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We study the ability to control d-dimensional quantum systems (qudits) encoded in the hyperfine spin of
alkali-metal atoms through the application of radio- and microwave-frequency magnetic fields in the presence
of inhomogeneities in amplitude and detuning. Such a capability is essential to the design of robust pulses that
mitigate the effects of experimental uncertainty and also for application to tomographic addressing of particular
members of an extended ensemble. We study the problem of preparing an arbitrary state in the Hilbert space
from an initial fiducial state. We prove that inhomogeneous control of qudit ensembles is possible based on
a semianalytic protocol that synthesizes the target through a sequence of alternating rf and microwave-driven
SU(2) rotations in overlapping irreducible subspaces. Several examples of robust control are studied, and the
semianalytic protocol is compared to a brute-force, full numerical search. For small inhomogeneities, <1%, both
approaches achieve average fidelities greater than 0.99, but the brute-force approach performs superiorly, reaching
high fidelities in shorter times and capable of handling inhomogeneities well beyond experimental uncertainty.
The full numerical search is also applied to tomographic addressing whereby two different nonclassical states of
the spin are produced in two halves of the ensemble.
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I. INTRODUCTION

Motivated by applications ranging from controlling chem-
ical dynamics to quantum information processing (QIP),
control over quantum systems has become an increasingly
important tool [1–6]. In the context of QIP, the majority
of studies of such processes are based on a collection of
two-level (d = 2) subsystems or qubits, a natural extension
of binary classical logic. In practice, the physical objects that
encode quantum information never have solely two levels
and control is necessary to isolate a particular qubit of
interest. Alternatively, higher dimensional d > 2 systems, or
qudits, can be employed for base-d quantum logic. While
from a computer science perspective encoding in qudits
does not lead to a change in computation complexity, from
a physical perspective, information processing with qudits
provides different trade-offs. For example, a log2 d reduction
in the number of subsystems must be compared with the
complexity in implementing the universal SU(d) gates and
quantum error-correcting codes [7]. Moreover, qudits are
interesting in their own right, exhibiting properties such as
nonlocality without entanglement [8] and providing a platform
for explorations of quantum chaos [9].

A natural qudit is the hyperfine manifold of magnetic
sublevels associated with the ground-electronic state of atoms,
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providing a Hilbert space of dimension d = (2J + 1)(2I + 1),
where J is the electron angular momentum and I is the
nuclear spin. Motivated by ongoing experiments in the Jessen
group [10], we work with 133Cs, an alkali-metal atom with
one valence electron J = S = 1/2 and nuclear spin I = 7/2,
yielding hyperfine coupled spins of magnitude F = I ± S =
3,4, and a total Hilbert space of dimension d = 16. Extensions
to other elements, such as the rare-earth-metal elements, open
opportunities to even larger Hilbert spaces (e.g., and d = 128
in holmium [11]). Early proposals for qudit control in hyperfine
manifolds involved the use of a series of two-photon Raman
transitions between magnetic sublevels [12]. More recently,
time-dependent magnetic fields and a static tensor light shift
have been used for arbitrary state preparation in the lower
hyperfine manifold [10]. Alternative schemes that employ
radio-frequency and microwave magnetic fields have also been
studied for applications in qudit quantum control [6,13,14].

Our goal in this article is to expand the control tool box
for hyperfine qudits, with attention to alkali-metal atoms,
the standard elements used in laser cooling experiments.
We particularly develop the methods of ensemble control,
previously studied for spin- 1

2 nuclei in the context of nuclear
magnetic resonance (NMR) [15], whereby subsystems are
subjected to an ensemble of different Hamiltonians. Such
methods are important in a number of scenarios. In the context
of experimental uncertainty in the control parameters, the
different dynamics generated by different members of the
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ensemble correspond to errors. Making the desired dynamics
insensitive to this uncertainty is known as “robust control”
and will be essential for the levels of precision required in
implementing QIP protocols. In addition, an inhomogeneous
ensemble may be intentionally imposed. In such a scenario
different members of an ensemble may be tomographically
addressed in space or time.

The idea of robust control goes back to the development of
composite pulse techniques for spin- 1

2 nuclei in NMR [16,17]
where special sequences such as CORPSE and SCROFULOUS

were designed to perform particular SU(2) rotations in a
manner that is robust to errors in detuning and/or Rabi
frequency. In more recent studies, Khaneja and Glaser showed
that one can achieve control of spin- 1

2 particles as a nearly
arbitrary function of detuning or Rabi frequency [15,18,19].
Researchers are also applying such NMR-inspired tools to
the control of cold atoms. For example, the groups of Blatt
and Chuang used robust pulses to improve the performance of
quantum algorithms with trapped ions [20], and Jessen’s group
explored robust control neutral atom qubits trapped in optical
lattices [21]. Tomographic addressing of ultracold atoms
is becoming increasingly important. Using real magnetic
fields, the Bloch group addressed the “shells” of a Mott
insulator of [22] and the Meschede group addressed sites of
a one-dimensional (1D) lattice beyond the diffraction limit
[23]. Even higher resolution addressing is possible using the
spin-dependent light shifts of off-resonant laser fields [24].
Using the light shift of a focused laser beam to create a large
spatial gradient, Bloch’s group individually addressed atoms
in a 2D lattice with a spacing closer than the diffraction limit
of the addressing beam [25]. Such tomographic addressing can
benefit from more sophisticated control analysis.

