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After formulating a no-go theorem for perfect quantum-classical hybrid systems, a consistency requirement
based on standard statistical considerations is noted. It is shown that such requirement is not fulfilled by the
mean-field approach or by the statistical ensemble in configuration space approach. Further unusual features of
the latter scheme are pointed out.
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I. INTRODUCTION

The study of the interrelation between classical and quan-
tum dynamics is as old as quantum theory itself. The Copen-
hagen interpretation invokes a classical measuring device in
interaction with the quantum system to be measured [1–4].
However, while classical and quantum dynamics are each
internally consistent by themselves and formally similar, their
coupling is not straightforward and, in fact, poses a problem
of consistency [5–16]. The most immediate approach is the
mean-field scheme (or semiclassical or Ehrenfest method),
in which the classical system couples to the quantum one
through the expectation values. This scheme is robust and
elegant but not realistic as it misses the backreaction from
the quantum fluctuations [17–19]. For instance, in cosmology
it leads to problems in accounting for the local anisotropy
in the early universe [20]. Many other coupling schemes for
hybrid classical-quantum systems have been proposed in the
literature [6,8,12,21–37]. As shown in Ref. [5] (of course,
under pertinent assumptions), as soon as a classical degree of
freedom couples to a quantum system, a consistent description
is only possible if the classical system inherits fluctuations
which turn it quantal. (See, however, the critique in Ref. [38].)
This type of argument, as well as the accuracy of quantum me-
chanics in every prediction, would point to the conclusion that
only quantum systems exist in nature. While this view is quite
extended among the scientific community it is by no means
universally accepted, due to the conceptual problems involved
in the quantum description [39–42]. Also, the technical and
conceptual difficulties encountered in quantum gravity have
prompted a certain discussion regarding the necessity or not
of treating gravity quantum mechanically [43–54].

In our view the problem of “semiquantization,” that is,
treating simultaneously classical and quantum observables
in interaction and constructing a consistent algebra of such
observables, is closely related to the problem of “quantization,”
that is, how to obtain the quantum version of a system
and its algebra of observables, from its classical version.
For the latter there are well-known no-go theorems [55–57]
and similar negative theorems have been forwarded for the
semiquantization problem [9,11–16]. If all physical systems
are described by quantum mechanics, both problems would
be of technical type, rather than of fundamental type. The
quantization program would be to use the classical description
as guidance to construct the correct quantum description
among the several possible ones with the same classical limit.

The semiquantization program would be how to construct a
useful approximate description in which some sector of the
theory is treated classically to make the treatment accessible to
computation. This is actually the situation in many applications
in physics and quantum chemistry [17,19,21,58–61].

One goal of the present work is to reanalyze the conditions
fulfilled by classical and by quantum systems, conditions
which guarantee a consistent description. In Refs. [9,11] it was
already shown that a perfect quantum-classical hybrid, that is,
sharing all the nice properties of classical and quantum systems
is not viable (at least without restrictions on the allowed
interactions). A technical limitation was that variables of the
position-momentum type were assumed in the quantum sec-
tor.1 More general proofs have been obtained in Refs. [62,63].
Here we present an extremely streamlined proof of this no-go
theorem. To have a proof as simple as possible should be of
interest for modelers of quantum-classical hybrid dynamics.
The failure of perfect hybridization has some consequences if
quantum-classical hybrids are taken at the fundamental level,
that is, not as approximations. If such hybrid systems would
exist in nature they would have emergent properties [64] not
shared by the purely classical or the purely quantum dynamics.
This is by itself problematic because the prime example
of a classical-quantum interacting system, according to the
Copenhagen interpretation, would be a quantum measurement.
No emergent phenomena have been detected there. Easy or
hard to understand from a conceptual point of view, what is
seen there is part of the standard quantum mechanics.

However, the main contribution of this work is the
introduction of a further consistency requirement to be
fulfilled by quantum-classical hybrid dynamics. Essentially,
we note that mixed statistical quantum states, a density
matrix, can be decomposed in many different ways into
pure states. Likewise, a mixed statistical classical state can
be decomposed as statistical combinations of other mixed
classical states. For either purely classical or purely quantum
systems, the concrete decomposition is not relevant; only
the statistical mixture is. As it turns out, it is a nontrivial
requirement that the evolution of quantum-classical hybrid

1This is an important limitation but the proof still covers all degrees
of freedom of bosonic type, since the position-momentum pair can
be combined to form bosonic creation and annihilation operators and
the corresponding bosonic quantum fields.
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systems should be independent of the concrete decomposition.
This requirement was briefly touched upon in Ref. [13]. Here
we analyze it in more detail and show that the mean-field
approach and the statistical ensemble scheme in configuration
space [65–68] fail to fulfill the requirement. So, for instance, if
the violation of this principle were an emergent feature of the
hybrid systems, it would be possible to say which is the “true”
polarization of the electrons in an unpolarized electron beam.
This provides a test for such hybrid schemes. In passing, the
hybrid scheme based on statistical ensembles in configuration
space is analyzed in some detail. Further emergent features
are unveiled for this approach, such as ghost coupling between
noninteracting (but entangled) classical and quantum sectors
and nonconservation of angular momentum in presence of
spin or of internal symmetries in general.

In Sec. II the proof of the no-go theorem for perfect
quantum-classical hybrids is presented. In Sec. III the statis-
tical consistency requirement is introduced and applied to the
mean-field approach. In Sec. IV the statistical ensemble in con-
figuration space approach is analyzed, in particular regarding
its statistical consistency. In Sec. V we present our conclusions.

II. NO-GO THEOREM

A classical system with nc degrees of freedom can be
described using the canonical formalism, that is, by means
of the phase-space variables position and momentum, xi,ki ,
i = 1, . . . ,nc. The observables, including the Hamiltonian, are
real valued functions of x and k, A(x,k) (for simplicity we
disregard an explicit dependence on time in the observables).
Their dynamical evolution is described by the Poisson bracket
with the Hamiltonian

d

dt
A = {A,H } :=

∑
i

(
∂A

∂xi

∂H

∂ki

− ∂A

∂ki

∂H

∂xi

)
. (2.1)

The (classical) canonical formalism seems particularly
convenient in a discussion about classical-quantum mixing
because it has a parallel in the quantum treatment. Indeed,
in the Heisenberg picture quantum observables are Hermitian
operators with dynamical evolution dictated by Heisenberg’s
equation of motion,

d

dt
A = 1

ih̄
[A,H ] := 1

ih̄
(AH − HA). (2.2)

The classical bracket {, } and the quantum one [ , ]/ih̄,
share mathematical properties which are essential for the
corresponding dynamics. First, they are Lie brackets, that
is, they are linear, antisymmetric, and fulfilling the Jacobi
identity. Lie groups act through Lie algebras, so the Lie
bracket property is required in order to implement observables
as generators of groups of transformations, including the
dynamical evolution. For instance, if the bracket were not
antisymmetric, conservation of energy, dH/dt = 0, would
not be guaranteed [69]. Likewise, if the angular momentum
is to generate rotations of the system, the bracket has to
carry a representation of the algebra of SO(3), and so this
bracket has to enjoy the Jacobi property. Also, this property
ensures that a relation like C = (A,B), where ( , ) denotes the
dynamical bracket, is preserved under dynamical evolution or
other transformations.

