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Three-dimensional quantum polarization tomography of macroscopic Bell states
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The polarization properties of macroscopic Bell states are characterized using three-dimensional quantum
polarization tomography. This method utilizes three-dimensional (3D) inverse Radon transform to reconstruct
the polarization quasiprobability distribution function of a state from the probability distributions measured for
various Stokes observables. The reconstructed 3D distributions obtained for the macroscopic Bell states are
compared with those obtained for a coherent state with the same mean photon number. The results demonstrate
squeezing in one or more Stokes observables.
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I. INTRODUCTION

In recent years, macroscopic states of nonclassical light
are a subject of intense research. Among many reasons, one
important reason is the technological aspect as these states can
provide much stronger interactions with matter and with each
other than their microscopic counterparts [1–7]. One example
of such macroscopic quantum systems is the macroscopic
squeezed vacuum [3]. An important advantage of macroscopic
squeezed vacuum in comparison with conventionally used
squeezed states (see, for instance, [8]) is that the former
is fully nonclassical. Squeezed coherent states contain a
huge component of classical (coherent) excitation and their
squeezed vacuum part is rather weak, amounting to only a
few photons per mode. Various applications of macroscopic
squeezed vacuum have been proposed; such as, for instance,
macroscopic Bell tests [9], gravitational wave detection [10],
quantum memory [11], absolute measurement of detectors’
quantum efficiency [12], etc. Nonclassical states of light
comprising polarization have been studied widely in the
last couple of decades [13–20]. Some of these states, called
polarization squeezed states, are characterized by the reduction
of noise in specific polarization observables. A particular case
of macroscopic squeezed vacuum involving two polarization
modes and two frequency or wave-vector modes, called
macroscopic Bell states, is one such example [5,14]. These
multiphoton states possess peculiar polarization properties.
Despite the fact that all macroscopic Bell states are unpolarized
in the first order of intensity, three of them (the triplet
states) have suppression of noise in one of the three Stokes
observables, whereas the fourth state (the singlet state, or
p-scalar light) has suppression of noise in all the three Stokes
observables.

Among several experimental tomography methods in quan-
tum optics, the most widely studied and best implemented
one is the field tomography of single-mode radiation [21–24].
This method relies on the tomographic representation of the
density operator in the form of an integral expansion in some
basis operators. The coefficients of this expansion are the
probability distributions of the field observables (quadratures)
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obtained in homodyne measurements [23]. However, due to the
inadequacy of the single-mode radiation model in optics, quan-
tum tomography of multimode fields is required. In another
method, called quantum tomography of polarization states, the
polarization observables are functions of quadratures of several
polarization modes [25]. However, there are experimental
difficulties in implementation due to the use of multimode
homodyne technique [26].

In this paper we aim to characterize macroscopic Bell states
using a different approach known as quantum polarization
tomography, in which the drawbacks of the former methods
are overcome. This method was first proposed by Karassiov
and Masalov and applied to unpolarized polarization-squeezed
light generated at the output of the optical parametric amplifier
(OPA) [15,16]. This method involves direct experimental
reconstruction of polarization quasiprobability distribution
(QPD) functions from probability distributions obtained in
simple polarization measurements. In analogy with the field
tomography, which requires recording of the probability
distributions of a set of rotated quadratures, in polarization
tomography we deal with a set of rotated Stokes polarization
observables [15]. This method turns out to be a very efficient
tool to probe the polarization properties of quantum states of
light. A modification of this method, with the state reconstruc-
tion performed in separate spherical “layers,” was applied to
the characterization of an intense polarization-squeezed state
with a coherent polarized component [19]. The present work
is an attempt to characterize the polarization properties of
the macroscopic Bell states using 3D quantum polarization
tomography.

A brief outline of the paper is as follows. The polarization
properties of light and their description using the Stokes
observables in classical and quantum optics are summarized
in Sec. II. Sec. III is comprised of a brief introduction of the
macroscopic Bell states. Here we consider two polarization
and two frequency modes of radiation. In Sec. IV the method
of 3D quantum polarization tomography is described, with
a brief mathematical background. In Sec. V we present the
experimental method for the preparation of macroscopic Bell
states and the method of measurement using a standard Stokes
setup. Sec. VI deals with the results of the reconstruction, their
comparison, and discussion.
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II. DESCRIPTION OF THE POLARIZATION IN TERMS OF
THE STOKES OBSERVABLES

In general, polarized light is characterized using the
Stokes observables. In classical description, the four Stokes
parameters are introduced in terms of sums and differences of
mean intensities in different polarization modes. Namely [27],

S0 = IH + IV , S1 = IH − IV ,
(1)

S2 = IH ′ − IV ′ , S3 = I+ − I−,

where (H,V ),
(
H ′,V ′), and (+,−) represent linear, +45◦

rotated linear, and circular modes of polarization, respectively.
It is evident that the S0 parameter represents the total intensity
whereas the remaining three parameters characterize the
polarization properties of light. Conventionally, polarization
states of light beams are classified as unpolarized, partially
polarized, and polarized. These states can be differentiated by
the first-order degree of polarization, i.e., the length of the
Stokes vector. The degree of polarization can be measured
using the relation [13]

P = Imax − Imin

Imax + Imin
, (2)

where Imax,Imin are the maximum and the minimum intensities
obtained by performing arbitrary polarization transformation
and then passing the light through a polarizer. The polarization
state of light is illustrated as a point on a unit-radius sphere
called the Poincaré sphere. However, this representation is not
valid for unpolarized and partially polarized light beams. The
three-dimensional Stokes space where the radius is not fixed
can be used to represent the polarization state of such light
beams [16].