In this article we study robust control and tomographic
addressing of hyperfine qudits within the unified framework
of ensemble control. In Sec. II we describe the physical
system and the available control Hamiltonians and use these
in Sec. III A as the basis for a semianalytic protocol for
synthesizing arbitrary states through a series of SU(2) rotations
on overlapping subspaces. Based on the known results in
inhomogeneous control of SU(2) rotations, we extend our qudit
state preparation routine to the case of ensembles. With the
semianalytics in hand, in Sec. III B we present an alternative
approach to state synthesis based on numerical optimization.
We compare the two approaches by exploring robust state
preparation in the presence of inhomogeneities. Beyond robust
control, we study how we can employ the tools of ensemble
control to spatially address different regions of a cold atomic
cloud and perform local state preparation to create highly
nonclassical, nonequilibrium states of the gas. In Sec. V we
summarize and present the outlook for future research.

II. CONTROL HAMILTONIAN

We focus on control of the spin state of an alkali-metal atom
in its electronic ground state through magnetic interactions.
The governing Hamiltonian of the system is

H = AI · S + (gsμBS − gIμN I) · B(t), (1)

where the first term represents the hyperfine coupling between
the atom’s nuclear spin, I, and the valence electron’s spin, S,
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FIG. 1. (Color online) Radio-frequency (rf) magnetic fields (in
red) and microwave magnetic fields (in blue) control the ground-
electronic hyperfine manifold of magnetic sublevels in 133Cs. SU(2)
rotations in the irreducible subspaces, F = 3,4, are driven by rf-
magnetic fields. Because of the sign difference of the g factors for the
upper and lower manifold, the two rotations are in opposite directions.
The microwave field is shown to be resonant only with the transition
between the states |F = 4,mF = 4〉 and |F = 3,mF = 3〉 due to
the application of a bias magnetic field that breaks the degeneracy
between the magnetic sublevels. Microwave-driven SU(2) rotations
on this qubit, together with the rf control, can generate an arbitrary
unitary transformation on the full 16-dimensional manifold.

and the second represents the interaction of the spins with the
controlling magnetic fields. We consider three contributions to
the fields,

B(t) = B0ez + Brf(t) + Bmw(t), (2)

whose effect on the energy levels is depicted in Fig. 1. The
first contribution is a static bias magnetic field which splits
the energies of the magnetic sublevels in the linear Zeeman
regime, μBB0 � A, while the next two terms are control
fields oscillating at radio- (rf) and microwave-frequencies that
drive transitions between those levels. We work in a regime
in which the hyperfine coupling is significantly stronger than
the interaction due to the applied magnetic fields. Then it
is convenient to split the state space into a direct sum of
spaces with total angular momentum f (±) = I ± 1

2 and the
total angular momentum operator projected onto the f (±)

subspace is F(±) = P±FP±. In the linear Zeeman regime, we
can use the Landé projection theorem to write its contribution
as

HB0 =
∑

f =+,−
gf μBB0 · F(f ). (3)

Defining the Zeeman frequency �0 = −g−μBB0 (here and
throughout h̄ = 1), the total static Hamiltonian becomes

H0 = �EHF

2
(P (+) − P (−)) + �0(grF

(+)
z − F (−)

z ), (4)

where �EHF is the hyperfine splitting and P (±) are the
projectors on the hyperfine manifolds f (±). To take into
account the small difference in magnitude and opposite signs
of the g factors in the lower and upper manifold arising
from the nuclear magneton, we have defined gr = |g+/g−|.
The rf field resonantly couples magnetic sublevels within a
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subspace with a given total angular momentum. Defining the
Larmor frequencies �x(y) = −2g−μBBx(y), we can again use
the Landé projection theorem to write the rf Hamiltonian as

Hrf = 2�x cos(ωrf t − φx)(grF
(+)
x − F (−)

x )

+ 2�y cos(ωrf t − φy)(grF
(+)
y − F (−)

y ). (5)

Transforming into a rotating frame according to Urf =
e−iωrf t(F

(+)
z −F

(−)
z ), and making the rotating wave approximation,

yields

Hrf + H0 = gr (�x cos φx − �y sin φy)F (+)
x

+ gr (�x sin φx + �y cos φy)F (+)
y

− (�x cos φx + �y sin φy)F (−)
x

+ (�x sin φx − �y cos φy)F (−)
y

+�(grF
(+)
z − F (−)

z ) + (1 − gr )ωrfF
(+)
z

+ �EHF

2
(P (+) − P (−)), (6)

where � = �0 − ωrf .
The microwave power, frequency, and polarization are

chosen so as to couple only two magnetic sublevels between
the hyperfine manifolds, leaving the other states unaffected due
to off-resonance effects. These states define a pseudo-spin- 1