Throughout we consider dynamics of “universal” type,
rather than of restricted type, so we really need the bracket
between any two observables to be defined (and to be itself
an observable) since any observable can be regarded as a
possible Hamiltonian, or any observable can be added to the
Hamiltonian as a perturbation.

Another conspicuous property of the dynamical brackets is
that they are a derivation; that is, they fulfill Leibniz’s rule:

(A,BC) = (A,B)C + B(A,C). (2.3)

This property ensures that a relation like C = AB is preserved
under dynamical evolution. For instance, if p is the momentum
operator, the kinetic energy p2/2m evolves as p2(t)/2m. This
avoids the odd scenario in which the expression of the kinetic
energy would be different at different times, and similarly for
any other observable without intrinsic time dependence.

A further property refers to the structure of systems com-
posed of different sectors, that is, different independent sets of
degrees of freedom, for instance, two different particles or spin
and position of a single particle. In this case, the observables
of the full system have the structure of tensor product over
the various sectors. This is true in classical and in quantum
mechanics. An immediate consequence of the tensor product
construction is that observables of two different quantum
sectors commute, and furthermore the product of two such
observables is also an observable (the product of two Hermitian
commuting operators being automatically Hermitian). The
bracket of two observables of the same sector remains in that
same sector and, moreover, the bracket of observables in two
different sectors vanishes. This property is important. It ensures
that the two different sectors evolve independently unless
an interaction term is present in the Hamiltonian. Indeed, if
the Hamiltonian takes the form H = H1 + H2, with H1 and
H2 acting in the two different sectors, and the observable
A1 belongs to the first sector, its evolution will not depend
on H2.

The fact that the two canonical structures, classical and
quantal, have common properties is, of course, no accident. As
is well known, using, for example, the Wigner representation
[70–72], the Poisson bracket can be obtained as an h̄ → 0
limit of the commutator. The above-mentioned properties are
preserved by the limiting procedure as they do not explicitly
depend on h̄.

A rather natural approach suggests itself to describe systems
having simultaneously quantum and classical degrees of
freedom, namely, to start with a quantum-quantum system and
somehow take the classical limit in just one of the two sectors.
(For instance, one could start with operators defined in the
tensor product Hilbert space of the two quantum sectors, apply
a Wigner transformation in just one of the spaces, and take the
classical limit there.) In that description observables would be
Hermitian operators in the Hilbert space of the quantum sector
and also functions of the phase-space variables of the classical
sector.

Dynamical brackets have been proposed for the hybrid
quantum-classical systems in this approach, most notably by
Aleksandrov and by Boucher and Traschen [6,24]:

(A,B) = 1

ih̄
[A,B] + 1

2
{A,B} − 1

2
{B,A}. (2.4)
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[Here the Poisson bracket is applied as defined in Eq. (2.1)
to the operators A and B, which in general do not commute.]
This bracket has some good properties (certainly better than
the bracket proposed in Ref. [26]; see [9,69,73]) but it is not a
derivation and does not fulfill the Jacobi identity. In addition,
it does not preserve positivity of the density matrix [6].

In fact, no bracket can provide a dynamics with all the
nice properties common to the purely quantum or purely
classical cases. (We refer to that hypothetic dynamics as perfect
hybridization.) This is shown in Ref. [9]. The key point is that,
although the properties hold for any value of h̄, they require h̄

to take the same value in all sectors [9,11]. Elaborated proofs
based on this idea can be found in Refs. [62,63]. Here we
present a simple proof. Let A1, B1 be two observables in one
sector and A2, B2 in another sector. Let us assume that the
bracket ( , ) in the total space enjoys all the above-mentioned
properties and in particular, that in each sector they are
quantum brackets with two different Planck constants,

(A1,B1) = 1

ih̄1
[A1,B1], (A2,B2) = 1

ih̄2
[A2,B2]. (2.5)

By assumption we can form the new observables A1A2 and
B1B2. Then, applying Leibniz’s rule twice,

(A1A2,B1B2) = (A1A2,B1)B2 + B1(A1A2,B2)

= A1(A2,B1)B2 + (A1,B1)A2B2

+B1A1(A2,B2) + B1(A1,B2)A2

= (A1,B1)A2B2 + B1A1(A2,B2). (2.6)

In the last equality it has been used that the bracket vanishes
for different sectors. On the other hand, due to antisymmetry
of the bracket, the expression is antisymmetric under exchange
of labels A and B:

(A1A2,B1B2) = −(B1B2,A1A2); (2.7)

therefore,

(A1,B1)A2B2 + B1A1(A2,B2)

= −(B1,A1)B2A2 − A1B1(B2,A2)

= (A1,B1)B2A2 + A1B1(A2,B2). (2.8)

This implies the compact relation

(A1,B1)[A2,B2] = [A1,B1](A2,B2). (2.9)

This relation for generic operators, combined with Eq. (2.5),
leaves only the possibility

h̄1 = h̄2. (2.10)

Hence, there is no quantum-classical mixing (which would
require h̄1 = h̄, h̄2 = 0) with all the nice properties shared
by the purely classical or purely quantum cases, no perfect
quantum-classical mixing. Note that the Jacobi identity has
not been used. Also, the Leibniz rule has not been applied at
its full power. We have only assumed that A1A2 evolves into
A1(t)A2(t), that is, only for the product of two observables in
different sectors.

