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Non-Markovian effects on the nonlocality of a qubit-oscillator system

Jie Li,1 Gerard McKeown,1 Fernando L. Semião,2 and Mauro Paternostro1

1Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University,
Belfast BT7 1NN, United Kingdom

2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, R. Santa Adélia 166, 09210-170 Santo André, São Paulo, Brazil
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Non-Markovian evolutions are responsible for a wide variety of physically interesting effects. Here, we study
nonlocality of the nonclassical state of a system consisting of a qubit and an oscillator exposed to the effects of
non-Markovian evolutions. We find that the different facets of non-Markovianity affect nonlocality in different
and nonobvious ways, ranging from pronounced insensitivity of the Bell function to quite spectacular evidence
of information kickback.
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In 1935, E. Schrödinger formulated a thought experiment
addressing some paradoxical implications of the Copenhagen
interpretation of quantum mechanics when pushed to the realm
of everyday experience [1]. By describing a situation where
the degrees of freedom of a “large” object are correlated in
a quantum-mechanical way to a “small” quantum system, the
paradox by Schrödinger (commonly referred to as the “cat
paradox”) embodies a genuine example of the possibility to
enforce quantum features beyond the microscopic domain.
Notwithstanding its almost octogenarian history, the cat
paradox still defies a full understanding of its implications [2].

The steady-pace experimental progress in quantum control
achieved in the last 20 years has been able to produce instances
very close to the original formulation by Schrödinger and is
expected to help significantly in the grasping of fundamental
concepts such as the quantum-to-classical transition, as well
as the development of quantum technological applications [3].
States having the form

|ψ〉 = (|↑,D〉sO + |↓,−D〉sO)/
√

2, (1)

where {|↑〉s ,|↓〉s} are the energy eigenstates of a spin-1/2
particle (a qubit) and |±D〉O are opposite-phase coherent
states of a harmonic oscillator [4], are faithful instances of the
situations envisaged in Ref. [1] and have been demonstrated
in trapped-ion settings [3,5]. They are accessible (or close
to be such) in other experimental contexts involving the
effective interaction between spinlike systems and mechanical
oscillators [6,7] or the all-optical generation of micro-macro
states [8]. In the first instance, one would consider effec-
tive two-level systems (such as neutral or artificial atoms)
embedded in cavities endowed with movable light mirrors
[embodying the continuous-variable (CV) subsystem]. In the
second one, the spin and CV parts are provided by different
degrees of freedom of two distinct photonic information
carriers. Both settings are able to engineer states having the
form of Eq. (1) and both allow for the reconstruction of the
Wigner function of the CV subsystem. As will be seen in
the next section, such ability is crucial to the assessment of
the Bell test at the core of our investigation. Remarkably,
the multifaceted interests in studying quantum superposition
states analogous to Eq. (1) extend up to the assessment of
environment-induced dynamical effects and their implications
for the settlement, manipulation, and protection of general

quantum correlations. This is even more relevant when non-
trivial environmental influences of a non-Markovian nature,
such as those due to lack of divisibility dynamics and/or
memory-keeping and feedback-inducing system-environment
mechanisms are considered [9]. The working principles of
such processes are still largely unexplored and are expected
to be relevant in condensed-matter setups involving artificial
spins and mechanical modes. The experimental handiness
of such states and the possibility to mimic the effects of
nontrivial, memory-keeping environments in fully controllable
linear-optics test beds [10], make up for the possibility to
acquire knowledge on the true behavior of the quantum
features of state (1), when exposed to physical non-Markovian
dynamics.