2
{|↑〉 ≡ |f (+),m↑ = f (+)〉 , |↓〉 ≡ |f (−),m↓ = f (−)〉} with the
usual Pauli operators, and the microwave-driven Hamiltonian
takes the standard spin-resonance form,

Hmw = �mw cos(ωmwt − φmw)σx. (7)

We now transform into a total rotating frame given by
Utotal = Urfe

−iαt(P (+)−P (−))/2 with α = ωmw − (m↑ + m↓)ωrf

and make the rotating wave approximation. Choosing the
microwave frequency to be resonant with the pseudospin tran-
sition, ωmw = (g+m↑ − g−m↓)μBB0 + EHF, the total Hamil-
tonian in the rotating frame, including the static rf and
microwave contributions is

H = gr [�x cos φx − �y sin φy]F (+)
x

+ gr [�x sin φx + �y cos φy]F (+)
y

− (�x cos φx + �y sin φy)F (−)
x

+ (�x sin φx − �y cos φy)F (−)
y

+ 1
2�mw(cos φmw σx − sin φmw σy)

− 1
2 (gr − 1)m↑ωrfF

(+)
z (P (+) − P (−)). (8)

The control parameters available in this system are the
amplitudes and phases of the two rf and microwave fields,
{�x,φx,�y,φy,�mw,φmw}. With these controls, we have
shown that one can synthesize any unitary transformation on
the hyperfine manifold [6,13].

If we choose the phases of the x and y rf coils to be such that
φx = φy − π/2 ≡ φrf and choose the powers in the two coils
to be equal, �x = �y = � ≡ �rf , then the rf polarization is
positive-helicity circular and the rf field is resonant only with
the lower hyperfine manifold, leaving the upper manifold fixed.

The Hamiltonian then reduces to

H = Hrf + Hmw, (9a)

Hrf = 2�rf (− cos φrf F (−)
x + sin φrf F (−)

y ), (9b)

Hmw = �mw

2
(cos φmw σx − sin φmw σy). (9c)

Through our choice of amplitudes and phases of the applied
fields, we have restricted the dynamics to an 8D subspace
spanned by the 7D basis in the F = 3 manifold plus a single
auxiliary state in the upper manifold, |F = 4,mF = 4〉 = |↑〉.
The independent rf or microwave Hamiltonians, Hrf and Hmw,
respectively, are each generators of an SU(2) rotation in an
irreducible subspace. As we show in the next section, with
the given controls, a unitary transformation on the 8D Hilbert
space can be constructed from a sequence of SU(2) rotations.

III. CONTROL PROTOCOLS

A. Semianalytic state synthesis

We study the problem of synthesizing an arbitrary state
within the 8D Hilbert space defined above through a series of
SU(2) rotations generated by the control Hamiltonian [Eq. (9)].
As our fiducial initial state, we begin with all the population in
|↑〉. As a proof of principle, we employ the technique originally
developed by Law and Eberly [26] in which we solve the
inverse problem: Begin with an arbitrary target state |ψT 〉 in
the space and then map it to the fiducial state, |↑〉. If each
of the controls can be reversed, we can then determine the
mapping |↑〉 → |ψT 〉. We will see that unlike the original
Eberly and Law protocol that involves a qubit, this method
will only perform approximate state mapping, with an error
that decreases exponentially with the length of the pulse.

To find a map that transfers the target state |ψT 〉 → |↑〉,
we solve a sequence of maximization problems. First we
find an rf pulse that maximizes the population in the state
|F = 3,mF = 3〉 = |↓〉 and then we find a microwave-driven
rotation that maximizes the population of |F = 4,mF = 4〉 =
|↑〉. The latter transformation can be found analytically
because every unitary transformation in this 2D subspace is
an SU(2) rotation. A state

|χ〉 = c↑ |↑〉 + c↓ |↓〉 (10)

is defined by a Bloch vector, r, for the pseudospin. If n̂ is a
vector that bisects the z axis of the Bloch sphere and r, then
a π rotation around n̂ will drive all the population in |χ〉 to
|↑〉. For the rf-driven rotation, the situation is slightly more
complex. The SU(2) matrices represent only a subgroup of
the general SU(2F + 1) unitary transformations on the space.
Define an SU(2) spin coherent state for F = 3, parametrized
by a direction on the sphere, |θ,φ〉 ≡ R(3)†(θ,φ) |↓〉. We thus
seek the F = 3 irreducible representation of the SU(2) rotation
R(3)(θ,φ) that satisfies

max
θ,φ

| 〈↓|R(3)(θ,φ) |ψT 〉 |2. (11)

