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Two quantum walkers sharing coins
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We consider two independent quantum walks on separate lines augmented by partial or full swapping of
coins after each step. For classical random walks, swapping or not swapping coins makes little difference to the
random-walk characteristics, but we show that quantum walks with partial swapping of coins have complicated yet
elegant interwalker correlations. Specifically we study the joint position distribution of the reduced two-walker
state after tracing out the coins and analyze total, classical, and quantum correlations in terms of mutual
information, quantum mutual information, and measurement-induced disturbance. Our analysis shows intriguing

quantum features without classical analogs.
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I. INTRODUCTION

Quantum walks (QWs) [1] are especially interesting be-
cause of their importance in quantum-algorithm research
[2,3] and also because they represent an intriguing quantum
version of the ubiquitous classical phenomenon of random
walks (RWs). Originally conceived as a single walker whose
left or right step on a line is entangled with the outcome
of flipping a single two-sided quantum coin, the QW has
been extended to more general cases of higher-dimensional
walks [4-6], multiple walkers, and/or multiple coins [7-13].
These generalizations enable exploration of QWs in complex
settings, which could connect with real-world phenomena
such as transport in photosynthetic protein complexes [14].
Additionally the inclusion of more walkers and/or coins can
efficiently enlarge the Hilbert space being explored because a
linear increase in degrees of freedom exponentially enlarges
the Hilbert space.

Here we explore the complex case of two walkers each
carrying and flipping (in a quantum manner) separate coins
but with the freedom to partially swap the coins between flips.
By partial swapping we mean that the two walkers can effect
the unitary operation SWAP® on their coins: for t = 0, this
corresponds to no swapping whatsoever so the two walkers
evolve completely independently, and the other extreme is
7 = 1, corresponding to complete swapping of the coins after
every step. For T > 0 a consequence of full or partial swapping
is to cause entanglement between the walkers’ position and
the coin degrees of freedom. Classically the swapping of coins
does not change the walker dynamics because each coin flip
is random, but on a quantum level the effect of swapping is
important because of the unitary dynamics.

Partial or full swapping of coins is interesting as this simple
procedure turns independent QWs into entangled QWs. As
multiwalker QWs could occur in nature, our work suggests
additional phenomena to explore in QW behavior. Although
we focus on the two-walker case, the multiple-walker case
can be obtained by a natural extension of our foundational
work in this area. Full and partial swapping of coins between
independent quantum walkers is also appealing in practice as
an implementation. Each independent walker can correspond
to the phase of a cavity field, and each walker’s two-sided
coin is an atom in the cavity with a superposition of ground
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and excited electronic energy states coupled to the cavity via
a dispersive nonlinear phase shift [15-17]. The atoms can
interact via a dipole-dipole interaction [18,19] between (or
during) steps, and the strength of this dipole-dipole interaction
determines the value of 7.

Two-walker QWs are compared to two-walker RWs by
examining the joint position distributions of the two walkers
after tracing out the coin states. Classically, for any value of
7, no correlation is expected, and the diffusion of position is
marked by its spread o (the standard deviation of the position
distribution) increasing as /¢ for ¢ the elapsed time (which
can be expressed as a continuous or a discrete quantity and
is the discrete number of steps in our study). Quantum walks
can be distinguished by ballistic spreading, where o grows
linearly with ¢ [20], or by Anderson-type localization, where
the walker’s spread becomes constant at large ¢ [21,22]. This
localization effect is due to the walker effectively becoming
trapped because of irregularities of the spacing of the lattice
traversed by the walker. Thus, there are three domains of
spreading in the asymptotic large-¢ limit: ballistic (o o< ¢),
diffusive (o o« +/7), and localized (¢ ~ const).

Here we are interested not only in how the walker’s position
spreads but also in the correlations between two walkers’
positions after tracing out the coins. To study the correlations,
we go beyond evaluating joint position distributions for
different values of 7 to studying two-time correlation functions.
Such correlation functions prove to be quite useful for studying
two-walker dynamics with partial coin swapping.

