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Multistate transitions and quantum oscillations of optical activity
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We consider the effects of multistate transitions on the tunneling racemization of chiral molecules. This
requires going beyond simple two-state models of enantiomers and to include transitions within a multiple-level
quantum-mechanical system. We derive an effective two-level description which accounts for transitions from the
enantiomers to an arbitrary number of excited states as an application of the Weisskopf-Wigner approximation
scheme. Modifications to the optical activity from these additional states are considered in general terms under
the assumption of CPT invariance and then under T invariance. Some formal dynamical analogies between
enantiomers and the neutral K-meson system are discussed.
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I. INTRODUCTION

The effects of parity violation in the two-level approxima-
tion for the quantum dynamics of a pair of strictly isolated
molecular enantiomers [1] was considered some years ago
by Harris and Stodolsky (HS) [2]. Based on this model, they
pointed out the interesting possibility that tunneling should
exist leading to oscillations in the optical activity (OA). They
argued moreover that such a system should be sensitive to
extremely small energies and could be used to observe the
presence of the weak interaction via oscillations of the optical
activity about a nonzero value. Their basic idea continues
to motivate detailed proposals for measuring the optical
activity [3], a highly nontrivial pursuit. In this vein, it is also
worth mentioning the many varied independent experimental
efforts and proposals aimed at detecting parity violation (PV)
in chiral molecules. These techniques include vibrational-
rotational [4], electronic [5–7], Mössbauer [8], and nuclear
magnetic resonance (NMR) spectroscopy [9]. Proposals for
measuring the PV energy difference in crystallization [10] and
in solubility experiments [11] have also been considered. To
date, however, no effects of parity violation in chiral molecules
have been experimentally observed. The challenge has been
taken up recently by a multidisciplinary consortium to employ
high-resolution laser spectroscopy for a first observation of PV
in chiral molecules [12].

Returning to the HS scheme, they also recognized that
obstacles to the observation and detection of these chiral
oscillations in the OA will come from interactions with the
surrounding medium such as collision effects, thus tending
to induce relaxation phenomena [13]. Radiative processes,
fundamental interactions with the radiation field, are also
important and their inclusion necessarily implies adopting
a complex multilevel treatment [14]. Indeed, the effects of
both collisional and radiative processes can be simulated ap-
proximately by phenomenologically adding complex energies
Ek − i

2�k , to the Hamiltonian spectrum, where �k denotes a
decay width [15]. Apart from effects of collisions between
the enantiomers and a background medium (i.e., gas, liquid,
or solid), the double-well model implies a tower of excited
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electronic-vibrational states for the chiral molecules [16], and
transitions between these states, induced by an external field,
is expected to modify the fundamental oscillation period and
amplitude of the OA of the ground-state enantiomers. These
considerations would seem to invalidate the simplest two-state
HS description. It is clear that the multistate nature of real
molecules should be taken into account in order to obtain a
more accurate description [15].

Motivated by the above-mentioned considerations, we
probe somewhat further in the quantum-mechanical model
of HS. Therefore our objective in this paper is to consider
a multistate approach applied to the racemization problem
and demonstrate that an effective two-level Hamiltonian
description can be derived from perturbation theory, thus
legitimizing this description. We derive the explicit form
of the energy spectrum of the reduced two-level system in
terms of the appropriate interaction Hamiltonian. Our aim
is to keep the discussion as general as possible, thus our
basic assumption is the existence of a Hermitian interaction
Hamiltonian responsible for inducing the transitions from
the chiral molecules to higher (e.g., electronic, vibrational,
and/or rotational) levels. Given this interaction, we then
adapt straightforwardly the Weisskopf-Wigner (WW) ap-
proximation scheme [17], originally used for solving the
linewidth problem in atomic transitions [18], to the case of
chiral molecules treated as a complex multistate quantum-
mechanical system. The effect of transitions is twofold: on the
one hand, they lead to corrections to the enantiomer mass
matrix, thus lifting the enantiomeric mass degeneracy and
hence yielding corrections to the oscillation period; and on
the other, they also in principle allow for effects of decay
channels of the enantiomers. However, in the context of
real molecules, such energy-conserving decay channels are
most likely absent, as these would entail the fragmentation
or dissociation of the enantiomers into smaller molecular
units. This notwithstanding, the WW approach convincingly
establishes a formal analogy between the dynamics of the
racemization of molecular enantiomers and the interference
and decay effects predicted [19] and observed [20,21] in
the neutral kaon system of elementary particle physics. These
are both examples of multiple-level quantum systems with
oscillations, although the underlying physics in each system
(chiral molecules, K mesons) is of course radically different.
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We give a brief overview of the simplest Harris-Stodolsky
two-state approach in Sec. II. Motivated by the multilevel
nature of real molecules pointed out above, we approach this
problem by applying the Weisskopf-Wigner approximation
scheme in Sec. III. This permits one to derive an effective
two-level description which takes into account transitions to
an arbitrary number of multiple excited states. The “end”
result is expressed as a compact 2 × 2 mass matrix which
acts in the space of the two enantiomers. The associated
eigenvalues and eigenvectors depend on whether one assumes
the putative interaction Hamiltonian is CPT or T invariant,
and these invariance principles also effect the final form of
the OA and the oscillation period. Our goal here is to derive
an effective Hamiltonian description for the transitions to
and from multiple levels, not a study per se of the effects
that PV may itself lead to [22–29], although these can be
included in principle as part of the overall perturbation.
Dynamical analogies between enantiomers and the neutral
K-meson system [16,30,31] are discussed in Sec. IV. We
comment on the novelty of the approach developed in the
Discussion, and contrast it briefly to other current theoretical
works. The WW method is summarized in the Appendix.