This is equivalent to the maximum value of the Husimi
distribution with respect to spin-coherent states, Q(θ,φ) =
|〈θ,φ|ψT 〉|2, which we can find easily.
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How optimal is this procedure in the achievable fidelity
and the required number of steps? Since the microwave-driven
rotation can completely transfer all population from the |↓〉
state to |↑〉, the only question is how much population in the
lower manifold we can transfer to |↓〉 using rf-driven rotations.
Because the Husimi distribution Q(θ,φ) is everywhere posi-
tive, we can find a lower bound by looking at the case where
the Husimi distribution is flat, that is, the maximally mixed
state. For a spin-F the Husmi function in such a case would
have a uniform height of 1/(2F + 1). Therefore, the amount
of population remaining in the lower manifold, and thus our
error, is bounded from below by [2F/(2F + 1)]n where n

is the number of iterations. This implies that the population
decreases exponentially with n and we can rapidly map
|ψT 〉 → |↑〉. By reversing the sequence of inverse-rotations,
we achieve the desired state preparation, |↑〉 → |ψT 〉.

Because this state synthesis protocol is based on a series
of SU(2) rotations, we can draw on previously known results
in SU(2) control to extend our construction to the case of
inhomogeneous parameters. In particular, Kobzar et al. [19]
used a powerful numerical routine to find pulse sequences
that synthesized arbitrary unitary transformations in two-level
systems as a function of inhomogeneous controls, and Li
and Khaneja explored the theoretical underpinnings [18]. The
key result is that for two-level systems driven by canonical
Hamiltonians of the form

H [ε,�,�(t),φ(t)]

= (1 + ε)�(t)[cos φ(t) σx + sin φ(t) σy] + �σz, (12)

one can synthesize arbitrary SU(2) transformation,

U (ε,�) = T
[

exp

(
−i

∫ T

0
H [ε,�,�(t ′),φ(t ′)]dt ′

)]
, (13)

as arbitrary functions of ε > −1 and �. Here �(t) and φ(t) is
are the amplitude and phase of the drive wave form that act to
control the system. Whereas we allow for inhomogeneity in the
amplitude, the phase is assumed to be known and controlled
precisely. This result generalizes trivially for any irreducible
representation of SU(2) on a spin of magnitude F .

This construction implies that, in principle, one can design
robust wave forms so that U (ε,�) is essentially flat and that
one can design tomographic wave forms that address different
members of the ensemble for well-chosen values of ε and/or
�. In practice, the controllability of the system will be limited
by practical constraints such as bandwidth, slew rates, and time
of interaction. The duration of the wave form is of particular
importance given the ultimate constraint of decoherence. Note
that the wave form that generates a desired U (ε,�) is not
unique. Whereas the proof given by Li and Khaneja provides an
analytic algorithm to synthesize U (ε,�), in practice, numerical
optimization schemes lead to faster pulse sequences while
maintaining very high fidelity.

We study here an extension of the results of ensemble
control of SU(2) rotations to our protocol for qudit control.
The evolution of each member of the ensemble is described

by the extension of Hamiltonian [Eq. (9)],

H (t) = −2�rf (t)(1 + εrf)[− cos φrf(t) F (−)
x + sin φrf(t) F (−)

y ]

+ �mw(t)

2
(1 + εmw)[cos φmw(t) σx − sin φmw(t) σy]

+�grm↑ |↑〉 〈↑| − �F (−)
z . (14)

Our goal is to synthesize different target states as a function
of εmw, εrf , and �. For each SU(2) rotation we can draw
on the results of Li and Khaneja. We must ensure that
the effect of inhomogeneity still allows efficient coherent
transfer of probability amplitude from F = 3 to |↑〉, and
that controllability is respected in the sequence of rf- and
microwave-driven rotations.

Because our protocol interleaves pulses acting on different
subspaces, we must carefully examine the controllability with
respect to different inhomogeneities. Consider first the case
of ensemble control in the presence of microwave amplitude
inhomogeneity alone. The first rf pulse must maximize the
population in |↓〉, averaged over εmw, so Eq. (11) becomes

max
θ,φ

∑
εmw

|〈θ,φ|ψT (εmw)〉|2. (15)

Because the rf pulses cannot distinguish between the different
members of this particular ensemble of states, this is equivalent
to maximizing the population in |↓〉 given an initial state, ρeff,
where

ρeff = N
∑
εmw

|ψT (εmw)〉〈ψT (εmw)|, (16)

with N as a normalization constant. In the worst case ρeff

is a completely mixed state. In this situation the rf pulse
accomplishes nothing, and 1/7 of the population remains
in |↓〉. The first microwave π pulse will transfer all of the
population in |↓〉 to |↑〉. The second rf pulse acts on another
incoherent mixture over εmw, but not a completely mixed state
because we have emptied all of the population in |↓〉. In
the worst case, 1/7 of the remaining 6/7 of the population will
be transferred by the rf pulse to |↓〉. The second microwave
pulse in the sequence will, in general, act on an ensemble of
spinors of the form in Eq. (10), |χ (εmw)〉, because there now
exits an ensemble of complex amplitudes in the superposition
between |↓〉 and |↑〉. However, because we can synthesize an
arbitrary SU(2) matrix as a function of εmw, we can find a
transformation that rotates |χ (εmw)〉 to |↑〉 for the relevant
range of values of εmw. By repeating this procedure, we
continually increase the population in |↑〉 at an exponential
rate, even in the presence of microwave power inhomogeneity.

