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Orientation-to-alignment conversion and spin squeezing
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The relationship between orientation-to-alignment conversion (a form of atomic polarization evolution induced
by an electric field) and the phenomenon of spin squeezing is demonstrated. A “stretched” state of an atom or
molecule with maximum angular-momentum projection along the quantization axis possesses orientation and is
a quantum-mechanical minimum-uncertainty state, where the product of the equal uncertainties of the angular-
momentum projections on two orthogonal directions transverse to the quantization axis is the minimum allowed
by the uncertainty relation. Application of an electric field for a short time induces orientation-to-alignment
conversion and produces a spin-squeezed state, in which the quantum state essentially remains a minimum-
uncertainty state, but the uncertainties of the angular-momentum projections on the orthogonal directions are
unequal. This property can be visualized using the angular-momentum probability surfaces, where the radius of
the surface is given by the probability of measuring the maximum angular-momentum projection in that direction.
Brief remarks are also given concerning collective-spin squeezing and quantum nondemolition measurements.
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I. INTRODUCTION

Since the pioneering work of Kitagawa and Ueda [1], the
concept of spin squeezing, or the redistribution of uncertainties
from one spin component to another, has drawn significant
attention [2]. Reducing the uncertainty in a particular spin
component to be measured at the expense of others can, in
principle, allow measurements at the fundamental Heisenberg
limit of uncertainty, which scales as 1/F for the relative
uncertainty of a measurement of the projection of an effective
angular momentum F , rather than at the standard quantum
limit, which scales as 1/

√
F .

One area in which spin squeezing is of practical interest
is optical magnetometry, i.e., the idea of gaining sensitivity
via spin squeezing is an attractive one. Unfortunately, this
application is not as straightforward as it may seem and,
in fact, there is no sensitivity gain in a rather broad class
of situations [3]. Nevertheless, as has been shown recently,
squeezing can lead to increase in bandwidth [4,5], and can in-
crease sensitivity in cases involving nonexponential relaxation
[6].

In this paper, we discuss two aspects of spin squeezing
relevant to atomic magnetometry. The first concerns the rela-
tionship between spin squeezing and a type of polarization evo-
lution known as alignment-to-orientation conversion (AOC),
which occurs when an electric field is applied to a polarized
atomic ensemble. Here, “orientation” refers to the rank-one
atomic polarization moment having a preferred direction,
and “alignment” to the rank-two polarization moment with
a preferred axis but no preferred direction. Alignment-to-
orientation conversion is an important mechanism for atomic
magnetometry, occurring, for example, in nonlinear Faraday
rotation [7]. It also occurs in other areas such as nuclear
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quadrupole resonance (NQR) [8], and has been extensively
studied for many years.

Here, we point out that there is a close relationship between
AOC and spin squeezing: when an atom in a stretched state
is placed in an orthogonal electric field, spin squeezing is
caused as a result of, in this case, the inverse process of
orientation-to-alignment conversion (OAC). We quantify the
amount of squeezing that can be obtained, and illustrate
the process using a polarization visualization technique. The
electric field needed to produce the squeezing can be either
dc or off-resonant ac. In fact, the latter has already been used
to generate spin squeezing in the ground state of alkali-metal
atoms (see Refs. [9,10]; this case is analyzed in Appendix C).

Note that there is an essential difference between the
squeezing produced by AOC and that discussed in Ref. [1]: in
the latter case, the squeezing is produced by an operator acting
on the collective spin of the ensemble, while the electric-
field Hamiltonian that induces AOC acts on the individual
spin of each atom. From a practical standpoint, it is much
more desirable to squeeze the collective spin, rather than
the individual spins, because the effective angular momentum
participating in the scaling discussed above can be made very
large.

We then discuss a second aspect of spin squeezing that
has been demonstrated in the context of optical magnetome-
try: collective spin squeezing via a quantum nondemolition
(QND) interaction. Here, we remark on the origin of in-
creased noise in the unobserved spin quadrature that ensures
compliance with the uncertainty relations for orthogonal spin
projections.