II. METHODS
A. One walker
For a single-walker QW on a line, the Hilbert space is
H = Ay @ H: (D)

with the walker Hilbert space .77, spanned by the orthogonal
lattice position vectors {|x)} and 7 the two-dimensional coin
space spanned by two orthogonal vectors which we denote
|£1). Each step by the walker is effected by two successive
unitary operators: the coin-flip operator
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for H the Hadamard matrix, and the conditional-translation
operator

(x| @ [1)(1]

S—Z|x+

+ZM4WWPM4L 3)

The resultant step operatoris U = S(1 ® C) with 1 the identity
operator on .

The choice of initial state |/ (¢ = 0)) is important in studies
of QWs because the interference features sensitively depend
on the choice of state. This sensitivity is persistent because the
dynamics are unitary and hence do not die out. On the other
hand, the general properties of QWs do not depend on the
choice of initial state so the choice of initial state is not crucial
provided that the focus is on such characterization.

As we are interested in general properties, the initial state
is not important so we choose the initial product state with the
walker at the origin of the two-dimensional lattice and hold
separate coins in an equal superposition of the +1 and —1
states:

|1/f(t=0)>=%|0>(|1)+i|—1>)- “)

The differences between QWs and RWs are due to interfer-
ence effects (or entanglement) between coin and walkers after
several applications of U (with the number of applications ¢
being the discrete time variable). We perform a measurement
at some point in order to know the outcome of the walk.
The measurement of the walker’s position corresponds to the
projection-valued measure {|x)(x|;x € Z}, resulting in the
walker’s state “collapsing” to position x on the lattice. After ¢
steps, the final state of the system is |y (¢)) = U’|¥(0)). The
reduced state of the walker is obtained by tracing out the coin.

The probability P(x;t) that the walker will be found at the
position x is

Px;t) = (x|Tre[[y () (¢ (@)[]]x), ®)

which is obtained by tracing out the coin of the walker-
coin state and then measuring the walker’s position. We
can characterize P(x;t) by the moments of this position
distribution (x”). The mean (x) and variance (x2) — (x)?
can be used as a measure of QWs and show the signature of
QWs compared to RWs. For a RW, the position variance ~7,
which is characteristic of diffusive motion, whereas, for a QW,
a quadratic enhancement is achieved: the position variance
~t2 [20].

B. Two walkers

The extension to two independent quantum walkers is
straightforward. The new Hilbert space is .7 ® .7, and the
step operator is U ® U. The walkers evolve independently
of each other. To entangle the walkers and their respective
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coins together, we change the step operator from U ® U to
SWAPT (U ® U) to give

2 0 0 0
. 1o 14D 1=(=D 0

SWaD =310 1—-(=1)" 14+(=1)F 0 ©)
0 0 0 2

expressed in a basis that naturally extends from the single-
walker case via the tensor product of Hilbert spaces.

The full initial state of the two-walker system is | (0)) ®
[¥(0)) (each walker is initially localized at the origin of its
line). After ¢ steps, the final state of the two — walker + coins
system is

[y Oz = Us¥(0))1 ® [¢(0))2 )

with U, = swap® (U ® U). We now follow the evolution by
performing a Fourier transform of the evolution operator to
the “momentum” k space.

The eigenvectors
=Y ™ x) ®)

of S and ST in Eq. (3) have the eigenrelations

Slk)y = e~ *1k),  STIk) = k) ©)
for k a continuous real quantity. The inverse transformation is
T dk —ikx
|x) = —e " k). (10)
_x 21

Each walker is initialized at the origin of the line so each
walker’s initial state is

T dk
|0>=/_nglk)- (1)

In the {|k)} and {|j)} bases for the two walkers, where j is a
continuous index for the momentum of the second walker, the
evolution operator becomes

U2lk) @ 1)) @ |P)e = |k) ® []) ® Uy | ®)c (12)
with |®), the coin state and

Uyj = swap' Uy ® Uj, (13)

=ik o=ik(j)
Ukip = | k) _ ik ) (14)
The k and j subscripts are of course the continuous walker-
momentum eigenvalues.