In quantum description, the Stokes variables are ob-
servables and can be associated with Hermitian operators.
Each of the three polarization Stokes operators is given by
the difference of the photon numbers in two orthogonal
polarization modes [13,16]:

Ŝ0 = â
†
H âH + â

†
V âV , Ŝ1 = â

†
H âH − â

†
V âV ,

(3)
Ŝ2 = â

†
H ′ âH ′ − â

†
V ′ âV ′ , Ŝ3 = â

†
+â+ − â

†
−â−,

where â
†
H (âH ), â

†
V (âV ) are photon creation (annihilation)

operators in the horizontal and vertical polarization modes,
respectively. The other polarization bases transformed from
linear polarization basis (H,V ) are defined as

âH ′ = (âH + âV )/
√

2, âV ′ = (−âH + âV )/
√

2,
(4)

â+ = (âH − iâV )/
√

2, â− = (âH + iâV )
√

2,

The analysis of the fluctuations of the Stokes observables
makes it possible to more appropriately classify the polar-
ization states of light beams. For characterizing fluctuations,
higher-order correlations are essential. For instance, the
states broadly classified as unpolarized may manifest hidden
polarization (light unpolarized in the first order of intensity but
not for higher orders) [13,16]. The degree of polarization for
arbitrary orders can be introduced as [7]

P k =
(
�Sk

n

)
max − (

�Sk
n

)
min(

�Sk
n

)
max + (

�Sk
n

)
min

, (5)

where (�Sk
n) = 〈(Sn − 〈Sn〉)k〉 is the kth-order central moment

of the corresponding Stokes variable. For the second-order
degree of polarization k = 2, and �S2

n is the variance of
the Stokes variable [13]. Alternatively, a higher-order degree
of polarization can be introduced in terms of higher-order
correlation functions [13].

If fluctuations of the Stokes observables have to be taken
into account, which is always the case in quantum optics,
the polarization state cannot be depicted by a point on a
sphere, as in the simplest classical description. It has to be
represented by some three-dimensional object in the Stokes
space, the position of which is given by the mean values of
the Stokes observables and the sizes in different directions are
determined by the corresponding fluctuations [14,15,19,28].
The fluctuations (polarization noise) are especially important
for unpolarized light, when the mean values of the Stokes
observables vanish, showing no polarization structure of light.
In this situation, if the fluctuations are different for different
Stokes observables, such light is characterized by hidden
polarization [15].

III. MACROSCOPIC BELL STATES

A weakly pumped four-mode optical parametric amplifier
can produce at its output, in addition to the vacuum, two-
photon Bell states,

|�±〉 = 1√
2

(a†
1b

†
2 ± b

†
1a

†
2)|vac〉,

(6)

|�±〉 = 1√
2

(a†
1a

†
2 ± b

†
1b

†
2)|vac〉,

where a†, b† are photon creation operators in the horizontal and
vertical polarization modes, respectively, and the subscripts
1, 2 denote frequency or wave-vector modes. Here, we will
consider frequency modes ω1(ω2), but a similar consideration
is valid for wave-vector modes. At strong pumping, such an
OPA generates not only two-photon states, but also higher-
order Fock states. The states at its output can be written as [5]

|�±
mac〉 = e�(a†

1b
†
2±b

†
1a

†
2+H.c.)|vac〉,

(7)
|�±

mac〉 = e�(a†
1a

†
2±b

†
1b

†
2+H.c.)|vac〉,

where � is the parametric gain coefficient. Owing to their
close resemblance with the two-photon Bell states [29], these
states can be called macroscopic (many-photon) Bell states.
Moreover, the preparation schemes for both kinds of Bell states
are similar [5,30].

For macroscopic Bell states, the mean values of the
polarization Stokes observables vanish, 〈S1〉 = 〈S2〉 = 〈S3〉 =
0, showing that the states are unpolarized in the first order
in the intensity. Thanks to this unpolarized behavior, the
uncertainty relations �Si�Sj � |〈Sk〉|, (i �= j �= k = 1,2,3)
impose no restriction on the noise suppression in all the Stokes
observables simultaneously [16]. Furthermore, the noise in
any Stokes observable can be suppressed completely. Thus,
in addition to the states having one polarization observable
completely noiseless, a state with all Stokes observables
having no noise can be obtained. For the triplet macroscopic
Bell states, i.e., |�+

mac〉,|�−
mac〉, and |�+

mac〉, fluctuations are
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suppressed for S1, S2 and S3, respectively. For these states, the
degree of polarization in the second order does not vanish and
thus, these states manifest hidden polarization. On the other
hand, the singlet state |�−

mac〉 has noise suppressed in all Stokes
observables simultaneously. Since this state is unpolarized
in all orders of the intensity, it is sometimes referred to as
polarization scalar (p-scalar) light [16]. Note that the principal
difference of these states from ones with a classical polarized
component is that the macroscopic Bell states “sit” at the origin
of the Stokes space and the concept of the Poincaré sphere is
absolutely inapplicable to them.