The case of rf inhomogeneities alone, |ψT (εrf)〉, is less
favorable. Based on the results of Li and Khaneja [18], we
can find an SU(2) rotation which maximizes the population in
|↓〉 for all εrf , and the first microwave π pulse will transfer this
population to |↑〉. Whereas the application of the second rf
pulse will again maximize the remaining population in F = 3
to the state |↓〉 for all εrf , the second microwave pulse will
generally not work as needed. Because the microwave field
cannot distinguish between different spinors in Eq. (10) as a
function of εrf , |χ (εrf)〉, the state seen by the microwaves is
mixed, ρeff = N

∑
εrf

|χ (εrf)〉〈χ (εrf)|. In the worst case, this
could be either a state whose Bloch vector points along the
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z axis of the Bloch sphere or is the completely mixed state.
In either case, the microwaves cannot, on average, increase
the amount of population in the |↑〉 state. Thus, without
further care, this procedure cannot synthesize arbitrary states
for different εrf . For the particular case that the target state
is independent of εrf , we can overcome this difficulty since
we can synthesize a target state at the end of each rf pulse
that satisfies this property. By employing such robust control
pulses, we ensure a state |χ〉 of the pseudospin that can be
rotated by microwaves to |↑〉 at each stage. However, more
general cases are problematic.

Finally, we consider inhomogeneities in the detuning as
might arise from an external magnetic field (either noise or
intentionally applied). In this case we need to consider the role
of reversibility in the state synthesis routine with more care.
According to the Law and Eberly protocol, we design a pulse
sequence that maps the target |ψT 〉 to the fiducial state |↑〉,
according to |↑〉 = UN · · · U2U1 |ψT 〉. Then the desired state
preparation follows as |ψT 〉 = U

†
1U

†
2 · · ·U †

N |↑〉. The inverse
unitary is generated by the Hamiltonian −H . We can achieve
this by simply adding π to the phase control wave form φ(t)
and also inverting the detuning, � → −�. Thus, if we want
to synthesize a target |ψT (�)〉 we must use a sequence of
rotations that maps |ψT (−�)〉 → |↑〉 to search for the control
wave forms.

In the presence of detuning inhomogeneity, there is an
additional source of errors due to phases accumulated in
the rotating frame. For instance, when the rf pulse is driving
the lower manifold for time trf , the population in the |↑〉 state
will acquire a phase φ↑ = gr�m↑trf . We must compensate
for this phase in the design of subsequent microwave pulses.
This is possible since we can synthesize arbitrary microwave
pulses as a function of detuning. Similarly, we can compensate
for �-dependent phases accumulated in the F = 3 manifold
while the microwave pulses are applied through the design of
subsequent rf pulses.

Similar arguments may be made when multiple inhomo-
geneities are present. Based on these arguments we find
that arbitrary target states of the form |ψT (εmw,�)〉 may
be synthesized. We emphasize that although the particular
protocol presented here cannot synthesize states that are
different for different εrf , this does not imply that such
pulse sequences do not exist. The existence of a semianalytic
protocol capable of synthesizing states which vary with εrf is
a matter of ongoing research.

B. Fully numerical state synthesis

Although the results of the previous section indicate that
it is possible to perform qudit ensemble control with a
sequence of well-designed SU(2) rotations, the duration of
the pulse sequence can be unnecessarily long. We therefore
also consider fully numerical optimization to search for the
desired controls. The semianalytic protocol lends confidence
that such a search routine will yield high-fidelity results. For
fully numerical searches we allow the microwaves and rf
fields to be applied simultaneously and thus the evolution is
no longer a simple series of SU(2) rotations on the given
subspaces. We have found that we can attain full control of the
system using only piecewise constant variations in the phase.

This has the advantage that we may perform the search via
unconstrained optimizations that often converge more rapidly
than constrained routines. Searches then return a vector of the
sequence of control parameters over N steps,

� = (φrf,1,φmw,1,φrf,2,φmw,2, . . . ,φrf,N ,φmw,N ). (17)

To perform the numerical search for control pulses, we choose
as our objective function the fidelity

F(�) =
∑

εrf ,εmw,�

| 〈ψT (εmw,�)| U (εrf,εmw,�,�) |↑〉 |2, (18)

where |ψT (εmw,�)〉 is the target state for a given value of the
ensemble. Unconstrained optimization is performed using the
MATLAB routine fminunc.