Motivated by these arguments, in this paper we address
the influences that non-Markovian dynamics giving rise to
nondivisible maps have on the nonlocal nature of Eq. (1)
by studying two different configurations. First, we analyze
the effects imparted by a springlike coupling between the
CV part of our state and an ensemble of quantum harmonic
oscillators modeling quantum Brownian motion [11]. We then
move to an effective post-Markovian dynamics of the spin
part only, as modeled by the master equation (ME) proposed in
Ref. [12] and analyzed, for a single-qubit problem in Ref. [13].
Evident signatures of non-Markovianity have been found in
the trend of entanglement and discord [14] for an initially
quantum-correlated state of two harmonic oscillators [15].
Here, not only do we analyze a different figure of merit
and form of quantum correlations, but we also address a
radically different class of states. We find that the behavior of
the Bell function associated with a Brownian-motion-affected
superposition state of a qubit and an oscillator shows quite
subtle features. First, Brownian motion affects the nonlocal
nature of such state in quite a significant way when the cut-off
frequency of the Brownian bath is much smaller than the
natural oscillation frequency of the CV subsystem, i.e., in
the regime that would correspond to a strong non-Markovian
limit: large-amplitude revival peaks are found, showing the
kickback mechanism that the memory-keeping environment
can exert over the system. Second, the post-Markovian ME
turns out to be unable to induce a nonmonotonic decay of
the Bell function. Yet, such dynamics is nondivisible, as is
straightforward to check, and as such it deviates from the
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prescriptions commonly accepted for Markovianity. Indeed, it
is revealed as fully non-Markovian by the measure recently
proposed by Rivas et al. [16]. Remarkably, our study provides
indirect evidence that the evolution of nonlocality in a quantum
superposition state of a qubit and an oscillator is qualitatively
similar to what would arise from the measure proposed by
Breuer et al. [17], which is designed to point toward the
backflow of information from the environment to the system.

The remainder of this paper is organized as follows: In Sec. I
we describe the formal tools that will be used in the core part
of our analysis and discuss, very briefly, the case of Markovian
evolutions. This will be used as a milestone for comparisons
with the explicitly non-Markovian cases. In Sec. II, on the
other hand, we present the key part of our study and address
nonlocality in a quantum superposition state of a qubit and an
oscillator under non-Markovian dynamical conditions. Finally,
Sec. III is for our conclusions and outlook. We delegate the
most technical parts of our work to two appendixes.

I. TOOLS AND MARKOVIAN BENCHMARKS

We start our study by describing the formal approach to
nonlocality that will be used throughout this work, which is
similar to the one proposed in Ref. [18] and used by Spagnolo
et al. in Ref. [8]. In our thought experiment, the spin of the
discrete-variable component of the system is probed along
a direction n = (sin θ,0, cos θ ) of the Bloch sphere by the
bidimensional operator

σ̂ (θ ) = sin θ σ̂x + cos θ σ̂z, (2)

with σ̂j (j = x,y,z) the j -Pauli operator. As discussed in
Ref. [19], nonlocality of the state of a CV system can be tested
in the phase space by using the dichotomic parity operator

�̂ = (−1)n̂ =
∞∑

n=0

(|2n〉〈2n| − |2n + 1〉〈2n + 1|) (3)

acted upon by the displacement D̂(β) = exp[βâ† − β∗â] (β ∈
C) [4] so as to form the displaced parity operator �̂(β) =
D̂(β)�̂D̂†(β). Here, n̂ = â†â is the bosonic operator number of
the harmonic oscillator whose annihilation (creation) operator
is â (â†) and |n〉 is a Fock state with n excitations. The
key point of such a phase-space approach is that 〈�̂(β)〉 =
(π/2)W (β), where W (β) is the Wigner function associated
with the state over which the expectation value of �̂(β) is
calculated. Therefore, we can easily construct the correlation
function C(β,θ ) = 〈ψ |σ̂ (θ )⊗�̂(β)|ψ〉 from which we get the
Bell-Clauser-Horne-Shimony-Holt (CHSH) function

B(β,θ ; β ′,θ ′) = C(β ′,θ ′) + C(β ′,θ ) + C(β,θ ′) − C(β,θ ). (4)

Local realistic theories impose the bound |B| � 2, which
is violated by quantum mechanics, although not maximally,
when state |ψ〉 is used and a judicious choice of the set
of parameters {β,θ ; β ′,θ ′} is made [18]. This form of the
Bell-CHSH test has been shown to be effective in revealing
the nonlocal nature of correlations in a state such as |ψ〉 [18]
(see also Spagnolo et al. in Ref. [8]) and we thus believe it is a
very appropriate tool for the understanding of the role that the
interaction with an environment has on the nonlocal properties
of such state.
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FIG. 1. (Color online) We study max |B| under the effects of
amplitude- and phase-damping mechanisms. In (a) [(b)] max |B| is
affected by AD (PD) and studied against the probability PAD (PPD)
for the environmental action to occur. In both panels, the solid curve
(dot-dashed curve) is for the spin-affected (CV-affected) case. The
horizontal line shows the local realistic bound and we have taken
D = 2.