IV. QUANTUM POLARIZATION TOMOGRAPHY

Quasiprobability functions are among the most important
instruments in quantum mechanics. One uses them for the
description of states in terms of noncommuting sets of
observables, such as, for instance, coordinate and momen-
tum. Although joint probability distributions do not exist
for noncommuting variables, they can be substituted by
quasiprobabilities, providing some information on the state
but not necessarily satisfying formal requirements to prob-
abilities [31–33]. In a nutshell, polarization quasiprobability
function provides a way to calculate the mean values and
higher-order moments of Stokes observables. Therefore, it
enables the visualization of polarization squeezing. Out of
many choices of such distributions, the convenient one is
the polarization quasiprobability function introduced by Wolf
and Atakishiyev [15,34,35]. The polarization quasiprobability
function W (S1,S2,S3) of some radiation state is a function of
three real variables corresponding to the Stokes observables.
It is given by the three-dimensional Fourier transform of the
quantum polarization characteristic function χ (u1,u2,u3),

W (S1,S2,S3) = 1

(2π )3

∫ ∫ ∫
χ (u1,u2,u3)

× e−i(u1S1+u2S2+u3S3)du1du2du3, (8)

where the characteristic function is defined as χ (u1,u2,u3) =
〈ei(u1S1+u2S2+u3S3)〉 (the angular brackets denote the averaging
over the quantum state). Out of several QPD functions, the
polarization quasiprobability function is of particular interest
because it provides the quantitative polarization analysis of
quantum radiation state in the form closest to the classical
description and simultaneously retains the quantum distinc-
tiveness [14].

Quantum polarization tomography is a method for the
reproduction of polarization QPD function from the sim-
ple polarization measurement results that characterize the
quantum state of an object [15,16]. In other words, similar
to the classical tomography where the image of an object
is reconstructed using the projections taken for different
observation directions, in quantum polarization tomography,
we reconstruct the polarization QPD function using the
probability distributions obtained by taking measurements
along different directions in the Stokes space. To characterize
the polarization properties of quantum states, quantum polar-
ization tomography is advantageous over field tomography as
it does not require the homodyne technique for measurement.

FIG. 1. A planar projection in the 3D Stokes space. �n is a unit
vector. Integration over all planes orthogonal to the unit vector �n
gives the planar projection (tomogram) along this direction [shown
as f (r,�n)]. The distance of any arbitrary plane from the origin is
given by r . The sphere shows the coordinate axes corresponding to
different Stokes observables.

The reconstruction procedure proposed in Ref. [15] is
similar to the classical 3D tomography. There the image of
an object is reconstructed by integrating all the filtered planar
projections taken along the different directions of the object
(see Fig. 1). The filtered planar (back) projection is simply the
second derivative of the original planar projection [36]. This
transformation from the projection space to the object space
can be written using the three-dimensional inverse Radon
transform [37]:

f ( �X) = − 1

8π2

∫ π

0
sinϑdϑ

∫ 2π

0
dϕ

[
∂2f (r,�n)

∂r2

]
r= �X·⇀n

, (9)

where �X = (x,y,z), f ( �X) is a three-dimensional object and
f (r,�n) is the projection of the object in the direction of a unit
vector �n. The distance of any arbitrary plane from the origin
is given by r , as shown in Fig. 1.

In a similar manner, in quantum polarization tomography,
the polarization QPD is reconstructed by taking the second
derivative of the probability distribution of the Stokes ob-
servables obtained for different directions in the Stokes space
and then summing them up within one hemisphere [16]. It
is emphasized that due to the inversion symmetry of the
measurement, each direction of one hemisphere corresponds
to some direction in another hemisphere. Therefore, to avoid
the redundancy of the data, measurements in one hemisphere
are sufficient to reconstruct the quantum state.

An arbitrary Stokes observable (S,ϑ,ϕ) corresponds to

the operator defined in terms of the Stokes operators �̂S =
{Ŝ1,Ŝ2,Ŝ3} and a unit vector on the Poincaré sphere �n ≡
{sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ} with angular coordinates ϑ,ϕ

on the unit radius sphere [14],

(Ŝ,ϑ,ϕ) = �̂S · �n ≡ Ŝ1sinϑ cos ϕ + Ŝ2sinϑ sin ϕ + Ŝ3cosϑ.

(10)
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Similar to Eq. (9), the reconstruction yields

W ( �p) ∝ −
∫ π/2

0
sin ϑdϑ

∫ 2π

0
dϕ

d2H (S,ϑ,ϕ)

dS2

∣∣∣∣
S= �p·�n

, (11)

where �p ≡ r{sin θ cos φ, sin θ sin φ, cos θ} denotes an arbi-
trary vector in spherical coordinates r,θ,φ and H is the prob-
ability distribution corresponding to the Stokes observable.