II. SPIN SQUEEZING BY INTERACTION
WITH THE ELECTRIC FIELD

Measurements involving quantum systems are fundamen-
tally limited by uncertainty relations derived from the commu-
tation relations of quantum-mechanical operators. A textbook

022125-11050-2947/2012/85(2)/022125(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.022125


S. M. ROCHESTER et al. PHYSICAL REVIEW A 85, 022125 (2012)

example is a state of a system (such as an atom or a molecule;
we will henceforward refer to an atom) with total angular
momentum F prepared in a “stretched” state with a fixed
projection m on a chosen quantization axis (z) such that
|m| = F , i.e., the state |F,m = F 〉. A state stretched along
another direction can be written by rotating |F,F 〉 using the
quantum-mechanical rotation operator. For the state |F,F 〉x̂
stretched along x̂, this gives [1]

|F,F 〉x̂ = 2−F

2F∑
k=0

(
2F

k

) 1
2

|F,F − k〉, (1)

where the binomial coefficients are given by(
n

k

)
= n!

k!(n − k)!
. (2)

If an experiment is performed that measures the x projection
of |F,F 〉x̂, the outcome is always the same (Fx = Fh̄). On the
other hand, measuring the projection on an orthogonal axis, say
y, one measures zero on average, 〈Fy〉 = 0, but each specific
measurement can yield any result such that −F � Fy/h̄ � F ,
with a similar result for the projection on z. The uncertainty
relation for the angular-momentum projections reads as

�Fy�Fz � h̄2

2
F, (3)

where the uncertainty in �Fy is defined according to

�Fy =
√〈

F 2
y

〉 − 〈
Fy

〉2
, (4)

and similarly for �Fz. Explicitly calculating the uncertainties
�Fy and �Fz using the appropriate quantum-mechanical
operators, we find that, as expected from symmetry, these
uncertainties are equal, and that their values realize the equality
in the expression (3), which means that the stretched state is a
minimum-uncertainty state.

One way of visualizing the state is using angular-
momentum probability surfaces (AMPS) [11–13]. The radius
of the surface in a given direction is proportional to the
probability to measure the maximum angular-momentum
projection (=F ) in that direction. This corresponds to the
quasiprobability distribution plotted in Ref. [1] and is the
analog, for spin states, of the Q function of quantum optics.
The AMPS for |F,F 〉x̂ is shown in the upper-left plot of Fig. 1.
It is clearly pointing in the x direction, and is symmetric
about x̂.

We next consider the evolution of the stretched state under
the influence of an electric field. Let us assume that the field
is applied along the quantization axis z. For simplicity, we
assume that the electric field is either dc or linearly polarized
off-resonant ac (the two cases are essentially equivalent
[9,10]). The Hamiltonian of the system in the presence of
the electric field is

HE = −1

2
α0E

2 − 1

2
α2E

2
z

3F 2
z − F2

h̄2F (2F − 1)
, (5)

where α0 is the scalar polarizability of the state, and α2 is
the tensor polarizability. (The vector polarizability does not
contribute to the Hamiltonian, as we are considering a linearly

x
y

z
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2

χt = 3π
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2 χt = 7π

4 χt = 2π

FIG. 1. (Color online) Angular-momentum probability surfaces
(see text) showing an F = 2 atomic state initially stretched along x̂
and evolving in the presence of an electric field along ẑ. A complete
cycle of orientation-to-alignment conversion is shown.

polarized electric field.) We neglect the scalar polarizability
term and the part of the tensor polarizability that is independent
of Fz since they result only in a common shift of the Zeeman
sublevels of the ground or excited hyperfine states, and so
do not lead to evolution of the Zeeman polarization. We
therefore consider the following Hamiltonian for each spin
in the ensemble:

HE = χF 2
z /h̄, (6)

where we have defined

χ = − 3

2h̄F (2F − 1)
α2E

2
z . (7)

This Hamiltonian has the same form as the one presented
by Kitagawa and Ueda [1] for “one-axis twisting.” However,
there is an essential difference in that Fz in Ref. [1] refers to
the collective spin of an ensemble of particles, whereas we
are considering a single atom or, equivalently, an ensemble of
uncorrelated atoms. The Hamiltonian HE generates the unitary
transformation

U (t) = e−iχtF 2
z /h̄2

. (8)