Quantum-classical hybrids can be considered at two levels,
a practical one and a fundamental one. If quantum-classical
hybrid systems are regarded as an approximation to a full
quantum system, the previous no-go theorem just shows

that such approximation will always meet some intrinsic
limitations. This is not particularly surprising and it does
not prevent these kind of approximations from being useful
ones. On the other hand, if the aim is to describe hypothetical
quantum-classical hybrids truly existing in nature, the no-go
result implies that such hybrid systems will have emergent
features, not present in any of the two sectors separately.
This is because a hybrid with just the standard features has
been shown not to be consistent. In this scenario there are
at least two alternatives. First, that quantum and classical
mechanics are just limit cases of a larger theory [74], and
in this case the emergent features were already present from
the beginning. Second, whenever the two sectors, classical
and quantal, are not coupled by any interaction term in the
Hamiltonian, they behave precisely as expected from standard
classical mechanics and from standard quantum mechanics,
being that only their coupling would yield new emergent
properties. To be practical, we adopt the latter possibility as
our working assumption. Let us remark that the assumption
refers not only to the case of classical and quantum sectors
which are never coupled, but also to the cases in which the
coupling acts occasionally. In support of this assumption is
the empirical fact that quantum mechanics is verified to work
very accurately for systems for which the previous history is
not known (and so they may include a previous interaction
with hypothetic classical sectors). Also, assuming that a
quantum measurement requires a truly classical apparatus, the
assumption is supported by the fact that quantum mechanics
works accurately also after measurements have taken place.

III. STATISTICAL CONSISTENCY AND MEAN-FIELD
SCHEME

In this section we assume a system with truly quantum and
truly classical sectors, as described by their corresponding
standard dynamics when they do not interact. We show
that nonlinear hybrid dynamics are in conflict with quantum
mechanics as we understand it.2

The simplest and most intuitive description of the quantum-
classical mixing follows from the well-known mean-field
dynamics. In this dynamics the classical sector and the
quantum sector remain (or can remain) always in pure states.
That is, at any time, and with or without interaction switched
on, the position and momentum of the classical particles are
well defined, and the quantum state is described by a wave
function rather than a density matrix. The dynamics is as
follows:

dxi

dt
= ∂

∂ki

〈H (x,k)〉ψ,
dki

dt
= − ∂

∂xi

〈H (x,k)〉ψ,

(3.1)

ih̄
d

dt
|ψ〉 = H (x,k)|ψ〉.

The Hamiltonian of the system is a function defined on the
classical phase space that takes values on operators of the
Hilbert space of the quantum system. Such dynamics contains

2Obviously, from the beginning there has been much debate about
interpretation and other details of quantum mechanics. Here we refer
to quantum mechanics as found in textbooks, for example, [75].
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a backreaction of the quantum sector on the classical sector,
but misses the “quantum backreaction,” that is, the effect
of quantum fluctuation around the expectation value, that
presumably should also be present [18].

A nice reformulation of the mean-field approach has
recently been presented in Ref. [37] (see also [76,77]). This is
based on the well-known observation that the wave function
can be regarded as a classical field, and the Schrödinger
equation can be regarded as the corresponding classical field
equation of motion. Quantum observables can be represented
by their expectation value, A(ψ) = 〈A〉ψ , so that the com-
mutator is represented by the Poisson bracket, with ψq and
ih̄ψ∗

q as the canonical conjugate variables. Here ψq = 〈q|ψ〉
and |q〉 is any orthonormal basis of the Hilbert space of
the quantum sector. In the hybrid case these variables are
augmented with the phase-space variables of the classical
sector, and A(ψ,x,k) = 〈A(x,k)〉ψ ,

{A,B} = 1

ih̄

∑
q

(
∂A
∂ψq

∂B
∂ψ∗

q

− ∂A
∂ψ∗

q

∂B
∂ψq

)

(3.2)

+
∑

i

(
∂A
∂xi

∂B
∂ki

− ∂A
∂ki

∂B
∂xi

)
.

The hybrid dynamics given by

Ẋ = {X,〈H (x,k)〉ψ }, X = ψq,ψ
∗
q ,xi,ki, (3.3)

is easily shown to be equivalent to that in Eq. (3.1).
In this formulation there is a Lie bracket which is also a

derivation, so this approach would seem to bypass the no-
go theorem. The caveat is that the dynamical bracket of two
observables should be itself an observable, and this is not the
case here. In the scheme of [37] observables are expectation
values of operators A(x,k) and so are bilinear in ψ and ψ∗. This
property is not preserved by the classical part of the bracket
(which, in general, will be quadratic in ψ and quadratic in
ψ∗). This implies that the time derivative of an observable, Ȧ,
is not an observable, that is, of the form B = 〈B(x,k)〉ψ , for
some operator valued B(x,k).

Now we come to the main argument of this work. We
introduce a consistency condition to be added to others
considered up to now in the literature. In quantum mechanics,
as commonly understood, the state of a system is described, in
the most general case, by a density matrix [75,78] (interpreted
in the usual sense of “proper mixtures” [79]). This represents a
statistical mixture of pure states, pure states themselves being
a particular case. The key observation is the well-known fact
that, in general, density matrices can be realized in many
different ways as mixtures of pure states. A simple example
is that of an unpolarized electron beam. Such a state can be
attributed to an equiprobable mixture of up and down spins,
but the same mixture is obtained regardless of the quantization
axis chosen. For another example, let

ρ̂ =
∑

α

pα|ψα〉〈ψα|, pα � 0,
∑

α

pα = 1, (3.4)

where the |ψα〉 are normalized but not orthogonal. Because ρ̂ is
Hermitian and positive it can be diagonalized into orthonormal

states with positive weights,

ρ̂ =
∑

ν

wν |φν〉〈φν |, wν � 0,

(3.5)∑
ν

wν = 1, 〈φν |φν ′ 〉 = δνν ′ .

The new states (eigenstates of ρ̂) are linear combination of the
old ones, but different from them (unless all the |ψα〉 are the
same state).

In general, we can consider that in Eq. (3.4) the label
α runs through the set of all pure states |ψα〉 (normalized
vectors, and modulo a phase) each pure state with some
weight pα . Note that we mean all states, not just a linear
basis of states. This is an infinite number even for a qubit.
A configuration {pα} will produce a density matrix, but the
number of possible different density matrices is much smaller
than that of configurations. All the configurations {pα} yielding
the same density matrix represent precisely the same quantum
state. In quantum mechanics there is no way to distinguish
between two mixtures producing the same density matrix. Not
only will the expectation value of every observable be the
same, tr (ρ̂A), but also the results of any measurement will
be identical, as also the probabilities can be written using the
density matrix only, P (A = a) = 〈a|ρ̂|a〉 [75]. This means
that, in quantum mechanics, the precise decomposition of a
density matrix into pure states has no physical meaning.