For quantum polarization tomography, not only the mean
values and variances of the Stokes observables but their
probability distributions (histograms) H (S,ϑ,ϕ) are also re-
quired. These distributions are obtained from the best fitting
of these histograms plotted for each of the measurements. In
our case, all the histograms of the measurements were well
approximated by Gaussian distributions. Thus, for all ϑ,ϕ, we
have obtained

H (S,ϑ,ϕ) = e−(S−〈S〉)2
/

2(�S)2
, (12)

where 〈S〉 and �S are the mean value and the standard
deviation, respectively, different for all histograms. It is
apparent from Eq. (12) that the parameters characterizing the
shape of the polarization QPD function are the mean values
of the Stokes operators and their noise. Using Eq. (11), and
replacing the integration by summation over the hemisphere,
we obtain the polarization QPD in spherical coordinates:

W (r,θ,φ) ∝ −�ϑ�ϕ

N,M∑
i,j=1

sinϑiH
//
s (r,θ,φ,ϑi,ϕj ), (13)

where �ϑ and �ϕ are the angular step sizes (in spherical
coordinates) corresponding to the half-wave plate and the
quarter-wave plate, respectively, rotated in a grid of N × M to
cover one hemisphere of the Poincaré sphere.

V. EXPERIMENTAL METHOD

The preparation method of macroscopic Bell states relies on
the frequency nondegenerate parametric down-conversion [38]
in two type-I BBO crystals with thickness 2 mm and the optic
axes in orthogonal planes (see Fig. 2). The signal and idler
wavelengths are 635 and 805 nm, respectively. The crystals are
pumped by a Nd:YAG laser third harmonic (λpump = 355 nm,
repetition rate 1 kHz, pulse duration 18 ps, energy per pulse
0.2 mJ). The orthogonally polarized squeezed vacuums at the
output of the crystals are superposed using a polarization beam
splitter (PBS). The pump is eliminated using a dichroic mirror
(DM) and a long-pass filter (OG). The relative phase between
the two squeezed vacuums can be varied with the help of
a trombone prism (Fig. 2). If the phase is equal to zero, the
superposition gives the macroscopic Bell state |�+

mac〉. With the
relative phase equal to π , the resulting macroscopic Bell state is
|�−

mac〉. In a 45◦ rotated basis, the state |�−
mac〉 becomes |�+

mac〉.
Using a dichroic plate (DP), which introduces a π difference
between the ordinary and extraordinary phase delays at the
wavelengths 635 and 805 nm, the state |�+

mac〉 is converted
into |�−

mac〉 [5,30]. An aperture (A) was put at the focal plane
of a lens (L) to select the angular spectra of the combined beam.

The measurement scheme is the standard Stokes measure-
ment setup consisting of an achromatic half-wave plate (HWP)
and a zero-order quarter-wave plate (QWP) followed by a Glan
prism (GP). After the prism, the two orthogonally polarized

FIG. 2. (Color online) (a) Schematic of the experimental setup.
The notation is described in the text. The states under study
are produced from two nondegenerate collinear squeezed-vacuum
beams generated via high-gain PDC in two type-I crystals placed
into a Mach-Zehnder interferometer and pumped coherently. The
registration part of the setup provides the measurement of various
Stokes observables, depending on the orientations of the wave
plates, and their probability distributions. The detectors give signals
proportional to the detected photon numbers during a single light
pulse. The difference signal of the two detectors corresponds to the
measurement of a Stokes observable.

output beams are detected by separate p-i-n diode detectors
[3,6]. The quantum efficiencies of the detectors for the
wavelengths 635 and 805 nm are 85% and 95%, respectively.
The output pulses from the detectors are measured using
an analog-digital card, which integrates them over time.
The resulting integrals, measured in units “V s” are linearly
proportional to the photon numbers incident on the detectors
during a light pulse.

For an orientation α of the half-wave plate and β of
the quarter-wave plate, the selected direction in the Stokes
space is given in terms of the spherical coordinates by the
transformations

ϑ = π

2
− 2β, ϕ = 2β − 4α, (14)

which define the unit vector �n on the Poincaré sphere.
In our experiment the half-wave plate and the quarter-wave

plate were rotated in steps of 2.5◦ and 5◦, respectively,
each making 19 steps. The resulting orientations traced
more than one quarter of the Poincare sphere [shown by
points in Fig. 3(a)]. The points exceeding one quarter of the
sphere were removed. The remaining points of the quarter
sphere were reflected giving points covering exactly one
hemisphere, as shown in Fig. 3(b). The values of the Stokes
observable for each direction of �n were proportional to
the difference of the signals obtained from the detectors.
For each direction, 20 000 pulses were measured giving a
histogram for the Stokes observable. The complete set of
measurements corresponding to each macroscopic Bell state
took approximately 8 h of continuous run of the experiment.