The evolution of |F,F 〉x̂ in the Schrödinger picture
according to the evolution operator U (t) is illustrated in
Fig. 1 for the case of F = 2. The state oscillates between
having a preferred direction, indicating that it possesses
orientation (for example, at χt = 0), and having a preferred
axis, indicating that it possesses alignment (for example, at
χt = π/2); we therefore refer to this kind of evolution as OAC
or AOC.
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We note that the evolution of polarized atomic and
molecular states in the presence of an electric field has
been extensively studied in the literature (see, for example,
[11,13,14] and references therein). However, it has not been
broadly recognized that spin squeezing is naturally associated
with this evolution. In fact, we will now see that, as the process
of OAC begins, the uncertainty of a spin measurement along
a particular axis perpendicular to x is reduced, while that
along the orthogonal axis is increased, so that the state, to first
order, remains a minimum-uncertainty state. To show this, we
explicitly calculate the uncertainty in the measurement of Fy

as a function of time; a rotation about the x axis allows us to
find the axis of optimal squeezing.

Following Ref. [1], we analyze the means and variances of
the operators Fx(t),Fy(t) in the Heisenberg picture using the
raising and lowering operators

F±(t) = Fx(t) ± iFy(t), (9)

which evolve in the Heisenberg picture as

F+(t) = U (t)†F+(0)U (t)

= eiχtF 2
z /h̄2

F+(0)e−iχtF 2
z /h̄2

= F+(0)e2iχt(Fz/h̄+ 1
2 ), (10)

F−(t) = [F+(t)]† = e−2iχt(Fz/h̄+ 1
2 )F−(0), (11)

where F−(0) = F
†
+(0). The details of the derivation of

Eqs. (10) and (11) are presented in Appendix A. The
components of Fx(t),Fy(t) are now given by

Fx(t) = 1
2 [F+(t) + F−(t)]

= 1
2 [F+(0)e2iχt(Fz/h̄+ 1

2 ) + e−2iχt(Fz/h̄+ 1
2 )F−(0)], (12)

Fy(t) = 1
2i

[F+(t) − F−(t)]

= 1
2 [F+(0)e2iχt(Fz/h̄+ 1

2 ) − e−2iχt(Fz/h̄+ 1
2 )F−(0)]. (13)

In Appendix B, we present a detailed calculation of the
expectation value 〈Fx〉 [Eq. (15a)]. The means and variances
of the other components of the angular momentum can be
calculated in a similar manner. In order to analyze the mean
values and variances of the spin projections along all directions
transverse to x, it is convenient to write Fy(t) in a coordinate
frame obtained from the original one by rotating about x̂ by an
angle ν, according to the unitary transformation

Fy,ν = eiνFx (t)/h̄Fye
−iνFx (t)/h̄. (14)

The expectation values of the components of the angular
momentum become

〈Fx〉 = h̄F (cos χt)2F−1, (15a)

〈Fy,ν〉 = 0, (15b)

〈Fz,ν〉 = 0, (15c)

while the variances are given by

(�Fx)2 = h̄2 F

2

[
2F (1 − cos2(2F−1) χt) −

(
F − 1

2

)
A

]
,

(16a)

(�Fy,ν)2 = h̄2 F

2

{
1 + 1

2

(
F − 1

2

)

× [A +
√

A2 + B2 cos(2ν + 2δ)]

}
, (16b)

(�Fz,ν)2 = h̄2 F

2

{
1 + 1

2

(
F − 1

2

)

× [A −
√

A2 + B2 cos(2ν + 2δ)]

}
, (16c)

where A = 1 − cos2F−2 2χt , B = 4 sin χt cos2F−2 χt, and
δ = 1

2 arctan B
A

. According to Eqs. (16), �Fy,ν is minimized
and �Fz,ν is maximized when cos(2ν + 2δ) = −1, i.e., ν =
π
2 − δ. This determines the axis with the best squeezing at a
given time.