First, we set a benchmark by briefly addressing the
case of a Markovian dynamics as encompassed by general
amplitude-damping (AD) and phase-damping (PD) processes,
both for the spin and the CV subsystem [20]. Regardless
of the dimensionality of the system at hand, both cases
are most effectively tackled by means of the operator-sum
representation of a quantum channel. We call {Âp

k (t)} the
set of Kraus operators specifying the nonunitary process
p = AD,PD, so that the evolved state at time t takes the
general form ρ(t) = ∑

k Â
p

k (t)|ψ〉〈ψ |Âp†
k (t). The explicit

Kraus operators for AD and PD and the form of the correlation
functions corresponding to the case where the spin or CV
components are influenced by the environment are provided
in Appendix A. Here, it is enough to study the behavior of
the numerically optimized Bell function max{θ,β;θ ′,β ′} |B| for
the superposition state, which is shown in Fig. 1, against the
probability Pp of occurrence of the channel (introduced in
Appendix A). Although, expectedly, affecting the CV with an
AD channel results in a quicker decay of the Bell function as
compared to the spin-affected scenario, phase damping seems
to be oblivious to the dimensionality of the subsystem being
influenced by the environment. This is likely to be due to the
fact that, as D gets sufficiently large, 〈−D|D〉 � 0 and the CV
state is effectively encoded in the fictitious quasiqubit {|±D〉}
and the PD channel in the spin and CV-affected scenario give
very similar outcomes. Needless to say, as the AD mechanism
depends critically on the number of excitations in the parties
entering a given state, such “homogenization” does not take
place in Fig. 1(a). In both cases, however, a monotonic decay
of max |B| is observed (for easiness of notation we omit the
variables over which the optimization is performed).

II. NON-MARKOVIAN EFFECTS ON NONLOCALITY

Our aim is now to study non-Markovian dynamics, looking
for evidence of information kickback over the evolution of the
hybrid system at hand. We start by analyzing the CV-affected
case and consider the harmonic oscillator (with frequency ωO)
as coupled to an N -mode bosonic environment according to the
interaction Hamiltonian ĤCV = h̄g

∑N
j=1 cj q̂ ⊗ Q̂j , where cj

is the coupling rate between the j th mode and the CV
subsystem and g is a dimensionless coupling strength and q̂

(Q̂j ) is the positionlike quadrature of the harmonic oscillator
(the j th mode of the environment). This model is known to give

022116-2



NON-MARKOVIAN EFFECTS ON THE NONLOCALITY OF A . . . PHYSICAL REVIEW A 85, 022116 (2012)

rise to quantum Brownian motion [11]. The effective evolution
of the CV subsystem is thus regulated by the time-local ME

∂tρO = −(i/h̄)ωO[â†â,ρO] + Lbm(ρO), (5)

where ρO is the density matrix of subsystem O and

Lbm(·) = −�(t)[q̂,[q̂,·]] + �(t)[q̂,[p̂,·]]
− iγ (t)[q̂,{p̂,·}] + ir(t)

2
[q̂2,·], (6)

which accounts for diffusion [at rates �(t) and �(t)], damping
[at rate γ (t)] and the renormalization of the frequency of the
CV subsystem. We have introduced the bosonic momentum-
like quadrature p̂ of the O subsystem. The derivation of Eq. (6)
does not require the rotating-wave approximation nor does it
invoke the Born-Markov one. Various dynamical phases have
been identified for entanglement and quantum discord of a
two-mode Gaussian state under such dynamics [15]. These
include effects of entanglement sudden death and revival,
depending on the spectral and/or memory properties of the
environment itself.