IV. RESULTS

A. Robust control: Semianalytical vs fully numerical search

We present results from several examples of robust control
so that the target state is independent of εmw, εrf , and �. The
Hamiltonian is described by Eq. (14) with �0/2π = 100 kHz.
The maximum rf-Larmor frequency is �x,y/2π = 1.5 kHz,
and the maximum microwave-Rabi frequency is �mw/2π =
3.5 kHz. For these parameters, we respect the linear Zeeman
regime and can safely ignore off-resonant effects of the
microwave radiation, in line with our model of dynamics on
an 8D Hilbert space, the span of the F = 3 subspace plus |↑〉.
Given these time scales, we take 125 μs steps for piecewise
constant evolution of the control wave forms.

We compare the performance of the semianalytical ap-
proach of Sec. III with the fully numerical search. In all cases,
we performed optimizations for 20 states chosen according to
the Haar of measure on SU(8) and then averaged the fidelity
over the results for different states. In the semianalytical
approach, we alternate SU(2) rf- and microwave-generated
rotations. Each rotation is made robust by decomposing them
into three steps of 125 μs duration whose amplitude and phases
are found by numerical optimization. As the protocol does not
have a specified end time, the number of rotations is not fixed.
For each state we repeat the optimization 10 times and pick
the optimization that attains a chosen threshold fidelity in the
shortest time. In contrast, for the fully numerical approach,
the microwave and rf fields are present simultaneously and
we fix the total duration of the wave form, which sets the
number of 125 μs steps. We choose the duration to be long
enough to achieve high fidelities; the duration is chosen for
each case depending on the amount of inhomogeneity. We set
the amplitude of the rf and microwave fields to their maximum
values and only optimize their phase. The algorithm is then
iterated until a target fidelity of 0.99 is reached.

A comparison of the results for errors of up to 1% in εrf ,
εmw, and � are shown in Fig. 2. In both the semianalytical
and fully numerical protocols, the pulse sequences are found
by optimizing the fidelity on a coarse grid in parameter
space defined by εrf = 0, ± 0.01, εmw = 0, ± 0.01, and � =
0, ± 0.01�rf and then averaged. To ensure that the pulse
sequences perform as desired, we then calculate the fidelity
on a finer grid with 15 evenly spaced points between ±1% in
those parameters. For the semianalytical case, the total time to

022302-5



MISCHUCK, MERKEL, AND DEUTSCH PHYSICAL REVIEW A 85, 022302 (2012)

F vs.
mw mw

 

F vs. 

F vs. 

F vs. 

F vs. 

F vs. 

FIG. 2. Average fidelity vs inhomogeneity for (a) semianalytic state preparation and (b) fully numerical state preparation. The x axis
represents the fractional variation in each parameter for the three cases: power inhomogeneity in rf and micorwave, εrf,mw, and detuning as a
fraction of �mw. We show the performance as a function of one inhomogeneity and averaged over the the other two. Each curve is an average
of 20 random states in the 8D Hilbert space. In the semianalytic case, each wave form consists of a series of alternating rf and microwave
SU(2) pulses for a total of 3.98 ms. The optimized pulses are found through a numerical search of the time varying amplitude and phase of the
relevant fields. In the fully numerical case, rf and microwave fields are applied simultaneously for a total of 1 ms. The microwave and rf powers
are set to their maximum values, and a we perform a numerical optimization of the phases. For both the semianalytic and the fully numerical
case, the wave form consisted of a series of piecewise constant 125 μs pulses.

reach a fidelity greater than 0.99 is 3.94 ms, averaged over the
20 states. As can be seen from the figure, a fidelity of over 0.99
is maintained over the range of parameters, and the fidelity
averaged over that range is 0.997. For the fully numerical
case, as seen in Fig. 2, a fidelity of over 0.99 is maintained
throughout the parameter range, and the fidelity averaged over
that range is 0.994. While this sample shows slightly lower
average fidelity, the duration of the fully numerical wave form
is only 1 ms long, nearly a factor of 4 speed up compared
to the sequence of SU(2) rotations. Thus, we see that for
inhomogeneities of 1%, both approaches achieve high fidelity,
though the sequence found via fully numerical optimization
can do so in significantly less time.

While the semianalytical method yields wave forms that
require substantially more time to achieve high fidelity when
compared with the fully numerical method, it serves as an
important proof of principle. For the remainder of the paper

we focus on the fully numeric method. Figure 3(a) shows
the results of fully numerical optimization with errors of 5%.
In this case, the optimization was performed on a grid in
parameter space defined by εrf = 0, ± 0.05, εmw = 0, ± 0.05,
and � = 0, ± 0.05�rf . The duration of the entire pulse
sequence is 5 ms. After the optimization, we calculate the
fidelity on a finer grid of 15 points evenly spaced between ±5%
for each of those errors, as shown in the figures. A fidelity of
over 0.988 is maintained throughout this range of parameters
and we achieve an average fidelity of 0.993. Optimization
by the fully numerical method is sufficiently powerful to
compensate errors well beyond experimental uncertainty. As
an example, in Fig. 3(b) we present the results of optimizing
errors of � that are 10% of �rf . We perform the optimization
on a grid of 10 evenly space points between ±0.1�rf . The
timing is the same as the previous example. Fidelities of over
0.98 are maintained over the entire range of the detuning, while

F vs. 