Considering the evolution shortly after the application of
the electric field, we find that, to first order, the state remains a
minimum-uncertainty state. However, the uncertainties in Fy

and Fz are no longer equal [Eqs. (16)]; therefore, we have
generated a spin-squeezed state (SSS). This is indicated by
AMPS plots observed along the x axis (Fig. 2). The utility
of SSS is that, in principle, they allow an improved sensi-
tivity in certain appropriately designed measurements. [The
fundamental quantum-mechanical limit on the uncertainty of a
measurement of Fx is not h̄

√
F/2 as implied by the uncertainty

relation (3) for the case of �Fx = �Fy (the standard quantum
limit), but the Heisenberg limit Bollinger [15,16] of h̄/

√
2.]

Wineland et al. [17] defined a squeezing parameter to
indicate sensitivity to rotations of the angular-momentum
states. Considering squeezing along the y axis rotated by an
angle ν about x̂, the squeezing parameter ξR is the uncertainty
in the rotation of the spin, �Fy,ν/|〈Fx〉|, normalized to the
uncertainty 1/

√
2F expected in the standard quantum limit,

i.e., the uncertainty obtained using a stretched state:

ξR =
√

2F
�Fy,ν

|〈Fx〉| . (17)

x
y

z

χt = 0

π
2 − δ

χt = π
16

π
2 − δ

χt = π
8

FIG. 2. (Color online) The initial part of the evolution shown
in Fig. 1 as viewed from the x direction, showing the process of
squeezing. The solid line is a polar plot of �Fy,ν as a function of
azimuth, with the angle ν = π/2 − δ of the minimum-uncertainty
axis indicated by the dashed line.
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FIG. 3. The squeezing parameter ξR for F = 2 as a function of
time. The solid curve shows ξR for the most strongly squeezed axis
(ν = π

2 − δ), while the dashed curve gives ξR for the orthogonal
“antisqueezing” axis. A value ξR < 1 (below the gray line) indicates
a squeezed state. The dotted curve shows the product of the squeezing
parameters for the two orthogonal axes, with a value of 1 indicating
a minimum-uncertainty state.

Substituting from Eqs. (15a) and (16b), we find the squeezing
along the minimum-uncertainty axis to be

ξR =
√

1 + 1
2

(
F − 1

2

)
(A − √

A2 + B2)

|(cos χt)2F−1| . (18)

In Fig. 3, we plot the squeezing parameter for the minimum-
uncertainty axis as a function of time for F = 2. We observe
that ξR initially decreases below unity, indicating a squeezed
state, but subsequently tends toward infinity at t = π

2 + kπ ,
with integer k, because |〈Fx〉| tends to zero. From Eq. (15a),
we see that this is true for any value of F . If the electric
field inducing OAC is turned off at the time corresponding to
the minimum value of ξR , we obtain squeezing along a fixed
axis, the direction of which can be found from Fig. 4. (Note
that in some cases it is desirable to have the squeezing axis
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2 Π
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4

Π
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FIG. 4. The angle ν = π

2 − δ of the minimum uncertainty axis
as a function of time for a state with F = 2. The π/2 shift halfway
through the cycle corresponds to the mirror symmetry seen between
the first and second halves of the cycle in Fig. 1.

1
2

3
2

1 2 3 5 10 20 30 50 100 200
0.1

0.2

0.3

0.5

0.7

1

Ξ R

F

FIG. 5. (Color online) Logarithmic plot of the minimum value
of ξR with respect to t as a function of F when ν = π

2 − δ. The
dependence quickly approaches a power law (ξR ∝ F −1/3). Note that
the case of F = 1 has an apparently anomalously small value of ξR .
This is a special case in which the optimum squeezing parameter is
achieved as χt approaches π/2, when the spin projection 〈Fx〉 goes
to zero.

rotate in time; this could be accomplished here by subsequent
application of a magnetic field.)