Here, we focus on the case of weak coupling, Ohmic envi-
ronmental spectral density with a cutoff ωc, high temperatures,
and short time-scale limit. Under these conditions, the contri-
bution of r(t) to the solution of the ME is negligible, and the
elements of the vector of coefficients v(t) = [�(t) �(t) γ (t)]T

entering Lbm are given by the expressions [15]

vj (t) = g2ωOx2

2(1 + x2)
fj (T )

{
aj − e−τ

[
aj cos

(
τ

x

)

+ bj sin

(
τ

x

)]}
, (7)

with τ = ωct , x = ωc/ωO , T the environmental temperature,
f (T ) = (kBT /h̄ωc)(1 1 h̄ωc/kBT )T (kB is the Boltzmann
constant), a = (x 1 1)T , and b = (−1 x x)T . The Brownian
ME can be exactly solved using a phase-space approach [21]
that allows for the determination of the Wigner function
W (β) = F[χt ( ẑ)], where F[·] indicates the complex Fourier
transform, ẑ = (q̂ p̂)T is the vector of quadratures, and χt ( ẑ)
is the Weyl function associated with the initial CV state [4].
Explicitly,

χt ( ẑ) = e− ẑT W̄ (t) ẑχ0(e−�(t)/2R−1(t) ẑ), (8)

with χ0( ẑ) = Tr[ei(p̂q̂−q̂p̂)ρO(0)] the Weyl function of the
CV state at t = 0, �(t) = 2

∫ t

0 γ (s)ds, R(t) = cos(ωOt)1 +
i sin(ωOt)σ̂y , and

W̄ (t) = e−�(t)

2
R(t)

[∫ t

0
e−�(s)RT (s)M(s)R(s)ds

]
RT (t),

(9)

withM(s) = [
2�(s) −�(s)

−�(s) 0
]. Due to the weak coupling and high

temperature assumptions, g should take small values, while
kBT /h̄ωc cannot be too small. For short time scales, we can
set e±�(t) � 1 [15].

With this at hand, we determine the Wigner functions
W

ij
t (β) of the CV components of the density matrix associated

to the spin part ρ
ij
t (i,j = ↑,↓).
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FIG. 2. (Color online) Numerically optimized |B| plotted against
τ for D = 2, kBT /h̄ωc = 25. In panel (a) we have taken x = 10 and
g = 0.3 (solid line), 0.1 (dot-dashed line) and 0.05 (dashed one).
(b) max |B| for x = 0.2 and g = 0.05. The straight line shows the
bound imposed by local realistic theories.

Figure 2 shows max |B| as a function of τ in two different
dynamical regimes. For a large number of environmental mode
frequencies (i.e., for a large cutoff ωc) and a relatively large
coupling strength, the numerically optimized Bell function
shows a monotonically decreasing behavior that makes us
lose evidence of the nonlocal character of the superposition
state very soon in time. Although by lowering g we observe
some very partial revival of max |B| due to a kickback of
coherence into the spin-CV system, this is not sufficient to
give rise to violate the local-realistic bound again. The trend
changes dramatically for ωc 
 ω0 and g 
 1, which bring us
to the phase of “non-Markovian revivals”: max |B| becomes
a periodic function of time and shows slowly fading peaks
at which the hybrid Bell-CHSH inequality studied here is
quite largely violated. Such oscillations, which are typical of
non-Markovian dynamics, are related to the appearance of
temporal regions where �(t) achieves negative values and are
connected to the memory of the environmental system, which
keeps track of the system’s state and feeds this information
back to it.

The connection between non-Markovian revivals of nonlo-
cality and the memory properties of the environmental system
appears to be reinforced by the study of a simple model for
system-environment interaction. We now consider the spin part
s of the superposition state as coupled to a starlike collection of
Ns noninteracting spin-1/2 particles via the energy-preserving
longitudinal Ising model Ĥspin = h̄A

∑Ns

k=1 σ̂z ⊗ σ̂z,k (σ̂z,k is
the z-Pauli operator of the kth environmental spin and A is the
corresponding coupling strength). The evolution induced by
Ĥspin over s is exactly solvable due to its excitation-preserving,
noninteracting nature. We assume the spin star as prepared in
the maximally mixed state 1/2Ns , which leads to the reduced
dynamics of spin s [22],

ρs(t) = ρ↑↑
s (0)|↑〉s〈↑| + ρ↓↓

s (0)|↓〉s〈↓|
+ [cos(2τs)]

Ns (ρ↑↓
s (0)|↑〉s〈↓| + H.c.), (10)

with τs = At , where ρ
ij
s (0) (i,j = ↑,↓) are elements of density

matrix ρs(0). The calculation of the spin-oscillator correlation
function proceeds now along the lines shown above and leads
to the analytic form