The general density operator for the initial state of the
system in the k basis can be expressed as

dk’ dj’
m>/ / ./ / U w1 ® 1))

® [ Do) {Do- (15)

where

The final state after ¢ steps is

1 s b T s
(271)4/ dk/ dk’/ a’j/ dj' k) (K|

® [/)J'1 ® Uf; 1 0o) (Dol (U (16)

p(t) =

022307-2



TWO QUANTUM WALKERS SHARING COINS

In terms of the superoperator Ly ;O = Uy; OUL.,

di | ark' | dj | dj'ikyw]
@)t ), —x — —

® 1)) ('] ® Lig1P0) (Dol. (17

p(t) =

The walkers’ positions are on a two-dimensional integer
lattice labeled (x,y) with the initial position localized at
(0,0). Measurement of the first walker’s position corresponds
to the projection-valued measure {|x){x| ® 1; x € Z} on the
two-walker reduced state (after tracing out the coins), and the
second walker’s position measurement is {1 ® |y){y|;y € Z}.
Joint measurement of the two walkers’ positions corresponds
to the projection-valued measure

{1x)(x] ® [y)(y]; (x,y) € Z*}

acting on the reduced two-walker state.
The joint position distribution P(x,y;t) of the probability
of finding the first walker at x and the second at y is

Px,y;t) =1{x|2{ylow(®|y)2lx) (18)

at time ¢, where

pw(t) = Tre[|[ () 12( ()] 19)

is the state of the two walkers obtained by tracing out the coins.
Thus the position distribution of each walker at position x (the
case for y is similar) is obtained by tracing out the states of
the two coins and the other walker,

Pi(x;1) = (x[Trypy(1)]x),
Py(y; 1) = (y|Tripw(®)]y).

(20)

The variance of the position distribution is especially
important. For standard QWs with single walkers, the variance
of the position distribution has been shown to evolve according
to o o t?, whereas o o t for RWs. This quadratic speedup of
spreading in a unitary evolution is a hallmark of the QW on a
line. For our case, namely, QWs with two walkers switching
their coins partially for each step, the variance of each walker
distribution can still be used to describe qualitatively the
quantum behavior of this kind of walk.

t l
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If we trace out the second walker, the reduced density matrix
is

1 big T , m
p(t) = ;Tr{|y><y|p<t)} _ Wﬁ dk[ﬂ dk [

xdj / djl'lk) (K] Y eI T (L 50| @0) (o)
-7
y

21

The summation can be exactly carried out in terms of
derivatives of the é function:

1 o
— m,=G=j%y — (_jyngmc; _
znZ” = (=)"8"(j — j). (22)
Insertion of this result back into the expression of the reduced
density matrix yields

] T b , T ) , .
0) = s [k ai [ i) @I (85 101 0],
23)

The probability for the first walker to reach a point x at time #
is

17 §
Py(x;t) = Tr{|x) (x| p1 (1)} = m/ﬂ dk_[ﬂ K

e
x/ dj e TN (L | Do) (Dol).  (24)

T

Thus we can calculate the moments of this distribution:
(_ l)m /‘ﬂ /]’[
", = mP(x;t dk dk’
(x"); ;x s | dk |

x/ dj 8" (k — K'Tr (Lip ;190) (Pol).  (25)

For the first moment, we obtain

o b T d
(x), = @f dkf dj = Tr (L1 0) (o))

1 b g . 1
= _W/ dk/ dj " Tr(Z1L;10)(Pol).
—TT -7 1=1

(26)

where Z; = 0, ® 1. We can carry out a similar integration by
parts to obtain the second moment:

t I-1

1 (7 d , / e
(x%), = (27)2/_71 dk/_” dj{ZZTr[zlﬁgl (Z1 L5 1@} (Do) ] + Y Y " Tr{zi L [(Lij|q>0><q>0|)zl]}}. 27)

=1 I'=1

For = 0, the two-walker QW turns out to be the standard
Hadamard walk for each walker. The first and second moments
of the distribution behave the same as those for the standard
Hadamard walk. That is, (x), is linearly dependent on ¢, while
(x2), is quadratically dependent on ¢.