In the classical theory there is the probability density func-
tion on phase space ρ(x,k) and in this case the decomposition
into pure states δ(x − a)δ(k − b) is unique,

ρ(x,k) =
∫

dna dnb ρ(a,b)δ(x − a)δ(k − b). (3.6)

A classical-quantum hybrid scheme like the mean-field one
does not directly dictate an evolution for statistical mixtures
of classical or quantal pure states. However, nothing prevents
us from applying the hybrid scheme for pure states and take
the statistical mixing at any time. The basis for this procedure
follows from the meaning of the statistical mixture and from
standard probability theory. It does not rely on quantum
mechanics. This implies a stringent consistency condition on
any hybrid scheme. We may not know how things work in
a hybrid system when they interact, but we know that in the
absence of interaction each sector behaves in the standard way.
Therefore, let the interaction be switched off for t < t0, and let
the state at t0 be (x,k) = (x0,k0) in the classical sector and |ψα〉
in the quantum sector. The interaction is connected for t > t0
and the evolution depends on the hybrid scheme adopted. In
fact, we can consider all such evolutions for all possible initial
|ψα〉 [but the same (x0,k0)]. Let Aα(t) be the expectation value
of any hybrid observable A for each α at time t . Whenever
two mixtures {pα} and {p′

α} produce the same density matrix
at t = t0,

ρ̂ =
∑

α

pα|ψα〉〈ψα| =
∑

α

p′
α|ψα〉〈ψα|, (3.7)

we should demand that∑
α

pαAα(t) =
∑

α

p′
αAα(t)

for t � t0 and for any observable A. (3.8)
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The reason is that for t � t0 the two states described by
{pα} and {p′

α} are identical, if quantum mechanics is cor-
rect and complete for the isolated quantum sector. There-
fore, the evolution at later times of the two states should
also be identical, regardless of the nature of the hybrid
dynamics.

A hybrid scheme violating the condition contained in
Eq. (3.8) would automatically provide an experimental way
to discriminate between two mixtures which, according to
quantum mechanics, are indistinguishable, and presumably
would provide, for any mixture, its true decomposition into
pure states. Such true pure states would be a type of hidden
variables in quantum mechanics, as quantum mechanics is
blind to them. This possibility should be rejected: If such
hybrid scheme is applied to describe the measurement process
in quantum mechanics, the measurement apparatus being
classical, the fact that the scheme distinguishes mixtures with
the same density matrix would be in contradiction with what is
known about expectation values and measurements in quantum
mechanics. So a hybrid system violating Eq. (3.8) is either
inconsistent or of limited applicability. For want of a better
name, we refer to the requirement just introduced as statistical
consistency.3

The mean-field scheme violates this condition. To see this,
consider a collection of alternative pure states |ψα〉 at t0 in the
quantum sector with a common state (x0,k0) in the classical
sector, and let each hybrid state have its evolution. In the
mean-field dynamics, the evolution of the expectation of an
observable takes the form

d

dt
〈A〉α = 1

ih̄
〈[A,H ]〉α + {〈A〉α,〈H 〉α}. (3.9)

Multiplying by pα , summing over α, and taking t = t0, we
can see that the last term cannot be expressed in terms
of

∑
α pα|ψα(t)〉〈ψα(t)|, due to the lack of linearity in the

dynamics. Hence, statistical consistency is lost.
For instance, for a classical particle with quantum spin and

Hamiltonian H = λ
2 x2k·σ , let the state at t0 be (x0,k0), and

unpolarized spin. To implement this, let us choose an arbitrary
axis n̂ and let the pure spin states be |↑〉 and |↓〉, each with
probability one half. At t0 one finds d

dt
〈k·σ 〉 = −λn̂·x0n̂·k0.

The dependence on n̂ breaks statistical consistency.4

The mean-field evolution in Eq. (3.9) can be also written
as

d

dt
tr (ρ̂A) = 1

ih̄
tr (ρ̂[A,H ]) + {tr (ρ̂A),tr (ρ̂H )}, (3.10)

3The name “mixture independence” would be also suitable to
emphasize that a scheme can be mathematically consistent even if
it does not enjoy this property [80].

4This example suggests restoring statistical consistency in the
mean-field approach by making a suitable average over all possible
decompositions of a given density matrix into pure states, ρ̂ =∑

α pα|ψα〉〈ψα|. In the example above, a rotational average over
n̂ seems appropriate. It is not clear to us whether, in the general
case, there is a natural density probability function defined on the
set of choices pα , and to what extent this procedure would be an
improvement regarding consistency.

where ρ̂ = |ψα(t)〉〈ψα(t)| (no sum over α). The equation
written in this form suggests to propose this very dynamics
but now inserting in ρ̂ a general density matrix. In this case ρ̂

would evolve according to

dxi

dt
= ∂

∂ki

tr (ρ̂H ),
(3.11)

dki

dt
= − ∂

∂xi

tr (ρ̂H ), ih̄
d

dt
ρ̂ = [H,ρ̂].

Unfortunately, such evolution is not consistent with the
meaning of statistical mixture. That meaning implies that,
given two alternative situations ρ̂1 and ρ̂2 with probabilities p1

and p2, the mixture ρ̂ = p1ρ̂1 + p2ρ̂2 at t = t0 should remain
so at any other time. Each alternative represents a possible
different history and, by definition of expectation value, one
should have a weighted average of the two histories, 〈A〉ρ =
p1〈A〉ρ1 + p2〈A〉ρ2 , at any time. So, in practice, linearity in ρ̂

is required and this constraint is not fulfilled by Eq. (3.10).5

Hybrid schemes like those considered in Sec. II, where
observables are operator valued functions in the classical
phase space, meet the requirement of statistical consistency.
They can be formulated using the combined density matrix
of quantum and classical sectors, ρ̂(x,k), with the following
linear evolution:

d

dt
ρ̂(x,k) = [Ĥ (x,k),ρ̂(x,k)]. (3.12)

Therefore, the issue of the manifold decomposition of the
density matrix into pure states is never raised. (However, these
dynamics are subject to the no-go theorem of Sec. II.) On
the other hand, hybrid schemes which do not preserve the
linearity of quantum mechanics are likely to have trouble with
the requirement of statistical consistency. Conflicts with the
principle of locality have been also observed [7,29], one again
rooted in the nonlinearity of the scheme. The critique in this
latter reference applies also to the nonlinear models considered
in Ref. [81], and presumably these models are also in conflict
with statistical consistency.

IV. STATISTICAL ENSEMBLE IN
CONFIGURATION SPACE

A. The scheme

In the statistical ensemble approach in configuration space
(SECS) of [65,66], the basic state of a quantum-classical
hybrid system is described by two real functions, P (x,q) and
S(x,q), defined on configuration space, x being the classical
coordinates and q the quantum ones. P (x,q) represents the
probability density function of the state (x,q) and so it is
non-negative and normalized.6

When the quantum sector is missing, the pair
P (x) and S(x) represents a particular type of mixed

5Strictly speaking, linearity means preservation of the relation ρ̂ =
λ1ρ̂1 + λ2ρ̂2, for any real weights λ1,2, while we only need non-
negative weights p1,2.