C(θ,β) = e−2|β|2{sin θ cos(4Dβi)[cos(2τs)]
Ns

+ e−2D2
cos θ sinh(4Dβr )}, (11)
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FIG. 3. (Color online) (a) Upper part: Time dependence of the
numerically optimized Bell function for a quantum superposition state
between a qubit and an oscillator with D = 2 and whose s subsystem
is affected by Ns = 2,5,100 noninteracting spins according to the
model Ĥspin. Here, τs = At is a dimensionless interaction time.
Lower part: Behavior of the trace distance δ(τ ) = Tr|ρs,+ − ρs,−|/2
(with ρs,± = |±〉s 〈±| and σ̂x |±〉s = ± |±〉s) upon which the measure
of non-Markovianity proposed in Ref. [17] is built. From the top
to bottom curve, we have Ns = 2,5,100. (b) We show max |B|
against τsl for γ0/γ = 0.05,1,10 (solid, dashed, and dot-dashed line,
respectively) and n = 0. The inset shows max |B| against n for
τsl = 1.6 and γ0/γ = 10,14.3 (solid and dashed line, respectively).
The horizontal line shows the local realistic bound. We have D = 2
in all plots.

where βi = Im[β], and βr = Re[β]. The oscillatory function
of time appearing in C(θ,β) immediately reveals the nonmono-
tonic behavior that the corresponding Bell-CHSH function
will exhibit, thus signaling non-Markovianity. Clearly, at τs =
rπ/2 (r ∈ Z), the decoherence factor [cos(2τs)]Ns becomes
ineffective, regardless of the number of environmental spins,
and the correlation function achieves the value corresponding
to a pure qubit-oscillator superposition state. Therefore, the
non-Markovian nonlocality revivals are full and the only effect
of a growing size of the star is the narrowing of the revival
peaks [23]. This results in shorter time windows where the
Bell-CHSH inequality is violated. This analysis is displayed
in the upper part of Fig. 3(a), where we assess the case of three
different values of Ns .

An interesting remark is due, now, in relation to the aims of
our study. This spin model for decoherence is known to provide
a divergent value of the non-Markovian measure proposed by
Breuer et al. in Ref. [17] (which is unbounded). This means
that the dynamics experienced by s can never be described by
a Markovian model. The model, in fact, is such that the trace
distance of equatorially antipodal states of s (upon which the
measure in Ref. [17] is built) is given exactly by |cos(2τs)|Ns .
This is clearly shown in the lower part of Fig. 3(a). Therefore,
not only the non-Markovian revivals of nonlocality persist
in time due to the infinitely non-Markovian nature of the
evolution, but their occurrence is clearly related to the changes
in the trace distance, thus providing a clear connection between
the kickback of information from the star system to s and
the revived nonlocal features of |ψ〉.

However, one should be careful in dealing with the
relationship between non-Markovianity and nonlocality, due to
the multifaceted nature of the former statistical phenomenon: it
would be a mistake to identify an in-principle non-Markovian
dynamics with the occurrence of nonmonotonic trends in
max |B|. We illustrate such a point considering an important
instance of post-Markovian dynamics proposed by Shabani

and Lidar in Ref. [12]. The model includes explicitly a memory
kernel k(t) that renders the ME time nonlocal as

∂tρs(t) = L̂

∫ t

0
k(t ′)eL̂t ′ρs(t − t ′)dt ′, (12)

where L̂[·] is the standard Markovian Liouvillian describing
dissipation at rate γ0 induced by a thermal bath with mean
occupation number n [24,25]. We focus on the widely used
form of the memory kernel k(t) = γ e−γ t , a choice that
guarantees complete positivity of the map for any value of
(γ,γ0,n) and at any instant of time [12,26]. The dynamics
in Eq. (12) can be straightforwardly solved using a rather
technical approach discussed in Refs. [13,27]. For the sake
of providing a self-contained presentation, we summarize
the steps needed for such a derivation in Appendix B. We
eventually get an analytic form of the density matrix of the
evolved superposition state and, thus, the correlation function,
whose expression is, however, too cumbersome to be reported
here. Figure 3(b) shows the results of our quantitative study:
we display the optimized Bell-CHSH function against the
dimensionless interaction time τsl = γ0t and for a long/short
environmental memory time as compared to the dissipation
time γ −1