In Fig. 5, we plot the minimum of ξR with respect to t

as a function of F . This plot differs from the corresponding
plot in Ref. [1] because we use a different definition of the
squeezing parameter. To find the asymptotic behavior of ξR

for large F , we note that as F increases, the time χt at which
the squeezing is minimized decreases faster than 1/

√
F , but

slower than 1/F . Thus, for F � 1, we can assume that, near
the minimum, the parameters γ = 1/(χtF ) and β = χ2t2F

are both small. Writing the square of the squeezing parameter
(18) in terms of γ and β, we expand to second order and find

ξ 2
R ≈ 2β2

3
+ γ 2

4
. (19)

Substituting back for F and t , we minimize with respect to t

and find that at the time

χtmin ≈ 31/6

22/3
F−2/3, (20)

the minimum squeezing parameter is given by

ξmin
R ≈ 31/3

25/6
F−1/3, (21)

equivalent to the result found in Ref. [18]. Relatively large
values of F available for single atoms are F = 4 in the ground
state of Cs (see Appendix C for a calculation of squeezing in
this system) and F = 12.5 in a metastable state of Dy [19].
Even higher values of F are attainable in Rydberg atoms and in
molecules with large rotational excitation. Very large effective
values of F can be achieved in a somewhat different situation in
which squeezing is done on a correlated ensemble, as discussed
below.

The polarization evolution due to the Hamiltonian (6)
is termed “single-axis twisting” by Kitagawa and Ueda [1]
because the effect on the angular-momentum probability
distribution can be visualized as resulting from a twisting

022125-4



ORIENTATION-TO-ALIGNMENT CONVERSION AND SPIN . . . PHYSICAL REVIEW A 85, 022125 (2012)

x
y

z

(a)

x
y

z

(b)

FIG. 6. (Color online) Comparison of AMPS for the (a) “single-
axis twisting” and (b) “two-axis countertwisting” Hamiltonians at
times equal to 1/8 of the respective quantum-beat periods for an
F = 2 state initially stretched along x̂. Twisting about the z axis
introduces “swirliness” in (a); simultaneous twisting about the y axis
(b) cancels this effect.

motion about the z axis [Fig. 6(a)]. For the purposes of
generating squeezed states, this type of evolution has some
drawbacks resulting from the asymmetry of the evolution with
respect to the z and y axes. First, as we have seen in Fig. 4, the
optimal squeezing axis changes as a function of time. Second,
the distortion in the probability distribution introduced by the
twisting motion, described as “swirliness” in Ref. [1], limits the
maximum squeezing that can be obtained. These effects can be
obviated by creating a more symmetric Hamiltonian in which
twisting is performed about two orthogonal axes (“two-axis
countertwisting”), as shown in Fig. 6(b). Here, we have plotted
the effect of a Hamiltonian of the form H = χ (F 2

z − F 2
y )/h̄.

Interaction described by such a Hamiltonian can be achieved
by the use of two incoherent fields, such as a light field
along with a magnetic field inducing the nonlinear Zeeman
effect [10], two light fields of different frequencies, or a light
field and a static electric field (see Ref. [2] and references
therein). This removes the swirliness, fixes the squeezing axis,
and allows the maximum amount of squeezing to be attained.
We do not further consider the two-axis Hamiltonian here,
as the simpler Hamiltonian (6) illustrates the principle under
discussion.

The value for spin squeezing found here differs from that
reported by Kitagawa and Ueda [1] because we use a form
of the squeezing parameter, normalized to the expectation
value of Fx , that is appropriate for measurements of rotation.
There is a second, more fundamental difference between the
two results, however, stemming from the definition of the
interaction Hamiltonian. While the interaction Hamiltonian of
Kitagawa and Ueda [1] relates to an ensemble with quantum
correlations among the individual spins [20], our HE (6)
operates on each individual spin in the ensemble without
creating correlation. This difference shows up clearly in the
case in which all the atoms are in a F = 1/2 state. For an
individual F = 1/2 atom, there is no differential shift induced
by HE , and, in any case, the only possible polarized state
is a stretched state (the highest-rank polarization possible is
orientation). Thus, no squeezing is possible in this case. (For
the common experimental case of alkali-metal atoms, with
electronic spin J = 1/2, the additional nuclear spin, resulting
in higher total angular momentum, allows spin squeezing
[10].) However, for N spin-1/2 atoms in the case in which

the Hamiltonian acts on the collective spin F (tot)
z = ∑

i F
(i)
z ,

the correlation between the particles can result in squeezing
as for a fictitious particle with F = N/2. This means that
very large effective values of F can be obtained, which would
not be feasible for an uncorrelated ensemble for which F is
the angular momentum of each polarized atom. Some brief
remarks on methods of producing squeezing of a correlated
ensemble are given in the next section.