6Following [65,66], we use x, q,
∫

dx dq, etc., although x and q

represent sets of several coordinates.
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state, namely, that with phase-space probability density func-
tion

ρ(x,k) = P (x)δ(k − ∇S(x)). (4.1)

This form is preserved by the purely classical dynamics. Using
Hamilton’s equations to evolve x and k, one finds the evolution
of P and S. For a classical particle with mass M in presence
of a potential V (x,t),

∂P

∂t
= − 1

M
∇(P∇S),

∂S

∂t
= − 1

2M
(∇S)2 − V. (4.2)

The first relation is the continuity equation and the second one
is the Hamilton-Jacobi equation. They can be derived from a
canonical bracket. For two functionals of P and S, A and B,

{A,B} =
∫

dx

(
δA

δP (x)

δB
δS(x)

− δA
δS(x)

δB
δP (x)

)
. (4.3)

Hence, dA/dt = {A,H}, with Hamiltonian

H =
∫

dxP

(
1

2M
(∇S)2 + V

)
. (4.4)

Likewise, when the classical sector is missing, the quantum
state is a pure state with wave function

ψ(q) = P (q)1/2eiS(q)/h̄. (4.5)

For a quantum particle with mass m in a potential V (q,t), the
Schrödinger equation evolves the pair P (q) and S(q) as

∂P

∂t
= − 1

m
∇(P∇S),

(4.6)
∂S

∂t
= − 1

2m
(∇S)2 + h̄2

2m

∇2P 1/2

P 1/2
− V.

This evolution derives from a bracket similar to the classical
one (with q instead of x), this time with Hamiltonian

H =
∫

dq P

(
1

2m
(∇S)2 + h̄2

8m
(∇lnP )2 + V

)
. (4.7)

So in this approach the quantum description differs from the
classical one just by the term with explicit h̄ in H.

The guiding principle to introduce hybrid quantum-
classical systems is that new degrees of freedom are to be
added exactly in the same way as is done in the purely classical
or purely quantum cases, namely, by adding new coordinates
in the functions P and S. The hybrid case is then described by
P (x,q) and S(x,q), and the dynamical bracket is

{A,B} =
∫

dx dq

(
δA

δP (x,q)

δB
δS(x,q)

− δA
δS(x,q)

δB
δP (x,q)

)
.

(4.8)

For classical and quantum particles interacting through a
potential V (x,q,t),

H =
∫

dx dq P

×
(

1

2M
(∇xS)2 + 1

2m
(∇qS)2 + h̄2

8m
(∇q lnP )2 + V

)
,

(4.9)

and this produces the hybrid evolution equations

∂P

∂t
= − 1

M
∇x(P∇xS) − 1

m
∇q(P∇qS),

(4.10)
∂S

∂t
= − 1

2M
(∇xS)2 − 1

2m
(∇qS)2 + h̄2

2m

∇2
qP

1/2

P 1/2
− V.

The scheme extends straightforwardly to more general
quantum systems (e.g., with spin degrees of freedom).

In this approach observables are represented by their
expectation value, as real valued functionals of P and S. (The
Hamiltonians above follow this rule.) So a classical observable
f (x,k) is represented by the functional

F =
∫

dx dq Pf (x,∇xS), (4.11)

whereas a quantum observable Â is represented by the
functional

A =
∫

dx 〈ψ(x)|Â|ψ(x)〉,
(4.12)

ψ(x,q) = 〈q|ψ(x)〉 = P (x,q)1/2eiS(x,q)/h̄.

The Hamiltonian and equations of motion of the SECS
approach in Eqs. (4.9) and (4.10) are written in terms of the
classical-like variables P and S. It is also instructive to write
them using the quantumlike wave function ψ(x,q). In this case
ψ and ih̄ψ∗ are the canonical variables. In the new variables,
the equations read

H =
∫

dx dq

(
h̄2

2M
|∇xψ |2 + h̄2

2m
|∇qψ |2

+V |ψ |2 − h̄2

2M
(∇x |ψ |)2

)
, (4.13)

ih̄
∂

∂t
ψ =

(
− h̄2

2M
∇2

x − h̄2

2m
∇2

q + h̄2

2M

∇2
x |ψ |
|ψ | + V

)
ψ.

(4.14)

The equation of motion is similar to the Schrödinger equation
except for the nonlinear term introduced by the effective
potential

Veff(x,q) = h̄2

2M

∇2
x |ψ |
|ψ | . (4.15)

This term renders the x degree of freedom into a classical one
and is responsible for the nonlinearity with respect to ψ(x,q)
in the SECS approach.

The SECS approach passes a number of tests listed in
Refs. [65–67]. However, it has some limitations too.7

There is a problem in the definition of which functionals
A[P,S] are acceptable as observables. The statistical inter-
pretation of P requires the observables to be homogeneous
functionals of degree one in P . Some further constraints are

7Let us emphasize from the outset that the no-go theorem of Sec. II
does not directly apply to the SECS approach for two reasons to be
discussed below: First, the product of two general observables is not
defined, and second, the dynamical bracket between different sectors
is not always zero.
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noted in Refs. [65,66] to ensure positivity of P during the
dynamical evolution and global phase invariance of the wave
function (this is required to implement gauge invariance and
so a consistent electromagnetic coupling8). However, these
conditions still leave an enormous set of functionals. To see that
restrictions are needed to select true observables out of this set
of functionals, consider a purely classical system. There, a term

H1 =
∫

dx P (x)
h̄2

8M
[∇lnP (x)]2 (4.16)

added to the Hamiltonian passes all the noted conditions,
but still it is not acceptable as a genuine observable, because
in classical mechanics we already know which functionals
correspond to true observables, to wit, those of the form

F =
∫

dx Pf (x,∇xS). (4.17)

Note that H1 in Eq. (4.16) is identical to the term in the
Hamiltonian of Eq. (4.9) which distinguishes the quantum
degree of freedom from the classical one; that is, the
“interaction” H1 would turn the classical particle (one
that obeys the Hamilton-Jacobi equation) into a quantum
particle (one that obeys the Schrödinger equation). Likewise,
a quantum particle could be turn into a classical one
by switching on a suitable interaction term, namely, by
subtracting the term analogous to H1 in the q sector. Any such
functionals should be rejected as genuine observables in the
purely classical or, respectively, in the purely quantum cases.