VI. RESULTS OF THE RECONSTRUCTION

A. The triplet state |�−
mac〉

For the triplet states, the role of the polarization noise
becomes very important, as these macroscopic Bell states
manifest hidden polarization. For each of the macroscopic
triplet states, fluctuations of a certain Stokes observable are
suppressed. All the triplet macroscopic Bell states can be
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FIG. 3. (Color online) Data points on the Poincaré sphere corre-
sponding to different orientations of the phase plates. (a) All directions
resulting from the rotation of λ/2 (0◦–45◦) and λ/4 (0◦–90◦) in 19
steps each. (b) After the reduction to a quarter sphere and then
reflection, the data points cover one complete hemisphere of the
Poincaré sphere.

transformed into one another by certain polarization transfor-
mations [5,7]. For simplicity, we performed the tomography
for only one of the triplet states, namely |�−

mac〉. For this state,
the Stokes observable S2 should not fluctuate. The other triplet
states would give similar results, the only difference being the
squeezing observed in a different Stokes observable.

Using the data acquired from the tomography measurement,
the histogram for each measurement was fitted with a Gaussian
distribution giving the mean value and the standard deviation
(noise). The plots for the probability distributions and their
Gaussian approximations for S1 and S2 measurement are
shown in Fig. 4(a). It is evident from these plots that the noise
for S2 is smaller than the noise for S1. These measurements
comprise the contribution of electronic noise, which has to
be deducted from the measured signal. Since the probability
distributions for the noise and the signal are independent, the
subtraction of the noise is given by the deconvolution of the
measured signal and the noise. For Gaussian distributions,
the deconvolution simply results in the subtraction of the
electronic noise variance from the variance of the signal. After
the deduction of the electronic noise, the mean and standard
deviation values for each Stokes observable were put into
Eq. (12) and the reconstructed quasiprobability distribution

was plotted in three dimensions [Fig. 5(b)]. The corresponding
distribution without the electronic noise deduction can be seen
in Fig. 5(a). We see that the reconstructed QPD function for the
triplet state has an ellipsoidal shape confirming the suppression
of noise in S2 at the expense of noise enhancement in the
other two Stokes observables. The electronic noise subtraction
leads to a QPD function with more pronounced squeezing [see
Fig. 5(b)]. Here and further after, all the reconstructed QPDs
are normalized to the mean sum signal S0 (3 × 10−6 V s),
which corresponds to approximately 3 × 105 photons [3].
Theoretically, the triplet state can be represented as a disk at
the origin of the Stokes space having no noise for one (the
squeezed) Stokes observable. However, experimentally there
are many factors which restrict it from having no fluctuations.
These are the nonunity quantum efficiencies of the detectors,
the optical losses and imperfections, the mismatch of the
signal, and the idler mode selection, etc. [6].

Figures 5(a) and 5(b) vividly demonstrate the hidden
polarization property of the triplet state. One can see that
the reconstructed distributions are centered at the origin of
the Stokes spaces, showing that the mean values of the polar-
ization Stokes observables are zero. However, the variances
of the Stokes observables are different, illustrating that the
state is polarized in the second order of the intensity. Note
that the method of quantum polarization tomography provides
a complete characterization of the polarization properties of
nonclassical states, including hidden polarization, in contrast
to just the measurement of the three Stokes observables and
their variances, as it gives the information about the whole
Stokes space. In comparison with just the variance measure-
ment, the method of quantum polarization tomography is more
complete as it includes the information about all higher-order
moments of the Stokes observables.

B. The singlet state

For the macroscopic singlet state |�−
mac〉, the degree of

polarization is zero for all orders in the intensity. This
state is unique in the sense that the variances for all the
Stokes parameters are suppressed simultaneously. The plots
of the probability distributions obtained for the observables
S1 and S2, their Gaussian approximations, and the probability

FIG. 4. (Color online) Probability distributions of the difference signal for (a) the triplet state |�−
mac〉, and (b) the singlet state. Squares

represent the measurement for S1 (ϑ = 900,ϕ = 00) and triangles for S2 (ϑ = 90◦,ϕ = 90◦). In both plots, the probability distribution for the
electronic noise is shown by circles. Lines show the Gaussian fits.
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FIG. 5. (Color online) The reconstructed polarization QPD func-
tions (i) for the triplet state |�−

mac〉 (shown in blue) (a) containing
the electronic noise, and (b) after the subtraction of the electronic
noise; (ii) for the singlet state |�−

mac〉 (shown in red) (c) containing
the electronic noise, and (d) after the subtraction of the electronic
noise. The QPD functions for the electronic noise are shown by black
in (a) and (c). Each of the plots demonstrates the surface on which
the QPD function takes the value of 1/

√
e from its maximum. The

mean values of the signals are normalized to S0 whereas the standard
deviation values are multiplied by 10 for better visualization. For (a)
and (c), the second-order degree of polarization was obtained as 0.32
and 0.12, respectively.

distribution for the electronic noise are shown in Fig. 4(b).
One can see that the noise is nearly the same for both Stokes
measurements. The reconstructed QPD for the singlet state and
for the electronic noise are shown in Fig. 5(c). It shows that
the noise is equally suppressed in all the Stokes observables.
After the electronic noise elimination, the reconstructed QPD
is shown in Fig. 5(d). It is a small sphere centered at the origin
of the Stokes space, demonstrating fluctuations suppressed in
all the Stokes observables simultaneously.