III. REMARKS ON ENSEMBLE SQUEEZING

Various techniques have been introduced in recent years
to achieve collective-spin squeezing in atomic ensembles.
These include methods based on collective interactions in
Bose-Einstein condensates (see Ref. [21] and references
therein), employing collective interactions between atoms
via an optical cavity (see Ref. [22] and references therein),
or methods based on generating squeezing by performing
so-called QND measurements on an ensemble [23–26]. The
latter technique has attracted particular attention in the context
of atomic magnetometry (see Ref. [27] and references therein).
We note here that spin squeezing does not normally lead
to significant improvement of an optimized magnetometer
measuring quasistatic magnetic fields [3]; however, QND
techniques can extend the sensitivity to ac magnetic fields
[4,5], and can improve the sensitivity for cases involving
nonexponential relaxation [6].

Let us briefly discuss quantum nondemolition measure-
ments, which minimally perturb the spin component being
measured [28–30]. For example, consider an ensemble of spin-
1/2 atoms polarized in an unknown direction perpendicular
to the y axis. In order to determine the angle between the
atomic polarization direction and the x axis, linearly polarized
probe light propagating along the x axis can be employed. The
polarization of the probe light will be rotated due to circular
birefringence depending on the projection of the atomic spin
along x̂. If the probe light is detuned from atomic resonance, the
rate of atomic transitions is low, so that the atomic polarization
is not destroyed. A continuous measurement produces a more
and more precise measurement of the spin projection along
the x axis, indicating that the interaction with the probe
light is squeezing the atomic state. This means that the spin
projection in the orthogonal direction must be becoming
more uncertain in order to preserve the uncertainty relation.
What is the mechanism for this antisqueezing? The linearly
polarized probe light can be thought of as being composed
of a superposition of left- and right-circularly polarized light,
each of which produces ac Stark shifts that mimic the effect of a
magnetic field directed along the x axis. In the absence of noise,
these two fictitious magnetic fields nominally cancel, but the
effect of polarization noise (resulting from photon shot noise)
in the light beam is to produce an effective fluctuating magnetic
field along x̂. The resulting fluctuating spin precession causes
a spread of the atomic state along the y axis, preserving the
uncertainty relation. Note that this process becomes more
complicated for states with F > 1/2 due to the evolution of
the internal degrees of freedom of the atoms, as well as the
coherence between the atoms (see Ref. [27] and references
therein). This is discussed in more detail in Ref. [31]; see also
Ref. [32].
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IV. CONCLUSION

We have shown that the process of orientation-to-alignment
conversion, as induced by an electric field, is intimately
connected with spin squeezing. Following Kitagawa and
Ueda [1], we quantified the amount of squeezing obtained by
this mechanism for a state of angular momentum F . While
the squeezing is improved for higher angular momentum,
the scalability of this approach is limited by the available
values of F found in usable atomic and molecular states.
Alternative methods involving correlated atomic ensembles
can achieve much higher effective angular momenta; we briefly
discussed one such approach, using a quantum nondemolition
measurement.
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APPENDIX A: CALCULATION OF F+(t)

In order to determine the expression for the evolution of
the raising operator F+(t) given in Eq. (10), we consider the
matrix elements of F+(t) between any two eigenstates |F,m〉

of the Hamiltonian, so that

〈F,m′|F+(t)|F,m〉 = 〈F,m′|eiχtF 2
z /h̄2

F+(0)e−iχtF 2
z /h̄2 |F,m〉

= eiχtm′2〈F,m′|F+(0)|F,m〉e−iχtm2
.

(A1)

The only nonzero matrix elements of the raising operator are
those for which m′ = m + 1. For these matrix elements, we
have

〈F,m + 1|F+(t)|F,m〉
= eiχt(m+1)2〈F,m + 1|F+(0)|F,m〉e−iχtm2

= 〈F,m + 1|F+(0)ei2χt(m+ 1
2 )|F,m〉. (A2)

The energy eigenstates form a complete set, and so this
equation can be written in the operator form given in Eq. (10).