The previous argument suggests that also in the hybrid case
most functionals are completely unrelated to observables. In
the purely classical or purely quantum cases, the growth in
the number of observables when new degrees of freedom are
added is limited. As noted above, new observables in the full
system are obtained by tensor product of the observables in
the subsectors. However, the product of a classical observable
with a quantum observable is not automatically defined in the
SECS approach to hybrid systems: The blocks f (x,∇xS) and
Â do not commute in general (Â acts on q and S contains q). Of
course, one could introduce some symmetrization prescription
[plus possible O(h̄) terms], thus defining a set of hybrid
observables.9 However, this is not sufficient because it should
be verified that such set is closed upon application of the
dynamical bracket, and this condition is far from trivial.

Another problem of the SECS approach is that the bracket
of a generic quantum observable with a generic classical
observable is not zero [66]. This is a serious problem because,
as noted above, it implies that the classical Hamiltonian

8For classical and quantum particles with charge Q1 and
Q2, minimal coupling is achieved by the replacements ∇xS →
∇xS − Q1A(x,t), ∇qS → ∇qS − Q2A(q,t), V → V + Q1φ(x,t) +
Q2φ(q,t) inH. The dynamics is invariant under the gauge transforma-
tions: P (x,q,t) → P (x,q,t), S(x,q,t) → S(x,q,t) + Q1
(x,t) +
Q2
(q,t), A → A + ∇
, φ → φ − ∂t
. Observe that the electro-
magnetic field is not dynamical here.

9Note that once the product of a classical observable, A1,
with a quantum observable, A2, is defined, the product of gen-
eral observables is straightforwardly defined by (A1A2)(B1B2) =
(A1B1)(A2B2).

induces an evolution in the quantum sector and vice versa,
even when no interaction is taking place between both sectors.
Such a bracket vanishes only for particular observables or
for particular configurations [66]. An instance of such special
configuration is the separable one:

P (x,q,t) = P (x,t)P (q,t), S(x,q,t) = S(x,t) + S(q,t).

(4.18)

(Of course, the various functions P and the various functions
S are different; we let their arguments distinguish them.) The
separable case represents sectors which never interact. It is
easy to verify that, in the absence of interaction between
sectors, the separable form is preserved by the evolution. In
the separable case the classical sector does not act on the
quantum one and vice versa. However, this is not sufficient
for a consistent dynamics. If the interaction between sectors is
switched on during a certain time interval and then set to zero,
the configuration will no longer be separable; the two sectors
are entangled. Then one would find that, even though the two
sectors are no longer connected, what happens to one sector
affects the other.

A concrete observable affected by such ghost coupling
induced by “hybrid entanglement” is the kinetic energy [66].
For instance, according to the SECS approach, if a neutral
free classical particle is “entangled” with a charged quantum
one, an electromagnetic wave acting upon the quantum particle
would induce a variation with the same frequency in the energy
of the classical particle. By all accounts, the kinetic energy
of a (hypothetical) classical particle would be a bona fide
observable quantity and so the ghost coupling seems odd. (See,
however, the discussion in Ref. [66] for a different opinion.)
The roles of quantum and classical can be exchanged with a
similar conclusion. It should be noted that the entanglement
does not produce such effect in the quantum-quantum case or
in the classical-classical case. In those cases the bracket of
different sectors vanishes, as one would expect.

Instead of using the nonvanishing of the bracket, the
same effect can be seen from the evolution of the marginal
probability distribution of (x,k)

ρ(x,k) =
∫

dq P (x,q) δ(k − ∇xS(x,q)). (4.19)

In the separable case this reduces to P (x) δ(k − ∇xS(x)),
so what happens to the quantum sector has no effect on
the classical sector. However, in the general entangled case
it would seem that the evolution of q will produce some
effect even if there is no interaction. In fact, this is not so
straightforward as it would seem. Note that the same naive
argument would apply in the classical-classical case. However,
in that case, using the evolutions of P (x,q) and S(x,q) (with
h̄ → 0) it can be shown that the net effect vanishes because it
comes in the form of a total derivative with respect to q. In the
quantum-classical case a similar cancellation occurs for the
marginal distribution of x (hence for observables depending
only on x and not on k) and also for the special case of
〈k〉 [66], but not for the full ρ(x,k), due to the extra term
h̄2/(2m)∇2

qP
1/2/P 1/2 in the evolution of S(x,q).

There is a related difficulty with conservation of angular
momentum in the presence of spin. The simplest setting to
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show this is a classical particle (x,k) with quantum spin 1
2 .10

The wave function of the hybrid system [analogous to ψ(x,q)
in Eq. (4.12)] is

ψa(x) = P 1/2
a (x)eiSa (x)/h̄. (4.20)

In the present case q = a = ± 1
2 is a discrete label, so we put

it as a subindex. h̄a is the projection of the spin along some
quantization axis. In order to define the angular momentum,
we should specify the action of the rotation group. The obvious
way is to regard ψa(x) as a bispinor with respect to a (since
this is the only choice when the classical sector is not present).
Hence, for a rotation R with axis n̂ and angle φ,

ψa(x) → (e−iφn̂/2ψ)a(R−1x). (4.21)

This procedure correctly defines a representation of the
rotation group, and the generator can be realized (using the
dynamical bracket) by means of an observable:

J = L + S

=
∫

d3x
∑
a,b

ψ∗
a (x)

(
−ih̄ x × ∇δab + h̄

2
σ ab

)
ψb(x).

(4.22)

Note that the orbital (classical) part can be written equivalently
in the form

L =
∫

d3x
∑

a

Pa(x) x × ∇Sa(x). (4.23)

So L and S are the angular momenta observables to be
expected for the classical and for the quantum systems. In the
present case, the symmetry group guarantees that the bracket
of L with S vanishes and that J , L, S are all of them angular
momenta; that is, they fulfill the commutation relations of the
so(3) algebra. The bracket of J with an observable yields the
effect of an infinitesimal rotation on the observable.