F vs. 

F vs. 

mw

FIG. 3. (a) Fidelity of fully numerical state preparation vs 5% errors in εrf , εmw, and �/�rf . The x axis represents the fractional variation
in the each parameter for the three cases: power inhomogeneity in rf and microwave, εrf,mw, and detuning as a fraction of �mw. We show the
performance as a function of one inhomogeneity and averaged over the the other two. Each curve is an average of 20 random states in the 8D
Hilbert space. (b) Fidelity of fully numerical state preparation vs 10% errors in �/�rf .
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TABLE I. Summary of results.

Inhomogeneity range Optimization method Total time (ms) Average fidelity

εrf,εmw,�/�rf ∈ [−0.01,0.01] Semianalytic 3.94 0.997
εrf,εmw,�/�rf ∈ [−0.01,0.01] Fully numerical 1.0 0.994
εrf,εmw,�/�rf ∈ [−0.05,0.05] Fully numerical 5.0 0.993
�/�rf ∈ [−0.1,0.1],εrf,εmw = 0 Fully numerical 5.0 0.992

the fidelity averaged over the full range of errors is 0.992. We
summarize our results in Table I.

B. Tomographic addressing

As discussed in the Introduction, the tools of ensemble
control allow us to design wave forms for tomographic
addressing. For example, a spatial gradient of the detuning
imposed through an external field can be used to spatially
address different regions of an ensemble. In our system,
large gradients can be achieved by the fictitious magnetic
field produced by the light shift associated with a circularly
polarized laser beam [24]. A local unitary transformation can
be designed as a function of the intensity of the addressing
laser beam.

As a proof of principle, we consider a cold atomic gas
and prepare two different “nonclassical” states (i.e., not spin-
coherent states) in two spatial regions by applying global

F 2
z

Position (mm)

        vs. 

        vs. F

F

Fz

Δ(Hz)

FIG. 4. Spatially selective control. (a) Plot of the spatial variation
in the detuning, �, imposed by a light-shift gradient. The gradient
separates the gas into two spatial regions in order to generate two
distinct target states: For x < 0.5 mm, the target state is |ψ1〉 =

1√
2
(|F = 3,mF = −3〉 + |F = 3,mF = 3〉) and for x > 0.5 mm the

target state is |ψ2〉 = |F = 3,mF = 0〉. Because a perfectly sharp
transition between the two detunings is not possible in the laboratory,
there is a transition region around x = 0.5 mm. The microwave
and rf fields are applied simultaneously with maximum power
and numerically optimized phases. (b) Results of the synthesized
states. The left axis shows 〈F 2

z 〉 vs position and the right axis
shows 〈Fz〉 vs position. If the target states are synthesized perfectly,
then 〈ψ1| Fz |ψ1〉 = 〈ψ2| Fz |ψ2〉 = 0 and 〈ψ1|F 2

z |ψ1〉 = 9 while
〈ψ2| F 2

z |ψ2〉 = 0. With the exception of the transition region at
x = 0.5 mm, these goals are achieved.

control pulses in the presence of a detuning inhomogene-
ity. In this example we have chosen to synthesize |ψ1〉 =
(|F = 3,mF = −3〉 + |F = 3,mF = 3〉) /

√
2 in one half of

the gas and |ψ2〉 = |F = 3,mF = 0〉 in the other. Such a
distribution is highly nonclassical and in itself would be an
interesting starting point for the study of dynamics in spinor
gases [27]. In the ideal case, we would apply a step function
to perfectly select two regions with two distinct detunings
through, for example, application of a light-shift phase mask.
In practice, however, the laser field which creates the level
shifts cannot be focused to a perfectly sharp edge. We take this
into account by modeling the spatial variation in detuning by

�(x) = �0(1 − e−(x/a)m ). (19)

In the limit m → ∞ we recover a step function. As an example
we take a = 0.5 mm and m = 8, which gives a transition
region that is quite large compared to the wavelength of light
and thus can be easily implemented with available optics. As
depicted in Fig. 4, we choose �0 = 300 Hz, which is large
enough that the two regions can be easily distinguished, but
is not large compared to the rf (microwave) Larmor (Rabi)
frequencies.

Our goal is to synthesize |ψ1〉 in the region with detuning
�0 = 0 and |ψ2〉 in the region with �0 = 300 Hz. We
have included some spread in the detuning to account for
possible noisy background fields and optimize on a grid around
the desired detuning, � = �0 + δ, δ = {0, ± 10 Hz}. In this
case the objective function is

F(�) =
∑

δ

[| 〈ψ1| U (� = δ,�) |↑〉 |2

+ | 〈ψ2| U (� = 300 Hz + δ,�) |↑〉 |2]. (20)

In the transition region between the two targets, we do
not constrain the solution. Using the same gradient search,
we find the control wave form for the phases of the os-
cillating fields with their amplitudes fixed at the maximum
values.