APPENDIX B: CALCULATION OF 〈Fx(t)〉
Here, we derive the expectation value (15a) of the operator

Fx(t) [Eq. (12)] given the initial state |F,F 〉x̂ [Eq. (1)]:

〈Fx(t)〉 = 〈F,F |x̂ 1
2

[
F+(0)e2iχt(Fz/h̄+ 1

2 )

+ e−2iχt(Fz/h̄+ 1
2 )F−(t)

]|F,F 〉x̂

= Re
[〈F,F |x̂e−i2χt(Fz/h̄+ 1

2 )F−(t)|F,F 〉x̂

]
. (B1)

We substitute Eqs. (1) and (11) into Eq. (B1) and use the
formula for the action of the F−(0) operator on the eigenstates
|Fm〉:

F−|Fm〉 = h̄
√

F (F + 1) − m(m − 1)|F,m − 1〉. (B2)

This results in

〈Fx(t)〉 = h̄

2F∑
k,k′=0

Re

[
〈F,F − k′|2−2F

(
2F

k′

) 1
2

e−iμ(Fz/h̄+ 1
2 )
√

F (F + 1) − (F − k)(F − k − 1)

(
2F

k

) 1
2

|F,F − k − 1〉
]

, (B3)

with μ = 2χt . Terms in the sum are nonzero only when F − k′ = F − k − 1, i.e., k′ = k + 1. Thus, we find

〈Fx(t)〉 = h̄ Re

[
〈F,F − k − 1|2−2F

2F∑
k=0

√(
2F

k + 1

)(
2F

k

)√
(2F − k)(k + 1)e−iμ(F−k−1+ 1

2 )|F,F − k − 1〉
]

= h̄ Re

[
2−2F

2F∑
k=0

√
2F !

(2F − k − 1)!(k + 1)!

2F !

(2F − k)!k!
(2F − k)(k + 1)e−iμ(F−k−1+ 1

2 )

]

= h̄ Re

[
2−2F

2F∑
k=0

√
2F (2F − 1)!

(2F − k − 1)!(k + 1)k!

2F (2F − 1)!

(2F − k)(2F − k − 1)!k!
(2F − k)(k + 1)e−i

μ

2 (2F−2k−1)

]

= h̄ Re

[
2F

22F

2F∑
k=0

(
2F − 1

k

)
e−i

μ

2 (2F−k−1)ei
μ

2 k

]
= h̄ Re

[
F

22F−1
(e−i

μ

2 + ei
μ

2 )2F−1

]

= h̄F

22F−1

(
2 cos

μ

2

)2F−1

, (B4)

where we have used the binomial formula

(x + y)n =
n∑

j=0

(
n

j

)
xn−j yj . (B5)

Simplifying, we obtain Eq. (15a).
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APPENDIX C: SQUEEZING DUE TO
ORIENTATION-TO-ALIGNMENT

CONVERSION IN CESIUM

Here, we apply the general expressions for squeezing due to
orientation-to-alignment conversion presented in the text for
the specific case of Cs atoms in the presence of a uniform off-
resonant light field. We assume stationary atoms (for example,
in a far-off-resonant optical trap) that are initially in the F = 4
hyperfine ground state and prepared in a stretched state as
assumed in the text. We apply a z-polarized light field to the
atoms detuned by � from the D1F = 4 → F ′ = 3 or F ′ = 4
transition, where � is greater than the natural width but is
much smaller than the splitting between hyperfine-structure
levels, so that the ground-state level shift is predominantly due
to the ac Stark effect arising from the interaction of the light
with the near-resonant transition.

The optimum value of the squeezing parameter for F = 4 is
ξR = 0.6, as can be found from Fig. 5. The time dependence of
the squeezing is given in terms of the quantum-beat frequency
χ , which is found from the part of the Stark Hamiltonian that
is proportional to F 2

z [see Eq. (6)]. This term can be obtained
by writing
h̄χ = 〈F,m = 1|Heff|F,m = 1〉 − 〈F,m = 0|Heff|F,m = 0〉,

(C1)

where Heff is the effective ground-state Hamiltonian describ-
ing ac Stark shifts induced by mixing with the upper state. For
light tuned near the F = 4 → F ′ = 4 transition, the second
term is zero, and the first term is found from second-order
perturbation theory as

〈F,m = 1|Heff|F,m = 1〉 = |〈F,m = 1|dzE|F ′,m = 1〉|2
4�

.