Theoretically, the singlet state can be represented as a point
at the origin of the Stokes space having no noise for all Stokes
observables. However, experimentally there are many factors
which prevent it from having zero fluctuations. These are the
nonunity quantum efficiencies of the detectors, the optical
losses and imperfections, the mismatch of the signal, and the
idler mode selection, etc. [6].

It is worth noting here that the QPD is a function of three
variables. One method to visualize this function would be to
plot all the points for which the value of the function is higher
than some threshold. In our case, the threshold is 1/

√
e times

the maximum value of the function. Thus the reconstructed
object shows the 1/

√
e surface from the maximum of the QPD

function. The width of these distributions in any direction
scales as twice the standard deviation of the corresponding
Stokes observable. Using Eq. (5), we can calculate the second-
order degree of polarization P 2, with the maximum and the
minimum values of the variances found as the squares of

the corresponding half-widths of the distributions shown in
Figs. 5(a) and 5(c), searched over all directions. For the triplet
state, the value of 0.32 was obtained for P 2. This shows that
the triplet state is polarized in the second order of intensity,
hence demonstrating hidden polarization. On the other hand,
for the singlet state, the calculated value of P 2 was obtained
to be 0.12, which is very small. Therefore, this state is nearly
unpolarized.

C. A coherent state

A coherent state can be defined as a boundary state between
the classical and the nonclassical states. The variances of the
Stokes observables for a coherent beam are all equal to the
mean photon number of the beam (the shot-noise limit). In
general, this is the reason why a Stokes observable is said
to be squeezed if its variance falls below the shot noise of a
coherent beam having the same mean photon number [28].

To prepare a coherent state one needs a shot-noise limited
source, i.e., a source for which the variance of the photon
number scales linearly with the mean photon number. In
general, for any source, the variance of the photon number
can be written as

Var(N ) = 〈N〉 + (g(2) − 1)〈N〉2, (15)

where g(2) is the second-order Glauber’s correlation function
[27]. The first term on the right-hand side denotes the shot
noise whereas the second term describes the excess noise. For
an ideal coherent source, g(2) = 1, and thus the excess noise
vanishes. On the other hand, for a practical source, g(2) >

1, and the variance shows some quadratic dependence [see
Fig. 6(a)].

We used an intensity-stabilized He-Ne laser as a source.
The laser beam was reflected by a slit (∼150 μm) left on
the blackened surface of a highly reflecting disk (a computer
hard disk drive) spinning at 90 rotations per second. With this
geometry, we obtained a source that mimicked a pulsed laser
with a pulse width of ∼10 μs and a repetition rate of 90 Hz. The
detectors were triggered by another pulse, of higher amplitude
(obtained by making another slit of ∼1 mm size on the disk),
which was separated from the first pulse by 750 μs. For this
source, the dependence of the signal variance on the mean
signal in one detector is shown in Fig. 6(a). The behavior is
slightly nonlinear, due to the unavoidable excess fluctuations.

FIG. 6. (a) Dependence of the signal variance on the mean signal
of one of the detectors for our laser source. The continuous line is the
quadratic fit, a + bx + cx2 (a = 3 × 10−17 V2 s2, b = 1 × 10−11 V s,
c = 6.0 × 10−6), showing some excess fluctuations. (b) Dependence
of the variance of the difference signal on the mean sum signal for
the case of balanced detection. The continuous line shows a linear fit.
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FIG. 7. (Color online) The reconstructed polarization quasiprob-
ability distributions for a pseudo-coherent state (linearly polarized
light in our case) after the subtraction of the electronic noise. (a) The
state is displaced in the Stokes observable S1 from the origin by the
mean signal normalized to S0 (linearly related to the mean photon
number). (b) For comparison with the triplet and the singlet states,
the QPD is shifted to the origin (shown as a green oblate spheroid). In
another case, the reconstruction was done with the standard deviation
(noise) for the balanced detection in order to minimize the effect
of excess fluctuations. This gives a sphere at the origin (shown in
yellow). For better visualization, the standard deviation values are
multiplied by 10.

The sum signal for the detectors was taken to be the same as the
one in the measurement of the squeezed states (3 × 10−6 V s).

To reconstruct the QPD function of the coherent state, a
similar Stokes measurement procedure, as described in Sec. V,
was adopted. The coherent state includes a classical polarized
component, owing to which it is displaced from the origin of
the Stokes space by its mean photon number. To reduce this
classical component, so that it could be easily visualized by
the QPD function, the mean value of each Gaussian histogram
was normalized to the mean signal (which is equivalent to S0).
Without this step, the uniform angular mesh in the Stokes
space, which was used for obtaining the tomograms [see
Fig. 3(b)], was too coarse to provide sufficient accuracy of
the reconstruction. The reconstructed QPD function for the
coherent state containing the electronic noise is shown in
Fig 7(a). The reconstructed object is displaced from the origin
by the mean signal normalized to S0. Due to the excess noise
in the prepared state, the reconstruction results in a spheroid
stretched in the S2 direction, instead of a sphere. To compare
the squeezed states with the coherent state, we displaced this
spheroid to the origin and eliminated the electronic noise [see
Fig. 7(b)].

