. Willitsch, M. T. Bell, A. D. Gingell, and T. P. Softley, Phys.

Chem. Chem. Phys. 10, 7200 (2008).
[6] P. F. Staanum, K. Hojbjerre, A. K. Hansen, and M. Drewsen,

Nat. Phys. 6, 271 (2010).
[7] T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller,

Nat. Phys. 6, 275 (2010).
[8] X. Tong, A. H. Winney, and S. Willitsch, Phys. Rev. Lett. 105,

143001 (2010).
[9] X. Tong, D. Wild, and S. Willitsch, Phys. Rev. A 83, 023415

(2011).
[10] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda,
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