For 0 < 7 <1, Uy; is still unitary. For short times, the
moments of the position distribution behave similarly to those
for a standard unitary walk. In the long-time limit we can
solve for the moments of distribution analytically. Suppose
Ly; is a linear transformation and all the eigenvalues satisfy

=1 I'=1

|A| < 1. We drop the terms that will be zero at large ¢ from the
expressions for the moments.

As Ly; is linear, we can represent it as a matrix acting on
the space of 4 x 4 operators. We choose the representation to
be

O=n1"+nl'®ocl+ - -+reo! a2 (28)
The action of Ly; on O is given by the matrix

L0 = Myj(riry -+ 116) (29)
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with nonzero matrix elements
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(M1t = (Miaa = (Miiz13 = (Mijie16 = 3[—(1 + ™) cos(k — j) + 2 cos(k + )],
(Mij)1,a = (Mij)a1 = (Mij)iz,i6 = (Mij)ie,13 = %e_i(kﬂ){z + [1 4 (=1)71e* — [1 4+ (=1)7 + 2e*71e%F),
(Mi)1.13 = (Miane = (Mg = (Miies = g 2 = [T+ (=D71e* + [1 4+ (=17 — 2¢*7]e*),

(Mij)i,16 =

(Myj)a13 = (Miji34 = (Mijie1 = 511+ €™ ) cos(k — j) + 2 cos(k + j)],

(Myj)e6 = i(Myj)e7=—i(Myj)7,6 =(Myj)7,7=1(Mij)o,e = —(Myj)i0,7 = (Mij)ir,e = i(Miji,7 = —}T[—l + (=11l VR,
(Myj)s,10 = i(Myj)e11 = i(Myj)7,10 = —(Myj)7.11 = —i(Mgj)10,10 = (Mij)1o,11 = (Mij)11,10 = i(Mgj)i1 1

=ig[—1+(=D7]V.

In the integrand, the initial density matrix for the coins
is multiplied / times by £;; and then multiplied on the left
by Z; and finally the trace is taken. As Tr{@} =ri+rs+
r13 + rie, use of (x), is the same as multiplying the vector
(ryr2 -+~ rig)T 1 times by M;; and then keeping only the r,
14, 13, and rig components of the result. This gives the new
expression of the first moment as

1 g T
= dk dj(10010---01001
W=y [ [ A )
' 1 T 1 " "
X;Mkj(rIVZ"'VIG) =_(2ﬂ)2[”dk/_ﬂd]

t
x Z(Milw‘ —2]1) (1] ®]1M]l<j)(r1 ry e 1),
/

€29

t

=1
t 1-1

=1 I'=1

(30)

which is independent of ¢ in the long-time limit since M, — 0
with all the eigenvalues of My; satisfying 0 < |A| < 1. We then
obtain

2 T T .
(x) ~ {1 - m[ﬂdk[”dJTf[|l><l|

Q11 — ij)_lljkj|d>o)(d>0|]}t + (oscillatory terms).

(32)

For the second moment of the distribution, the superoper-
ator Ly; is unitary and preserves the identity £y;1 = 1. We
separate the traceless part y, of the coins’ initial state from the
overall state [7,8],

ril+ (®g) (Pol —ri D) =r1 1+ xo. (33)

We then insert this result into the expression for the second
moment of the distribution to obtain

L " A
(27 )? f dk/ dj {Tr |:Z Ln 1+ Xo)] +2r Tr |:Z1 Zzﬁgj ”21]