0 . When γ 
 γ0, the environment has a long-time
memory, thus pushing the dynamics away from Markovianity.
Interestingly, this results in larger temporal windows where
the violation of the Bell inequality is observed. Vice versa, for
a larger γ , such window becomes shorter and the dynamics
gets closer to a Markovian one. The resilience induced by a
memory-keeping evolution turns out to be quite spectacular
when studied against the thermal nature of the environment.
As shown in the inset of Fig. 3(b), while for γ0/γ = 10 it is
enough to have n = 1.6341 to stop violating the Bell-CHSH
inequality, a small raise to γ0/γ � 14.3 is enough to push the
value of n at which max |B| � 2 to n � 200.

It is remarkable, though, that besides such induced ro-
bustness, no otherwise evident signature of non-Markovianity
(such as the ripples highlighted previously and typically
exhibited by other indicators of quantumness [15]) can be
deduced from the analysis of the correlation function C(θ,β)
associated with this case and that of Fig. 3(b). We believe that
the reason for such a behavior, though, should be researched
in the multifaceted nature of non-Markovian dynamics. In
fact, the Shabani-Lidar ME can be recast into the form of
a time-dependent, time-local ME whose coefficients are not
all positive, therefore signaling the breakdown of divisibility
[28] and thus the impossibility to describe the evolution in
Markovian terms, according to the criterion put forward by
Rivas et al. [16], although no kickback of information is
possible (as witnessed by the fact that the measure proposed in
Ref. [17] is strictly null, for such a dynamical map). It is just
intriguing that the Bell-CHSH function is able to experience
the subtleties of such differences in such a striking way.

III. CONCLUSIONS

We have studied the behavior of the Bell-CHSH function
for a spin-oscillator superposition state under the influences of
two models for non-Markovian dynamics, demonstrating the
emergence of interesting features related to the various facets
with which non-Markovianity manifests itself. Care should be
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used in assessing them by means of diverse nonclassicality
indicators, as they may turn up to give mutually inconsistent
evidence. We have shown that the Bell-CHSH function is
particularly sensitive to the subtleties of a dynamics that,
although it does not appear to be characterized by a kickback
of information from the environment, is nevertheless not
divisible and as such, is far from being Markovian. It will
be interesting to address similar questions in models for
open-system dynamics specific of condensed-matter setups,
such as the 1/f noise that is expected to provide strong
non-Markovian dynamical features. This will help us ascertain
if the range of non-Markovian manifestations in nonlocality
tests is even richer than the predictions coming from our work.
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APPENDIX A

Here we provide the explicit form of Kraus operators for
Markovian AD and PD, and also the specific correlation
functions corresponding to the case where the spin or CV
components of our superposition state are affected by the
environment.

1. Amplitude damping

The general Kraus operators for a d-level system exposed
to an AD channel characterized by the damping rate γ are [29]

ÂAD
k (t) =

d−1∑
n=k

√(
n

k

)
η(n−k)/2(1 − η)k/2|n − k〉〈n|, (A1)

with k = 0, . . . ,d − 1, η = e−γ t , and [1 − η]k/2 the probabil-
ity that a Fock state |n〉 loses k excitations within time t .

a. Spin damping

For a spin-1/2 particle we have d = 2 and the operator-sum
decomposition consists of the following two elements:

ÂAD
0 (t) = |0〉〈0| + √

η|1〉〈1|, ÂAD
1 (t) =

√
1 − η|0〉〈1|.