(C2)

Evaluating the dipole matrix element in terms of the reduced
matrix element (see, for example, Ref. [33] for a discussion
of dipole matrix elements in the presence of hfs), we
find

χ = 〈J = 1/2‖d‖J ′ = 1/2〉2
E2

384h̄2�
; (C3)

the value of the reduced dipole matrix element for the D1

transition is 〈J = 1/2‖d‖J ′ = 1/2〉 = 3.2 ea0. For light tuned
near the F = 4 → F ′ = 3 transition, both terms of Eq. (C1)
are nonzero, but the magnitude of χ works out to be the same.
From the formula (17) for the squeezing parameter, it can be
shown that the optimal value for F = 4 occurs at the time when
χt = 0.036 × 2π .
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Lett. 104, 073604 (2010).

[26] Z. Chen, J. G. Bohnet, S. R. Sankar, J. Dai, and J. K. Thompson,
Phys. Rev. Lett. 106, 133601 (2011).

[27] M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell,
Phys. Rev. Lett. 105, 093602 (2010).

[28] V. B. Braginsky and F. Y. Khalili, Rev. Mod. Phys. 68, 1 (1996).
[29] J. M. Geremia, J. K. Stockton, and H. Mabuchi, Phys. Rev. A

73, 042112 (2006).
[30] C. M. Trail, P. S. Jessen, and I. H. Deutsch, Phys. Rev. Lett. 105,

193602 (2010).
[31] Z. Kurucz and K. Mølmer, Phys. Rev. A 81, 032314 (2010).
[32] K. Jensen, E. S. Polzik, and M. V. Romalis (unpublished).
[33] M. Auzinsh, D. Budker, and S. M. Rochester, Optically

Polarized Atoms: Understanding Light–Atom Interactions
(Oxford University Press, Oxford, 2010).

022125-7

http://dx.doi.org/10.1103/PhysRevA.47.5138
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1103/PhysRevLett.93.173002
http://dx.doi.org/10.1103/PhysRevLett.93.173002
http://dx.doi.org/10.1103/PhysRevLett.104.013601
http://dx.doi.org/10.1103/PhysRevLett.104.013601
http://dx.doi.org/10.1103/PhysRevLett.104.133601
http://dx.doi.org/10.1103/PhysRevLett.106.143601
http://dx.doi.org/10.1103/PhysRevLett.106.143601
http://dx.doi.org/10.1103/PhysRevLett.85.2088
http://dx.doi.org/10.1016/S0009-2614(03)01327-7
http://dx.doi.org/10.1103/PhysRevLett.99.163002
http://dx.doi.org/10.1103/PhysRevLett.101.073601
http://dx.doi.org/10.1139/p97-034
http://dx.doi.org/10.1119/1.1344166
http://dx.doi.org/10.1364/JOSAB.22.000007
http://dx.doi.org/10.1103/PhysRevLett.97.043002
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevA.50.67
http://dx.doi.org/10.1038/35051038
http://dx.doi.org/10.1038/35051038
http://dx.doi.org/10.1103/PhysRevA.50.132
http://dx.doi.org/10.1103/PhysRevA.46.R6797
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1103/PhysRevA.81.021804
http://dx.doi.org/10.1103/PhysRevA.81.021804
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1103/PhysRevLett.102.033601
http://dx.doi.org/10.1103/PhysRevLett.102.033601
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1103/PhysRevLett.106.133601
http://dx.doi.org/10.1103/PhysRevLett.105.093602
http://dx.doi.org/10.1103/RevModPhys.68.1
http://dx.doi.org/10.1103/PhysRevA.73.042112
http://dx.doi.org/10.1103/PhysRevA.73.042112
http://dx.doi.org/10.1103/PhysRevLett.105.193602
http://dx.doi.org/10.1103/PhysRevLett.105.193602
http://dx.doi.org/10.1103/PhysRevA.81.032314

