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In this study, we explicitly calculate information and fidelity of an r-rank projective measurement on a
completely unknown state in a d-dimensional Hilbert space. We also show a tradeoff between information and
fidelity at the level of a single outcome and discuss the efficiency of measurement with respect to fidelity.
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I. INTRODUCTION

In quantum theory, a measurement that provides informa-
tion about a physical system inevitably changes the state of
the system depending on the outcome of the measurement.
This is an interesting property of quantum measurement not
only in the foundations of quantum mechanics but also in
quantum information processing and communication [1] such
as quantum cryptography [2–5]. Therefore, there have been
many discussions regarding the tradeoffs between information
gain and state change using various formulations [6–15]. For
example, Banaszek [7] has shown an inequality between mean
estimation fidelity and mean operation fidelity that quantifies
information gain and state change, respectively.

In connection with such tradeoffs, the author [16,17] has
recently discussed tradeoffs together with physical reversibil-
ity [18,19] of measurement in the context of reversibility in
quantum measurement [20–34]. In particular, the author [17]
has shown tradeoffs among information gain, state change, and
physical reversibility in the case of single-qubit measurements.
An important feature of these tradeoffs is that they occur at
the level of a single outcome without averaging all possible
outcomes [6,7,9,13]. This feature originates from the fact that
the physical reversibility of measurements suggests quantify-
ing the information gain and the state change for each single
outcome, because in physically reversible measurements, a
state recovery with information erasure (see the Erratum of
Ref. [22]) occurs because of the postselection of outcomes.
However, the explicit calculations in the previous studies
[16,17] were only performed with two-level systems or qubits.

In this study, we calculate information gain and state
change in a projective measurement of rank r on a d-level
system assumed to be in a completely unknown state. We
evaluate the amount of information gain by a decrease in
Shannon entropy [10,33] and the degree of state change
by fidelity [35] to express them as functions of r and d.
These results lead to a tradeoff between information gain
and state change at a single-outcome level. We also consider
the efficiency of the measurement with respect to fidelity. Of
course, projective measurements are not physically reversible
[18]. However, they would correspond to special points as the
most informative but the least reversible measurements in the
tradeoffs among information gain, state change, and physical
reversibility in general measurements on a d-level system.

The rest of this paper is organized as follows: Section II
explains the procedure to quantify information gain and state
change and calculates them in the case of an r-rank projective
measurement on a d-level system. Section III discusses a

tradeoff between information gain and state change and
considers efficiency of the measurement with respect to the
state change. Section IV summarizes our results.

II. INFORMATION AND FIDELITY

We evaluate the amount of information provided by a
quantum measurement as follows: Suppose that the pre-
measurement state of a system is known to be one of the
predefined pure states {|ψ(a)〉}, a = 1, . . . ,N , with equal
probability p(a) = 1/N [16,17,33], although the index a of
the premeasurement state is unknown to us. Thus, the lack of
information about the state of the system can be evaluated by
Shannon entropy as

H0 = −
∑

a

p(a) log2 p(a) = log2 N (1)

before measurement, where we have used the Shannon entropy
rather than the von Neumann entropy of the mixed state ρ̂ =∑

a p(a)|ψ(a)〉〈ψ(a)| because what we are uncertain about is
the classical variable a rather than the predefined quantum state
|ψ(a)〉. If the premeasurement state is completely unknown,
as is usually the case in quantum measurement, then the set
of the predefined states, {|ψ(a)〉}, consists of all possible pure
states of the system with N → ∞. Each state can be expanded
by an orthonormal basis {|k〉} as

|ψ(a)〉 =
∑

k

ck(a)|k〉, (2)

with k = 1,2, . . . ,d, where d is the dimension of the Hilbert
space associated with the system. The coefficients {ck(a)} obey
the normalization condition∑

k

|ck(a)|2 = 1. (3)

We next perform a quantum measurement on the system to
obtain the information about its state. A quantum measurement
is generally described by a set of measurement operators {M̂m}
[1,36] that satisfies ∑

m

M̂†
mM̂m = Î , (4)

where Î is the identity operator. If the system to be measured
is in a state |ψ〉, the measurement yields an outcome m with
probability

pm = 〈ψ |M̂†
mM̂m|ψ〉 (5)
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and then causes a state reduction of the measured system into

|ψm〉 = 1√
pm

M̂m|ψ〉. (6)

Here we consider performing a projective measurement
because it is the most informative. In particular, we perform a
measurement where the process yielding a particular outcome
m is described by a projection operator of rank r (r =
1,2, . . . ,d); that is, the measurement operator corresponding
to the outcome m is written without loss of generality as