The results of the optimization are shown in Fig. 4. To
evaluate the performance we have plotted both 〈Fz〉 and 〈F 2

z 〉
as a function of position. For the two target states we have
〈ψ1| Fz |ψ1〉 = 〈ψ2| Fz |ψ2〉 = 0 and 〈ψ1| F 2

z |ψ1〉 = 9 while
〈ψ2| F 2

z |ψ2〉 = 0. In the region between x = 0 and 0.3 mm,
where the detuning is between �/2π = 0 and 10 Hz, |〈Fz〉| �
0.0125 and 〈F 2

z 〉 � 8.95, as expected for |ψ1〉. In the region
between x = 0.6 and 1 mm, where the detuning is between
�/2π = 290 and 300 Hz, |〈Fz〉| � 1.5 × 10−3 and 〈F 2

z 〉 �
0.012, as expected for |ψ2〉.
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V. SUMMARY

We have studied the control of d-level quantum systems or
qudits encoded in the hyperfine magnetic sublevels of alkali-
metal atoms when there are variations in the external rf and
microwave fields that drive the system. Such variations could
be the result of uncertainties that result from experimental im-
perfection or intentionally applied in order to tomographically
address specific members of an inhomogeneous ensemble. We
restricted our attention to qudits formed from the subspace of
the lower hyperfine manifold F↓ = I − 1/2, plus one sublevel
in the upper manifold F↑ = I + 1/2; for 133Cs this is an 8D
Hilbert space. With this structure, we can achieve control on
the system through a simple series of SU(2) rotations driven
alternately by resonant rf and microwave fields.

We studied the simplest control problem—state synthesis—
whereby a known fiducial state is transformed to an arbitrary
state in the Hilbert space. Our construction is based on
the protocol of Law an Eberly [26], extended to F > 1/2
representations of SU(2). Moreover, because it consists of a
series of SU(2) we can draw upon the results of [18,19], which
proved that arbitrary unitary transformations on two-level
systems could be constructed as a function of variations in
the detuning and Rabi frequency of the driving Hamiltonian,
and we extended them to our case of inhomogeneous control
of qudits.

We proved that the semianalytic protocol is efficient, though
not necessarily optimal in the duration of the pulse sequence.
More importantly, this procedure provides a foundation for
numerical searches for more efficient pulse sequences. This
situation is similar to that found in two-level control, where
a Lie algebraic approach provides a proof of principle that
appropriate controls exist, while numerical optimization is
used to find the optimum pulse sequence [18,19]. The search
is based on a simple gradient ascent with the objective
of maximizing the fidelity of the target, averaged over the
inhomogeneous parameters. We compared the performance
of semianalytical state synthesis to fully numerical state
synthesis, and studied robust control over a range of ex-
perimental uncertainties. For small inhomogeneities, <1%,
both approaches achieve average fidelities greater than 0.99.
However, the fully numerical approach can find control
sequences which require significantly less time. Thus, for
the remainder of the paper, we studied the fully numerical
approach. For the parameters we studied, fidelities greater than
0.99 are possible with 5% errors in detuning and amplitudes of

the driving fields. As a testament to the efficiency of the search
procedure, we were able to find control wave forms that are
robust to 10% errors in detuning, well beyond experimental
uncertainty.

In addition to robust control we performed a proof-of-
principle test of tomographic addressing using designed spatial
variations in the detuning over an extended ensemble. Such
tomography has been employed to address individual atoms
in optical lattices, and considered even under circumstances
beyond the diffraction limit of an addressing laser beam [25].
Prior work assumed that the nonaddressed members were
unaffected solely because they were too far off resonance.
Here we studied more general extensions, employing the tools
of ensemble control. In practice, different members of the
ensemble can be made to undergo different unitary transforma-
tions depending on the local parameters. As a simple example,
we showed how one can synthesize, with high fidelity, the
state |ψ1〉 = (|F = 3,mF = −3〉 + |F = 3,mF = 3〉)/√2 in
one half of the gas and |ψ2〉 = |F = 3,mF = 0〉 in the
other, limited by the resolution of the spatial gradient of
detuning.

In the future, we intend to extend this work in a number of
directions. We have previously shown how one can leverage off
of the efficiency of state synthesis to design the a full unitary
transformation of the d-dimensional Hilbert space [6]. For
such a procedure to work, it will be critical take into account
inhomogeneities in the driving fields. The tools of ensemble
control developed here provide the necessary foundation.
Additionally, we plan to extend the work of tomographic
control toward addressable control of atoms in optical lattices,
a key ingredient in many studies of quantum computing and
quantum simulation.
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