Let the hybrid particle be free. The Hamiltonian contains
just the kinetic energy,

H =
∫

d3x
∑

a

1

2M
Pa(x)[∇Sa(x)]2. (4.24)

Note that everything is fixed and there is no freedom to
change anything. Unfortunately, H is not at all an invariant
functional under spin rotations. Pa(x) and Sa(x) do not have
good transformation properties under rotations. In particular,
they are not bispinors. This means that for each choice of
quantization axis, H represents a different functional.11 As
can be shown in detail, the bracket {J,H} is not zero, so the
Hamiltonian is not rotationally invariant, and conversely, the

10Everything can be repeated, with the same conclusions, for a
classical particle interacting with a quantum particle having spin 1

2 .
In this case we would have ψa(x,q). The case considered in the text
would follow by assuming that the motion of the quantum particle
can be neglected.
11Once again one could consider taking an average over all choices of

axis, hence restoring the rotational invariance. However, the resulting
Hamiltonian would contain σ and so it would represent an interaction
between the two sectors rather than a free particle.

angular momentum is not conserved. (L is conserved but S
is not.) Of course, if (x,k) and a are not entangled, Pa(x) =
P (x)Pa , Sa(x) = S(x) + Sa , these problems do not arise. It is
instructive to note that the free quantum-quantum Hamiltonian,∫

d3x
∑

a

h̄2

2M
|∇ψa(x)|2

=
∫

d3x
∑

a

(
1

2M
Pa(x)[∇Sa(x)]2 + h̄2

8M

[∇Pa(x)]2

Pa(x)

)
,

(4.25)

is rotationally invariant but the two terms in the right-hand side
are not separately invariant. [The first term, without h̄, is the
Hamiltonian of Eq. (4.24).]

The problem seems to be ubiquitous for the implementation
of internal symmetries in the quantum sector, due to the
nonlinear nature of the approach. This can be seen from the
modified Schrödinger equation obeyed by the extended wave
function ψa(x,q) of the hybrid system, a being a generic
internal index,

ih̄
∂

∂t
ψa =

(
− h̄2

2M
∇2

x − h̄2

2m
∇2

q + h̄2

2M

∇2
x |ψa|
|ψa| + V

)
ψa.

(4.26)

The effective potential Va(x,q) = (h̄2/2M)∇2
x |ψa|/|ψa|,

which turns x into a classical degree of freedom, tends to break
any internal symmetry carried by the index a. This is also
an impediment to describing relativistic particles with spin.
The same problem pointed out for spin- 1

2 particles reappears
if one tries to couple the electromagnetic field to classical
charged particles, if the photon is a quantum dynamical degree
of freedom.

All the difficulties noted for the SECS have a common root.
They stem from the hybrid description

ψ(x,q) = P (x,q)1/2eiS(x,q)/h̄. (4.27)

Here q represents the configuration label of a basis |q〉 of
the Hilbert space of the quantum system. The separable case
describes two sectors that never interact. This case is of limited
interest, so we consider the entangled case. If x and q are
entangled, a change of basis |q〉 affects in a nontrivial way
the other sector: It modifies the marginal distribution of the
classical sector and in particular its kinetic energy.

Formally, the pair [P (x,q),S(x,q)] carries the same infor-
mation as ψ(x,q), but the former description is better suited
for the purely classical case and the second description is better
suited for purely quantum case [just consider how linear super-
position of quantum states reflects on the pair (P,S)]. Using
a common language for the quantum and classical sectors,
by means of any of these two descriptions for the classical-
quantum case, does not by itself solve the problem of quantum-
classical hybridization. A canonical transformation in the
classical-classical case acts naturally on [P (x,q),S(x,q)], but
a unitary transformation in q acts awkwardly. Likewise, a
classical canonical transformation on x acts in an unnatural
way on ψ(x,q) regarded as a wave function.

If q does not have a classical limit, as happens for the spin
or other internal labels, there is no natural choice of basis
|q〉 and each choice produces different evolution even with
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no interaction present between (entangled) sectors. However,
even when it seems that there is a privileged choice of
basis, like q labeling the position of a quantum particle, the
problem remains. Indeed, the dynamical evolution is nothing
else than a continued canonical transformation, produced
by the dynamical bracket. In the quantum case this is a
continued change of orthonormal basis. In the classical case
it is a continued change of canonical coordinates. Hence,
the root of the difficulties is that the two types of canonical
transformations are not compatible because the two sectors
carry two different values of h̄.

B. Statistical consistency of the scheme

In this section we examine the statistical consistency of
the configuration space ensemble approach to hybrid systems.
As discussed in Sec. III a nonlinear scheme is unlikely to
fulfill statistical consistency. This is the case of the SECS
approach, and in fact the situation is even worse than that found
for the mean-field approach. For the mean-field dynamics
the failure came from the quantum version of the statistical
consistency requirement; that is, different evolutions were
obtained from different decompositions of a single quantum
density matrix. In the SECS approach the failure takes place
even for the classical version of the requirement (as well as
for the quantum one). This means the following. The SECS
is based on the evolution of classical ensembles of the type
[P (x),S(x)] in Eq. (4.1). This by no means represents the most
general classical ensemble, ρ(x,k). In turn, a generic ρ(x,k)
can be decomposed in many different ways as a combination
of ensembles (P,S),

ρ(x,k) =
∑

α

pαPα(x) δ(k − ∇Sα(x)). (4.28)

This follows from the fact that α runs over the set of all
possible pairs [P (x),S(x)] and so the number of possible
pα is much larger than that of possible probability density
functions ρ(x,k). Because only ρ(x,k) is meaningful, it should
be demanded that different decompositions produce the same
evolution. This requirement is, of course, true in the purely
classical case [ρ(x,k,t) fulfills the autonomous Liouville
equation which is consistent because it is linear] but it fails
to hold for the hybrid evolution.12

To show this, we take the noncontroversial case of a clas-
sical particle and a quantum particle without internal degrees
of freedom, interacting through a potential V (x,q,t). To test
statistical consistency we can consider the expectation value
of observables of the formA(t) = ∫

dx dq P (x,q,t) A(x,q,t).
These are hybrid observables and should be admissible since

12Pure classical states (xα,kα) could be used to make a standard
decomposition of ρ(x,k), since they can be cast in the (P,S) form,
for example, with Pα(x) = δ(x − xα) and Sα(x) = kαx. The problem
[apart from Pα(x) being too singular for using it in the hybrid
dynamics Eq. (4.10)] is that, for generic interactions, the form of
Sα(x) is not preserved by the classical evolution, so one should be
prepared to prove that the evolution does not depend on the concrete
of choice of Sα(x). Besides, the lack of statistical consistency in the
quantum sense remains.

the potential belongs to this class. Of course, we can trade the
information contained in the expectation values of all these
observables by the probability density P (x,q,t). So P (x,q,t)
is itself an observable.

We assume a set of possible histories labeled by an index
α, each history with probability pα . At t = t0 all hybrid
states are separable with a common quantum state ψ(q),
and classical state described by a pair [Pα(x),Sα(x)]. For
simplicity we assume a time-independent potential V (x,q) for
t > t0. The expectation value of the observables of the type
described above, taken over the set of histories, depends on
the probability density

P (x,q,t) =
∑

α

pαPα(x,q,t), (4.29)

where Pα(x,q,t) is the probability density of the history α, as
obtained by the hybrid evolution of the SECS approach.