M̂m = κmP̂ (r) = κm

r∑
k=1

|k〉〈k| (7)

by relabeling the orthonormal basis, where κm is a complex
number. The other measurement operators are irrelevant as
long as condition (4) is satisfied, since our interest is only at
the level of a single outcome. The measurement then yields
the outcome m with probability

p(m|a) = |κm|2
r∑

k=1

|ck(a)|2 ≡ |κm|2qm(a) (8)

when the premeasurement state is |ψ(a)〉 from Eqs. (2) and
(5). Since the probability for |ψ(a)〉 is p(a) = 1/N , the total
probability for the outcome m becomes

p(m) =
∑

a

p(m|a) p(a) = 1

N

∑
a

|κm|2qm(a) = |κm|2 qm,

(9)

where the overline denotes the average over a:

f ≡ 1

N

∑
a

f (a). (10)

On the contrary, Bayes’ rule states that, given the outcome m,
the probability for the premeasurement state |ψ(a)〉 is given by

p(a|m) = p(m|a) p(a)

p(m)
= qm(a)

N qm

. (11)

Thus, the lack of information about the premeasurement state
can be evaluated by Shannon entropy as

H (m) = −
∑

a

p(a|m) log2 p(a|m) (12)

after the measurement yields the outcome m. Therefore, we
define information gain by the measurement with the single
outcome m as the decrease in Shannon entropy [10,33]:

I (m) ≡ H0 − H (m) = qm log2 qm − qm log2 qm

qm

, (13)

which is free from the divergent term log2 N → ∞ in Eq. (1)
owing to the assumption that the probability distribution p(a)
is uniform.

In order to explicitly calculate the information gain (13), we
introduce parametrization of the coefficients {ck(a)}. Let αk(a)
and βk(a) be the real and imaginary parts of ck(a), respectively:

ck(a) = αk(a) + iβk(a). (14)

The normalization condition (3) then becomes∑
k

[αk(a)2 + βk(a)2] = 1. (15)

Note that this is the condition for a point to be on the unit sphere
in 2d dimensions. This means that {αk(a)} and {βk(a)} can be
expressed by hyperspherical coordinates (θ1,θ2, . . . ,θ2d−2,φ)
as [33]

α1(a) = sin θ2d−2 sin θ2d−3 · · · sin θ3 sin θ2 sin θ1 cos φ,

β1(a) = sin θ2d−2 sin θ2d−3 · · · sin θ3 sin θ2 sin θ1 sin φ,

α2(a) = sin θ2d−2 sin θ2d−3 · · · sin θ3 sin θ2 cos θ1,

β2(a) = sin θ2d−2 sin θ2d−3 · · · sin θ3 cos θ2, (16)

...

αd (a) = sin θ2d−2 cos θ2d−3, βd (a) = cos θ2d−2,

where 0 � φ < 2π and 0 � θp � π with p = 1,2, . . . ,2d −
2. The index a now represents the angles (θ1,θ2, . . . ,θ2d−2,φ)
and thus the summation over a is replaced with an integral
over the angles as

1

N

∑
a

−→ (d − 1)!

2πd

∫ 2π

0
dφ

2d−2∏
p=1

∫ π

0
dθp sinp θp. (17)

From Eqs. (8) and (10), we get

qm(a) =
{∏2d−2

p=2r−1 sin2 θp (r < d)

1 (r = d)
(18)

and
qm = r

d
(19)

using the integral formula∫ π

0
dθ sinn θ = √

π



(
n+1

2

)



(
n+2

2

) , (20)

where n > −1 with the Gamma function 
(n). Similarly, using∫ π

0
dθ sinn θ log2 sin θ

= √
π



(

n+1
2

)



(
n+2

2

)
[

(−1)n+1 +
n∑

k=1

(−1)n+k+1

k ln 2

]
(21)

for n > −1 [37] with log2 x = ln x/ ln 2, we obtain

qm log2 qm = − r

d ln 2
[η(d) − η(r)] , (22)

where

η(n) ≡
n∑

k=1

1

k
. (23)

Therefore, the total probability (9) and the information gain
(13) are calculated to be

p(m) = |κm|2 r

d
(24)

and

I (m) = log2
d

r
− 1

ln 2
[η(d) − η(r)] , (25)
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FIG. 1. Information gain I (m) when the projective measurement
yields the outcome m as a function of rank r for d = 2,4,6,8,10.

respectively. Figure 1 shows the information gain I (m) as a
function of rank r for d = 2,4,6,8,10. As shown in Fig. 1, the
information gain monotonically decreases as r increases and
becomes 0 at r = d. Note that, when r = d, the measurement
corresponds to an uninformative identity operation, since the
measurement operator (7) reduces to the identity operator Î

except for the constant κm. In contrast, when r is fixed, the
information gain monotonically increases as d increases. Thus,
taking the limit of Eq. (25) as d goes to infinity at r = 1, we
find the upper bound on information gain as

I (m) → 1

ln 2
(1 − γ ) � 0.610, (26)

where γ is Euler’s constant.
On the other hand, the measurement changes the state of the

measured system. When the premeasurement state is |ψ(a)〉
and the measurement outcome is m, the postmeasurement state
is

|ψ(m,a)〉 = 1√
p(m|a)

κmP̂ (r)|ψ(a)〉, (27)

according to Eqs. (6) and (7). To quantify this state change,
we use fidelity [1,35] between the premeasurement and
postmeasurement states; namely,