(A2)

We call PAD = √
1 − η the probability that the system loses

one particle up to time t and identify |0〉 (|1〉) with state |↓〉
(|↑〉). In this case, the correlation function for the Bell-CHSH
nonlocality test performed in the body of the paper takes the
form (for simplicity, we assume D,β ∈ R)

CAD
spin(β,θ,η) = e−2(β+D)2 2η − 1 − e8βD

2
cos θ

+√
ηe−2β2

sin θ, (A3)

which is such that |CAD
spin(β,θ,η)| � 1.

b. CV damping

When considering a CV system, the summation in Eq. (A1)
extends to d → ∞. Assume that the system is prepared in a
coherent state |ξ 〉. Such state is changed by the action of the
kth Kraus operator as

ÂAD
k (t)|ξ 〉 = e−[(1−η)|ξ |2/2] (ξ

√
1 − η)k√
k!

|√ηξ 〉, (A4)

showing that a coherent state remains such under the action
of an amplitude-damping channel, although its amplitude is
reduced. The Bell-CHSH correlation function in this case reads

CAD
cv (β,θ,η) = 1

2e−2(β+D
√

η)2
(1 − e8βD

√
η) cos θ

+ e−2[β2+D2(1−η)] sin θ. (A5)

2. Phase damping

The general Kraus operators for a d-level system exposed
to a PD channel characterized by the rate μ are [30]

ÂPD
k (t) ≡ ÂPD

k (τpd ) =
d−1∑
n=0

e−(1/2)n2τ 2
pd

(nτpd )k√
k!

|n〉〈n|, (A6)

where τpd = μt is the rescaled interaction time.

a. Spin damping

For a spin-1/2 particle, the Kraus operators are

ÂPD
0 (τpd ) = |0〉〈0| + e−(1/2)τ 2

pd |1〉〈1|,
(A7)

ÂPD
1 (τpd ) =

√
1 − e−τ 2

pd |1〉〈1|,
where PPD =

√
1 − e−τ 2

pd is the probability that one excitation
from the system is scattered by the environment. The Bell-
CHSH correlation function in this case reads

CPD
spin(β,θ,τpd ) = e−2(β+D)2

2
(1 − e8βD) cos θ

+ e−2β2−(τ 2
pd/2) sin θ. (A8)

b. CV damping

Again, let us assume that the CV system is prepared in a
coherent state |ξ 〉. Such state is changed by the action of the
kth Kraus operator as

ÂPD
k (τpd )|ξ 〉 = τ k

pd√
k!

∞∑
n=0

e−(1/2)(n2τ 2
pd+|ξ |2) n

kξn

√
n!

|n〉. (A9)

In the spin-1/2 basis {|↑〉s ,|↓〉s}, the Schrödinger cat state
that has been affected only by a CV PD channel has the
representation

ρPD
cv = 1

2

[
N++(τpd ) N+−(τpd )

N−+(τpd ) N−−(τpd )

]
, (A10)

with

Nij (τpd ) =
∞∑

k=0

τ 2k
pd

k!

∞∑
n,m=0

e−(1/2)(n2τ 2
pd+m2τ 2

pd+2|D|2)

× (nm)k(iD)n(jD∗)m√
n!m!

|n〉〈m| (i,j = ±). (A11)
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Let us first calculate the expectation value of the projection
operator σ̂ (θ ) defined in the body of the paper over the state
ρPD

cv . We have

�(θ,τpd ) = Tr
[
σ̂ (θ )ρPD

cv

] = 1

2

∞∑
k=0

τ 2k
pd

k!

∞∑
n,m=0

�|n〉〈m|, (A12)

with

� = e−(1/2)(n2τ 2
pd+m2τ 2

pd+2|D|2) (nm)kDn(D∗)m√
n!m!

×{sin θ [(−1)m + (−1)n] + cos θ [(−1)(n+m) − 1]}.
(A13)

The Bell-CHSH correlation function is then found by calcu-
lating the expectation value of the displaced parity operator
�̂(β) as

CPD
cv (β,θ,τpd ) = Tr[�̂(β)�(θ,τpd )]. (A14)

During this calculation, we need to evaluate the expecta-
tion value of the parity operator (−1)n̂ = ∑∞

n=0(|2n〉〈2n| −
|2n+1〉〈2n+1|) over displaced Fock states as

〈m|D̂(β)(−1)n̂D̂†(β)|n〉, (A15)

which can be readily evaluated using [31]

〈s|D̂(β)|r〉 =
√

r!

s!
(β)s−re−(|β|2/2)L(s−r)

r (|β|2) (s � r),

(A16)

where L(l)
p (x) is an associated Laguerre polynomial. We now

take four different cases:
(1) For m � 2n′ + 1 with 2n′ � n. In this case we introduce

the function

S1 =
√

n!

m!
(β)m−ne−|β|2 (−1)2n′−n

[
L

(m−2n′)
2n′ (|β|2)

×L(2n′−n)
n (|β|2) + L

(m−2n′−1)
2n′+1 (|β|2)L(2n′+1−n)

n (|β|2)
]
.