=1 1I'=1

+ Z Z Tr [Zlﬁij_.l/[Zl (EinO) + (ﬁij XO)ZI]]} ~ C,t* + const. + (oscillatory terms), (34)

where

1 e b
C2=1+W/ dk/ dj Tr[=2Z1(1 — L)~ Lij|Po) (Dol 1) (1] @ T — 4] 1) (1] @ 1(1 — L))" La;j| Do) (Dol]. (35)

In brief, the first and second moments of the position
distribution are linearly and quadratically dependent on ¢
for t = 0. For 0 < t < 1, in the long-time limit, a ballistic
behavior for each walker is obtained. Thus in the long-time
limit the variance of the position distribution for one of the
walkers is quadratically dependent on t. In our case the
walker cycles through a finite sequence of coins (two) for
each step, and we still get ballistic transport. If the coin is
chosen randomly from step to step, i.e., the coin is chosen
from an infinite sequence for each step, a diffusive spreading is
obtained [8,11,12].

III. ANALYSIS

In this section we analyze the two-walker state after reduc-
ing the density matrix by tracing out the two coins. In Sec. I[IT A
we calculate the joint probability distribution for two walkers
to show the correlation introduced by the SWAP operation on
coins. In Sec. III B we characterize the classical and total
correlation, using the mutual information (MI) and the quan-
tum mutual information (QMI), respectively, between the two
coin-sharing walkers. In Sec. III C, we employ measurement-
induced disturbance (MID) as the measure of choice for
quantifying quantum correlations between the two walkers.
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A. Joint position probability distribution for walkers

The joint probability distribution P(x,y;?) is calculated
for finding walker 1 in position x and walker 2 in position
y for time ¢ and shown in Fig. 1. For the power of the
SWAP operation T = 0, which means the two walkers are
uncorrelated, P(x,y;t) is simply the product of the two
independent one-walker distributions, P;(x;?)P>(y;t), where
Pi(x;t) is the probability distribution for finding walker
1 in position x after r and similarly for P(y;t) and
walker 2.

The correlation functions P(x,y;t = 6) are showninFig. 1.
The product of two independent single-walker distributions is
evident in Fig. 1, which shows the 7 = 0 case. However, for
7 > 0, the walkers are not independent of each other due to
the walkers (fractionally) swapping their coins after each step.

Evidently the SWAP operation on the two coins correlates
and perhaps entangles the two coins. For classical RWs, the
correlation between the coins does not affect the walkers’
behavior, and the position distribution of each walker remains
the same as that in a standard RW with one walker. The
interference effect and entanglement between each walker and
its coin make the two-walker QW behave differently from
a RW. The correlation between the coins is transferred to
the walkers, thereby inducing correlation between the two
walkers. However, the interference effect and entanglement
between each walker and its coin are partially destroyed by
the SWAP operation.

In Fig. 1, the joint position distributions of two walkers
after the sixth step with various powers 7 of the SWAP
operation t display key concepts. For T = 0, the two walkers
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are completely independent. For increasing 7, a small peak
appears in the middle of the distribution, which means there
is correlation between the two walkers. For T = 1, the peak in
the middle gets large and the distribution still shows quantum
behavior of the two walkers. Thus the correlation between the
two walkers increases with increasing power t of the SWAP
operation.

B. Mutual information and quantum mutual information

In probability theory and information theory, the mutual
information of two random variables quantifies the mutual
dependence of the two random variables. Here we use the
mutual information as a measure of the classical correlation
between two quantum walkers fractionally swapping their
coins. Formally, the mutual information of the positions of
the two walkers can be defined as

Lo = [ [ Peeyiniog, | —2 D vay. 36
Pi(x; 1) Pa(y;t)

As there is no classical correlation, the mutual information of
two independent walkers is zero.

The SWAP operation between two coins connects the
two walkers and introduces correlations. We use the mutual
information as a measure of classical correlations between
two walkers. In Fig. 2 the mutual information of the two
walkers’ positions is depicted for various powers of the SWAP
operation .