Ideally for a coherent source, the variance of the photon
number shows a linear dependence on the mean photon
number. However, in our case due to some unavoidable
excess fluctuations of the source, the dependence had a small
quadratic component [Fig. 6(a)]. Since the state generated
by this source is not a perfect coherent state, we call it a
pseudo-coherent state. The effect of the excess noise is much
reduced in the case of balanced detection (when both detectors
have the same signal), since in this case the excess fluctuations
are canceled out. For instance, as shown in Fig. 6(b), for
balance detection, the variance of the difference signal scales
linearly with the mean sum signal. Therefore, to obtain
the reconstruction of a coherent state we took the standard
deviation (noise) value that corresponded to the balanced

FIG. 8. (Color online) Comparison between the reconstructed
polarization quasiprobability distributions of (1) a coherent state
(yellow), (2) the |�−

mac〉 triplet state (blue), and (3) the singlet state
(red). The triplet state has squeezing 2 dB below the shot-noise level
for the S2 Stokes observable and the singlet state is squeezed 2.5 dB
below the shot-noise level in all Stokes observables.

detection for our source. The reconstructed QPD in this case
[see Fig. 7(b)] shows the same noise for all Stokes observables,
which is equal to the shot noise of the source.

D. Comparison of the reconstructed QPDs

The reconstructed QPD functions for the triplet and the
singlet macroscopic Bell states, as well as for a coherent
state with the same mean photon number, can be compared
to observe the effect of squeezing. All these distributions are
shown in Fig. 8. It is evident from the comparison between the
polarization QPDs for the triplet and the coherent state that
the triplet state has noise suppressed in observable S2 whereas
it is antisqueezed in other Stokes observables. On the other
hand, for the singlet state, noise for all Stokes observables is
suppressed and is smaller than that for the coherent state (see
Fig. 8).

For any quantum variable, the degree of squeezing can
be obtained from the ratio of its variance to the shot-noise
level, which is given by the variance measured for a shot-noise
limited source. In our case, for any of the reconstructed QPD
functions shown in Fig. 8, the variance scales as the square of
the distribution half-width, which is measurable directly from
the figures. Note that because our pseudo-coherent source
is shot-noise limited only for some Stokes measurements
(corresponding to balanced detection), we used its minimal
variance for the calculation of the degree of squeezing. As a
result, the squeezing obtained for the S2 Stokes observable of
the triplet state was approximately 2 dB below the shot-noise
level. On the other hand, for the singlet state, all the Stokes
observables were squeezed by approximately 2.5 dB below
the shot-noise level.

It is worthwhile to mention here that, since the symmetries
for the prepared quantum states were known, we reflected
the mapped points obtained for the quarter sphere to cover
the hemisphere, accordingly. However, for the tomography of
any unknown quantum polarization state, the rotations of the
half-wave plate and the quarter-wave plate should be chosen
in such a way that at least one hemisphere of the Poincaré
sphere could be covered. Since this method relies on summing
up (instead of integrating) over the hemisphere, the data points
should have rather high density to approach the best results.
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VII. CONCLUSION

In conclusion, we have presented a reconstruction of
macroscopic Bell states prepared via high-gain parametric
down-conversion (PDC) in two type-I BBO crystals placed
into a Mach-Zehnder interferometer. The reconstruction of
polarization quasiprobability distribution functions from the
polarization measurement results involves the method of
3D quantum polarization tomography. We observe that the
polarization quasiprobability function, which serves as a qua-
siclassical portrait of the quantum polarization state of light,
provides a more illustrative visualization of the polarization
state of light than the Stokes observables. The resulting
reconstructions for the triplet state and the singlet state were
compared with the reconstructed polarization QPD function

of a coherent state showing squeezing in one and all Stokes
observables, respectively. Not only these results illustrate the
peculiar polarization properties of the polarization-frequency
entangled states, but they also advocate the utilization of
this direct reconstruction method for other quantum states.
In future, these polarization rich states may find potential
applications in testing the foundations of quantum theory, e.g.,
Bell inequalities, separatibility, decoherence, etc., in a more
involved manner.
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[20] A. Sehat, J. Söderholm, G. Björk, P. Espinoza, A. B. Klimov,
and L. L. Sánchez-Soto, Phys. Rev. A 71, 033818 (2005); L. L.
Sánchez-Soto, E. C. Yustas, G. Björk, and A. B. Klimov, ibid.
76, 043820 (2007).

[21] A. Royer, Found. Phys. 19, 3 (1989).
[22] K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).
[23] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys.