(A17)

(2) For 2n′ � (m,n), we define

S2 =
√

m!n!

2n′!
(−β∗)2n′−m(−β)2n′−ne−|β|2

[
L(2n′−m)

m (|β|2)

×L(2n′−n)
n (|β|2) − |β|2

2n′ + 1
L(2n′+1−m)

m (|β|2)

×L(2n′+1−n)
n (|β|2)

]
.

(A18)

(3) For (m,n) � 2n′ + 1 we call

S3 = 2n′!√
m!n!

(β)m−2n′
(β∗)n−2n′

e−|β|2
[
L

(m−2n′)
2n′ (|β|2)

×L
(n−2n′)
2n′ (|β|2) − 2n′ + 1

|β|2 L
(m−2n′−1)
2n′+1 (|β|2)

×L
(n−2n′−1)
2n′+1 (|β|2)

]
. (A19)

(4) For n � 2n′ + 1 and 2n′ � m, we introduce

S4 =
√

m!

n!
(β∗)n−me−|β|2 (−1)2n′−m

[
L(2n′−m)

m (|β|2)

×L
(n−2n′)
2n′ (|β|2) + L(2n′+1−m)

m (|β|2)L(n−2n′−1)
2n′+1 (|β|2)

]
.

(A20)

With such definitions, the Bell-CHSH correlation function
is finally obtained as

CPD
cv (β,θ,τpd )

= 1

2

∞∑
k=0

τ 2k
pd

k!

∞∑
n′=0

{ ∞∑
m=2n′+1

2n′∑
n=0

�S1 +
2n′∑

m=0

2n′∑
n=0

�S2

+
∞∑

m=2n′+1

∞∑
n=2n′+1

�S3 +
∞∑

n=2n′+1

2n′∑
m=0

�S4

}
. (A21)

APPENDIX B

For the sake of providing a self-contained presentation,
here we sketch a strategy to gather an analytic solution of the
post-Markovian ME assessed in the body of the paper [12]. We
follow the lines sketched in Refs. [13,27] and first introduce
the operator eigenbasis {Q̂k} of the superoperator

L̂(ρs) = γ0(n + 1)
(
σ̂−ρsσ̂+ − 1

2 {σ̂+σ̂−,ρs}
)

+ γ0n
(
σ̂+ρsσ̂− − 1

2 {σ̂−σ̂+,ρs}
)
, (B1)

with σ̂± = (σ̂x ± iσ̂y)/2 and ρs the general density matrix of
the spin system. The elements of such eigenbasis, which is
commonly referred to as the damping basis, are such that

L̂Q̂k = λkQ̂k, (B2)

with {λk} the set of corresponding eigenvalues. It is straight-
forward to find that [27]

Q̂1 = 1

2

[
1̂ − σ̂z

(2n + 1)

]
, Q̂2 = σ̂z, Q̂3 = σ̂+,

Q̂4 = σ̂−, (B3)

with {λ1 = 0,λ2 = 2λ3,4 = −2γ0(n + 1/2)}. In the damping
basis, the density matrix of the system can be written as

ρs(t) =
4∑

k=1

αk(t)Q̂k. (B4)

Substituting Eqs. (B2) and (B4) into the ME (10) in the body
of the paper, the equation changes to∑

l

[α̇l(t) − βl(t)]Q̂l = 0, (B5)

where βk(t) = ∫ t

0 k(t ′)λke
λkt

′
αk(t − t ′)dt ′. From this, we eas-

ily extract the set of integrodifferential equations

α̇l(t) = βl(t) (l = 1, . . . ,4), (B6)
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which can be solved by resorting to Laplace transforms to get

αp(t) = Lap−1

[
1

s − λpk̃(s − λp)

]
αp(0), (B7)

where X̃(s): = Lap[X(t)] is the Laplace transform of X(t) and
Lap−1 stands for the inverse transform. The figures of merit
studied in the main paper are then easily determined from such
solutions.
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