In the case of T = 0, the two walkers, each holding an inde-
pendent Hadamard coin, walk on separate lines independently

FIG. 1. (Color online) The joint position distribution for a two-walker QW on a line after # = 6 steps with various SWAP operator powers:

(@t=0,(b)t=0.5,(c)t =0.8,and (d) t = 1.
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FIG. 2. (Color online) The mutual information (MI) for the
positions of the two walkers as a function of time ¢ with various
choices of the SWAP operator power 7.

of each other’s dynamics so the mutual information of the two
walkers’ positions is necessarily zero.

For a classical RW, if two walkers exchange coins after
every step, any correlation between each walker and its coin
is severed. However, for the QW, correlations between the
two walkers are not completely destroyed. For T = 1/2 the
two coins are maximally entangled by the ,/swap operation,
thereby maximizing the correlation between the two walkers.

In addition to classical correlations, the SWAP operation
on two coins introduces quantum correlations between the
two walkers as well. Now we consider the total correlation
between two quantum walkers on a line under the influence of
the SWAP operation between the coins. We use the quantum
mutual information as a measure of the total correlation,
including classical and quantum correlations [23-30], between
the walkers.

Given a bipartite state p,, and the reduced density matrices
denoted by p; and p,, the quantum mutual information

I'pw®] = S[e1()] + S [p2(0)] = S [pw(0)] (37

is a reasonable measure for total correlation between systems
1 and 2, where S(-) denotes the von Neumann entropy. The
quantum mutual information can be interpreted analogously
to the classical case, namely,

Ipw(D] = S [pw@)llp1(1) @ p2(1)], (38)

where S(-|-) denotes the quantum relative entropy. Intuitively,
the quantum mutual information reports the shared quantum
information between walkers 1 and 2.

The quantum mutual information is a good measure for
quantifying the reduction of the uncertainty of one variable
through knowing the other variable. For example, if walkers 1
and 2 are independent, then knowing walker 1’s position does
not give any information about 2’s position and vice versa,
so their quantum mutual information is zero. Otherwise, if
walkers 1 and 2 are correlated, the quantum mutual information
is positive, and the bound on this correlation is approximately
2log, d with d the dimension of the walker state.

The total correlation between two walkers increases with
the power T of the SWAP operations as does the classical
correlation. Figure 3 presents plots of the quantum mutual
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FIG. 3. (Color online) The quantum mutual information (QMI)
for two walkers’ positions as a function of time ¢ with various powers
of the SWAP operator t € [0,1].

information for an evolving two-walker QW system with
various powers of the SWAP operation.

For fixed value of 7, the quantum mutual information
increases monotonically as the number of steps increases.
For r =0, the quantum mutual information stays at zero,
which means the total correlations are cut off between the
two walkers. The quantum mutual information for 7 > 0 is
positive and a maximum for T = 1/2. We can see the maximal
correlation (both total correlation and classical correlation)
between walkers where we expect to see the coins entangled
maximally.

C. Quantum correlations

Quantum discord [23] is a popular measure for character-
izing purely quantum correlations within a bipartite state, but
evaluating quantum discord requires extremizing over local
measurement strategies. Such an evaluation can be intractable,
so measurement-induced disturbance was proposed as an
operational measure that avoids such an onerous optimization.
Measurement-induced disturbance relies on diagonalizing the
reduced density operators, which is tractable for small systems.
For standard QWs, measurement-induced disturbance acts as
a loose upper bound on quantum discord and tends to reflect
well the behavioral trends of the quantum discord [31].