Statistical consistency requires that P (x,q,t) should depend
only on the initial classical probability density function ρ(x,k)
and not on its decomposition into histories [Eq. (4.28)]. We
call statistical invariants the quantities which are independent
of the concrete decomposition. Hence, ρ(x,k), as well as
ψ(q) and V (x,q), are invariants and all other invariants,
including P (x,q,t), derive from them. It is useful to classify
the nontrivial invariants [i.e., not involving ψ(q) and V (x,q)]
by the number of derivatives they carry. These invariants are

In1,n2 (x) = ∇n1

∫
dk kn2ρ(x,k)

=
∑

α

pα∇n1 [Pα

(∇Sα)n2
]
, n1,n2 = 0,1,2, . . .

(4.30)

Now, the function P (x,q,t) can be computed as a Taylor
series in t − t0. Inspection of the evolution equations (4.10)
indicates that each finite order term in the Taylor expansion
will contain a finite number of derivatives with respect to
x and q of the initial data and the potential. If statistical
consistency holds, the combinations of derivatives allowed
cannot be arbitrary; on the contrary, they should involve the
invariants in Eq. (4.30). Subsequently, we show that this is
not the case. The breakdown occurs for the first time at order
(t − t0)4. The length of the Taylor coefficients increases rapidly
with the order. For this reason, instead of presenting the proof
using generic functions, we take a concrete case which is
sufficient to prove the breakdown of statistical consistency.

Specifically, let the system evolve in 1 + 1 dimensions, and

t0 = 0, Pα(x,q,t0) = elα (x)+κq,
(4.31)

Sα(x,q,t0) = 0, V (x,q) = vxq.

Here lα(x) are generic functions and κ,v are two real constants.
[The wave function ψ(q) is not normalizable as given. This is
inessential. The proof can be carried out for generic functions,
or we can add a Gaussian factor. Alternatively, the equations
are local, and the form assumed in Eq. (4.31) is used only
locally.]
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The evolution equations (4.10) can be conveniently written
in terms of the variable L(x,q,t) = ln[P (x,q,t)],

Lt = − 1

M
(LxSx + Sxx) − 1

m
(LqSq + Sqq),

(4.32)

St = − 1

2M
S2

x − 1

2m
S2

q + h̄2

8m

(
L2

q + 2Lqq

) − V.

When S vanishes at t = 0 and V is an even function of t , it
follows [from inspection of Eq. (4.32)] that S is an odd function
of t and P or L is even. [Equivalently, Eq. (4.26) admits a
solution with ψ(x,q,t) = ψ∗(x,q,−t).] These conditions hold
in our case, so Lα(x,q,t) contains only even powers of t and
Sα(x,q,t) contains only odd powers. Straightforward solution
of the equations yields

Lα = lα + κq +
(

v

M
l′αq + vκ

m
x

)
t2

2

+
(

− h̄2κv

4mM2
(l′αl′′α + l′′′α ) + O(h̄0)

)
t4

4!
+ O(t6),

(4.33)

Sα =
(

h̄2κ2

8m
− vxq

)
t

+
(

h̄2κv

4mM
l′α − v2

M
q2 − v2

m
x2

)
t3

3!
+ O(t5).

In the term of order t4 we have omitted contributions without
h̄. For the probability density [using Pα = eLα in Eq. (4.29)]
this implies

∂4P (x,q,t)

∂t4

∣∣∣∣
t=0

= − h̄2κv

4mM2
eκq

∑
α

pαelα (l′αl′′α + l′′′α ) + O(h̄0).

(4.34)

The sum over α in this expression is not a statistical invariant.
From Eq. (4.30), the invariant with n1 = 3 and n2 = 0 is found
to be

I3,0(x) =
∑

α

pαelα [(l′α)3 + 3l′αl′′α + l′′′α ]. (4.35)

Therefore, classical statistical consistency is violated at order
t4. It can be verified that there is no violation in the purely
classical case; that is, the terms without h̄ involve statistical
invariants only, and this is true also for generic initial data.

V. CONCLUSIONS

We have discussed the conditions for a perfect quantum-
classical hybrid dynamics and have presented a short and
general proof implying that such perfect hybridization is not
viable. This result relies on the assumption that (i) hybrid
observables can be obtained by tensor product and that, also in
the hybrid case, there is a bracket which is (ii) antisymmetric,
(iii) a derivation, and (iv) reduces to the standard brackets in
each subsector.

We have then introduced a consistency requirement for
quantum-classical hybrids based on rearrangement invariance
of statistical mixtures; that is, the observable properties of the
state should depend on the mixture itself and not on how it was
obtained. Such invariance is automatically fulfilled by classical
and quantum dynamics, but it is a nontrivial requirement for
quantum-classical hybrids of nonlinear type. In particular,

an autonomous consistent evolution equation for the density
matrix cannot be written for the mean-field approach and so
statistical consistency is violated by this scheme.

The SECS is analyzed in some detail. This approach is
rather complicated technically since it is highly nonlinear. We
point out several problematic features of this scheme. First,
no systematic construction of hybrid observables by tensor
product is provided. This avoids the immediate application of
the no-go theorem,13 but it implies an enormous proliferation
of hybrid functionals, the large majority of which cannot
possibly correspond to observables. As a consequence of this
ambiguity it is not known whether the set of observables is
closed under the operation of taking the dynamical bracket.
Certainly one could start by taking the bracket between
classical and quantum observables and then recursively with
the new functionals so generated close the minimal subalgebra
containing quantum and classical observables [66]. However,
the bracket of a generic classical observable with a generic
quantum one is already so complicated that our own conjecture
is that such minimal subalgebra is essentially the whole (or a
very large) set of functionals, most of which are certainly
not observables. Second, the bracket of a generic classical
observable with a generic quantum observable is not zero. This
leads to ghost interaction between the two sectors when they
are entangled, even after the coupling is no longer present.
In particular, the kinetic energy of one sector responds to
physical actions on the other sector, which seems odd. The
scheme is designed to treat position-momentum variables, and
so it is of limited applicability in the presence of internal
degrees of freedom, including conservation of spin angular
momentum, internal symmetries, and relativistic invariance
for particles with spin, such as electrons or photons. Statistical
consistency of the SECS has been studied too. We find that,
as for the mean-field case, the requirement is not fulfilled, a
consequence of the lack of linearity of the hybrid dynamics.
Specifically, it was shown that identical classical statistical
mixtures obtained from different rearrangements evolved
differently after switching on the interaction.

The above analysis tends to reinforce the view that truly
classical systems do not exist in nature and quantum-classical
dynamics are to be regarded as approximations of fully
quantum mechanical systems.
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