F (m,a) = |〈ψ(a)|ψ(m,a)〉| =
√

qm(a). (28)

This fidelity decreases as the measurement increasingly
changes the state of the system. Averaging it over a with the
probability (11), we evaluate the degree of state change as

F (m) =
∑

a

p(a|m) [F (m,a)]2 = q2
m

qm

(29)

after the measurement yields the outcome m, where for
simplicity we have averaged the squared fidelity rather than
the fidelity. The fidelity (29) can be explicitly calculated using
the parametrization (16) as

F (m) = r + 1

d + 1
, (30)
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FIG. 2. Fidelity F (m) when the projective measurement yields
the outcome m as a function of rank r for d = 2,4,6,8,10.

because of Eq. (19) and

q2
m = r(r + 1)

d(d + 1)
. (31)

Figure 2 shows the fidelity F (m) as a function of rank r

for d = 2,4,6,8,10. In contrast to information gain, fidelity
monotonically increases with r and becomes 1 at r = d.
Moreover, when r is fixed, fidelity monotonically decreases
as d increases and becomes 0 in the limit d → ∞.

In terms of the density operator of the system, the mea-
surement changes the maximally mixed state in d dimensions,
ρ̂ = ∑

a p(a)|ψ(a)〉〈ψ(a)| = Î /d, into that in r dimensions,
decreasing the von Neumann entropy of the system by log2 d −
log2 r = log2(d/r). However, the information gain (25) is less
than log2(d/r) because of our formulation of information
resource [1]; that is, a set of predefined states with Shannon
entropy rather than a density operator with von Neumann
entropy. Within this formulation, the second term in Eq. (25)
comes from the indistinguishability of nonorthogonal quantum
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FIG. 3. Fidelity F (m) as a function of information gain I (m) for
d = 2,4,6,8,10.
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FIG. 4. Efficiency of measurement EF (m) as a function of rank
r for d = 2,4,6,8,10.

states. To see this, consider the orthonormal basis {|k〉} with
k = 1,2, . . . ,d in Eq. (2) as the set of predefined states, instead
of all possible pure states {|ψ(a)〉}. In this distinguishable
case, the information gain is equal to just the decrease in
the von Neumann entropy log2(d/r). Therefore, the reduced
information gain (25) is due to the indistinguishability of
predefined states. In other words, quantum measurement with
no a priori information about the state of the system is
not optimal as quantum communication between the system
and observer, since its encoding and decoding procedure
using all possible pure states suffers information loss by the
indistinguishability of states.

III. TRADEOFF AND EFFICIENCY

From the explicit formulas for the information gain (25)
and fidelity (30), we find a tradeoff between information and
fidelity in projective measurements. Figure 3 shows the fidelity
F (m) as a function of the information gain I (m) for d =
2,4,6,8,10. As the measurement provides more information
about the state of a system, the process of measurement
changes the state to a greater extent, as shown in Fig. 3. It
should be emphasized that this tradeoff is at a single-outcome
level in the sense that there is no average over outcome.

In addition, another relationship between information gain
and state change can be shown by defining the efficiency of

measurement as the ratio of the information gain to the fidelity
loss [16,17],

EF (m) ≡ I (m)

1 − F (m)
. (32)

Figure 4 shows the efficiency of measurement, EF (m), as a
function of rank r for d = 2,4,6,8,10, although it is ill-defined
at r = d because of I (m) = 1 − F (m) = 0. The efficiency
is a monotonically decreasing function for each d and has
a maximal value 3[1 − 1/(2 ln 2)] at r = 1 in d = 2. This
means that, among the various projective measurements, a
projective measurement on a two-level system or qubit is the
most efficient with respect to fidelity. Nevertheless, it is the
least efficient among single-qubit measurements, as discussed
in Ref. [17].

IV. CONCLUSION

We calculated the information gain and fidelity of a projec-
tive measurement on a system where the premeasurement state
was assumed to be in a completely unknown state. They are
expressed as functions of the dimensions d of the Hilbert space
associated with the system and rank r of the projection operator
associated with the measurement, as in Eqs. (25) and (30).
These results show a tradeoff between information and fidelity
at the level of a single outcome without averaging all outcomes,
as shown in Fig. 3. We also discussed the efficiency of the
measurement by using the ratio of information gain to fidelity
loss. In terms of this efficiency, a projective measurement on
a two-level system or qubit is the most efficient among the
various projective measurements.

Although here we have considered only projective measure-
ments, there are many measurements that are not projective
(e.g., photodetection processes in photon counting [16]). Such
measurements can be less informative but more reversible than
projective measurements. However, in general measurements
on a d-level system, it would be difficult to find tradeoffs
among information gain, fidelity, and physical reversibility
because they are all functions of d − 1 parameters [17]. To find
the tradeoffs, our present results suggest some special points
such as the endpoints of boundary curves in the tradeoffs, since
projective measurements are the most informative but the least
reversible.
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