The measurement-induced disturbance and quantum dis-
cord have been compared for noisy linear and cyclic QWs [32].
Whereas measurement-induced disturbance has an operational
definition, the operational meaning of quantum discord is
less straightforward [33]. On the other hand, measurement-
induced disturbance tends to overestimate nonclassicality
because it does not optimize over local measurements. Despite
this overestimation, measurement-induced disturbance gives
a loose upper bound on quantum discord and reflects well
the quantum correlations for QWs [32]. Nevertheless, care
is need in interpretations of quantum correlations from
measurement-induced disturbance as regimes exist where lack
of optimization leads to overestimates of nonclassicality.
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Given the reduced two-walker bipartite state p,, (tracing
over coins), let the reduced density matrices for the two walkers
be diagonalized to

pi=y_ plm, (39)
J

for i = 1,2, where {I1/} is a complete projection-valued
measure (i.e., using von Neumann measurements) for each
i. Summation over joint projections on the two-walker state
yields the diagonalized state

Mpw(t) = Y T ® Mipy()IT] @ T15. (40)
jok
The leftmost IT is an operator on the density matrix that diag-
onalizes it in the spectral basis corresponding to IT] projective
measurements. The operator IT can also be described as a
“local measurement strategy.”

Correlations between the two reduced-walker states p;
and p, are regarded as classical if there is a unique local
measurement strategy I1 leaving ITpw(¢) unaltered from the
original two-walker state py, [24]. We ascertain whether
the reduced two-walker state is “quantum” by determining
whether a local measurement strategy exists that leaves the
two-walker state unchanged.

The degree of quantumness is given by the measurement-
induced disturbance [24]

Q [ow()] = 1 [pw(D)] — I [TIpy(1)], (41)

for I(-) the quantum mutual information. By construction
[pw(t) is classical. Hence I [I1py(7)] quantifies the classical
correlations in py(¢), which must equal /. (36). Thus, the
measurement-induced disturbance is the difference between
the quantum and classical mutual information, which quantify
total and classical correlations. Accordingly, Eq. (41) is
interpreted as the difference between the total and classical
correlations, which are represented by the quantum mutual
information and the mutual information.

Figure 4 presents plots of measurement-induced distur-
bance of two walkers in a two-walker QW system. From the
relationship between total, classical, and quantum correlations
discussed in the previous section, we expect a tight quantitative
relationship among Figs. 2, 3, and 4. We see that the total
correlation represented by quantum mutual information in
Fig. 3 dwarfs the classical correlation represented by mutual
information in Fig. 2. Hence Figs. 3 and 4 are quite similar.

Pure quantumness, represented by the measurement-
induced disturbance depicted in Fig. 4, increases monotoni-
cally with 7, and pure quantum correlations thus exist between
the two walkers. This pure quantum correlation is not due
to direct walker-walker interactions but rather to the walkers
fractionally swapping their coins after each step and the pure
quantum correlations surviving the tracing out of these coins.

IV. CONCLUSIONS

We analyze the dynamics and entanglement of two quantum
walkers who fractionally swap (i.e., perform a SWAP™ unitary
operation with 0 < 7 < 1) coins. We use mutual informa-
tion, quantum mutual information, and measurement-induced
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FIG. 4. (Color online) The measurement-induced disturbance
(MID) for two walkers’ positions as a function of ¢ with various
powers of the SWAP operation 7 € [0,1].

disturbance as measures to isolate classical vs quantum
correlations.

Quantum discord would be a valuable measure to use but
is not tractable in our case. However, measurement-induced
disturbance suffices to show that pure quantum correlations
are induced by having the walkers fractionally swap coins and
then tracing out the degrees of freedom for the two coins. In fact
both classical and quantum correlations coexist between the
two walkers for 7 > 0. Quantum correlations are strongest for
© = 1/2 where the ,/swap operation has maximal entangling
power and is applied after each step.

Fractional swapping is a quintessentially quantum process.
Classically the walkers can swap their coins or not, or they
could swap their coins sometimes, either deterministically or
probabilistically. In our two-walker fractional-coin-swapping
scenario, a fractional coin swap is effected after every step
identically. Classically one would expect that coin swapping
would not affect the dynamics anyway because the coin
state is unimportant: the flip has a random outcome. Our
classical understanding of coin swapping thus gives little
intuition about the quantum case. Thus, our analysis is quite
valuable in that we characterize this two-walker fractional-
coin-swapping case carefully and devise appropriate, tractable,
meaningful classical and quantum correlation measures to
study entanglement for this system.
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