Rev. Lett. 70, 1244 (1993).
[24] G. Breitenbach, S. Schiller, and J. Mlynek, Nature 387, 471

(1997).
[25] H. Kuhn, D.-G. Welsch, and W. Vogel, Phys. Rev. A 51, 4240

(1995).
[26] M. G. Raymer and M. Beck, Lect. Notes Phys. 649, 235 (2004).
[27] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics

(Cambridge University Press, New York, 1995).
[28] W. P. Bowen, R. Schnabel, H.-A. Bachor, and P. K. Lam, Phys.

Rev. Lett. 88, 093601 (2002).
[29] P. G. Kwiat, K. Mattle, H. Weinfurter,

A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev.
Lett. 75, 4337 (1995).

[30] A. V. Burlakov, S. P. Kulik, G. O. Rytikov, and M. V. Chekhova,
JETP 95, 639 (2002).

[31] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner,
Phys. Rep. 106, 121 (1984).

[32] H.-W. Lee, Phys. Rep. 259, 147 (1995).
[33] W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH

Verlag GmbH & Co. Berlin, Germany, 2005).
[34] V. P. Karasev, Kratk. Soobshch. Fiz. Nos. 9-10, 13 (1996); No.

9, 34 (1999).
[35] K. B. Wolf, Opt. Commun. 132, 343 (1996); N. M. Atakishiyev,

S. M. Chumakov, and K. B. Wolf, J. Math. Phys. 39, 6247
(1998).

[36] M. Y. Chiu, H. Barrett, and R. G. Simpson, J. Opt. Soc. Am. 70,
755 (1980).

[37] M. N. Wernick and J. N. Aarsvold, Emission Tomography: The
Fundamentals of PET and SPET (Elsevier Academic Press, San
Diego, CA, 2004).

[38] D. N. Klyshko, Photons and Nonlinear Optics (Gordon and
Breach, New York, 1988).

022126-8

http://dx.doi.org/10.1038/nature07124
http://dx.doi.org/10.1103/PhysRevLett.100.253601
http://dx.doi.org/10.1103/PhysRevLett.100.253601
http://dx.doi.org/10.1103/PhysRevLett.102.183602
http://dx.doi.org/10.1103/PhysRevLett.102.183602
http://dx.doi.org/10.1103/PhysRevA.81.032123
http://dx.doi.org/10.1103/PhysRevLett.106.113602
http://dx.doi.org/10.1103/PhysRevA.82.011801
http://dx.doi.org/10.1103/PhysRevA.82.011801
http://dx.doi.org/10.1103/PhysRevA.84.045804
http://dx.doi.org/10.1103/PhysRevLett.91.053601
http://dx.doi.org/10.1103/PhysRevLett.91.053601
http://dx.doi.org/10.1103/PhysRevLett.88.231102
http://arXiv.org/abs/arXiv:1111.6669v1
http://dx.doi.org/10.1364/OL.36.001329
http://dx.doi.org/10.1016/0375-9601(92)90837-C
http://dx.doi.org/10.1134/1.558243
http://dx.doi.org/10.1134/1.558243
http://dx.doi.org/10.1088/0305-4470/26/17/040
http://dx.doi.org/10.1007/BF02580952
http://dx.doi.org/10.1007/BF02580952
http://dx.doi.org/10.1007/BF02515359
http://dx.doi.org/10.1007/s10946-005-0047-8
http://dx.doi.org/10.1134/1.1412666
http://dx.doi.org/10.1088/1464-4266/4/4/321
http://dx.doi.org/10.1134/1.1787078
http://dx.doi.org/10.1103/PhysRevA.65.052306
http://dx.doi.org/10.1103/PhysRevA.67.012316
http://dx.doi.org/10.1103/PhysRevLett.99.220401
http://dx.doi.org/10.1103/PhysRevA.71.033818
http://dx.doi.org/10.1103/PhysRevA.76.043820
http://dx.doi.org/10.1103/PhysRevA.76.043820
http://dx.doi.org/10.1007/BF00737764
http://dx.doi.org/10.1103/PhysRevA.40.2847
http://dx.doi.org/10.1103/PhysRevLett.70.1244
http://dx.doi.org/10.1103/PhysRevLett.70.1244
http://dx.doi.org/10.1038/387471a0
http://dx.doi.org/10.1038/387471a0
http://dx.doi.org/10.1103/PhysRevA.51.4240
http://dx.doi.org/10.1103/PhysRevA.51.4240
http://dx.doi.org/10.1007/978-3-540-44481-7_7
http://dx.doi.org/10.1103/PhysRevLett.88.093601
http://dx.doi.org/10.1103/PhysRevLett.88.093601
http://dx.doi.org/10.1103/PhysRevLett.75.4337
http://dx.doi.org/10.1103/PhysRevLett.75.4337
http://dx.doi.org/10.1134/1.1520596
http://dx.doi.org/10.1016/0370-1573(84)90160-1
http://dx.doi.org/10.1016/0370-1573(95)00007-4
http://dx.doi.org/10.1016/0030-4018(96)00364-1
http://dx.doi.org/10.1063/1.532636
http://dx.doi.org/10.1063/1.532636
http://dx.doi.org/10.1364/JOSA.70.000755
http://dx.doi.org/10.1364/JOSA.70.000755