II. HARRIS-STODOLSKY TWO-STATE MODEL

The Hamiltonian H describing the dynamics of a pair of
strictly isolated chiral molecules |L〉,|R〉 is [2]

H = E01 + δσx + εσz = H0 + εσz, (1)

where δ = 〈L|H0|R〉 is a parameter related to barrier height
and ε is the energy shift due to parity violation. For ε = 0,
the eigenvectors |+〉 = (|L〉 + |R〉)/√2 and |−〉 = (|L〉 −
|R〉)/√2 are states of definite parity: P |+〉 = |+〉 and P |−〉 =
−|−〉. The eigenvalues are given by E± = E0 ± δ, and level
splitting is due to tunneling alone. The system wave function
obeys ih̄

d|�〉
dt

= H |�〉, and in terms of the parity basis, the
general time-dependent solution is given by

|�(t)〉 = ae−i(E0+δ)t/h̄|+〉 + be−i(E0−δ)t/h̄|−〉, (2)

where the values of a,b incorporate the initial condition |�(0)〉.
Thus, if we prepare the system to be initially in the chiral state
|L〉, then a = b = 1/

√
2, and at any later time t � 0 the wave

function is given by

|�(t)〉 = e−iE0t/h̄[cos(δt/h̄)|L〉 − i sin(δt/h̄)|R〉]. (3)

Then PL(t) = |〈L|�(t)〉|2 = cos2( δt
h̄

) and PR(t) =
|〈R|�(t)〉|2 = sin2( δt

h̄
) are the probabilities for the system to

be in chiral state L or to make a transition to the state R at
time t , respectively. Note that PL(t) + PR(t) = 1. The optical
activity is given by [2]

�(t) = �max[PL(t) − PR(t)]

= �max cos
2δt

h̄
. (4)

For parity violation, |ε| > 0, and the eigenvalues are E1,2 =
E0 ± (δ2 + ε2)1/2 and the associated eigenstates are given
by |�1〉 = cos φ|L〉 + sin φ|R〉 and |�2〉 = − sin φ|L〉 +
cos φ|R〉, with mixing angle defined via cot 2φ = ε

δ
[2]. If

the system is initially prepared to be in the chiral state |L〉,
then at any later time its wave function is given by

|�(t)〉 = e−iE0t/h̄[(cos2 φ e−i	t/h̄ + sin2 φ e+i	t/h̄)|L〉
+ cos φ sin φ(e−i	t/h̄ − ei	t/h̄)|R〉], (5)

where 	 ≡ (δ2 + ε2)1/2. The probability to make a transition
to a state |R〉 is therefore given by

PR(t) = |〈R|�(t)〉|2
= 4 sin2 φ cos2 φ sin2(

√
ε2 + δ2t/h̄)

= δ2

ε2 + δ2
sin2(

√
ε2 + δ2t/h̄). (6)

The probability to be in the state |L〉 is

PL(t) = |〈L|�(t)〉|2

= cos2 	t

h̄
+ cos2 2φ sin2 	t

h̄
, (7)

= cos2 	t

h̄
+ ε2

δ2 + ε2
sin2 	t

h̄
.

Once again, we have PL(t) + PR(t) = 1. The corresponding
optical activity (OA) is then calculated to be

�(t) = �max[PL(t) − PR(t)]

= �max
ε2 + δ2 cos(2	t/h̄)

δ2 + ε2
. (8)

This latter formula is the starting point for recent proposals for
measuring the parity-violating energy difference ε between
enantiomers [3].

III. MULTILEVEL PROBLEM: TRANSITIONS
TO MANY STATES

We start with a mass degenerate pair |L〉,|R〉 of chiral
enantiomers: mL = mR ≡ m, considered as ground states of
a Hamiltonian H0. We then include transitions from these
states to other eigenstates or levels of H0 induced by external
fields (radiation, thermal effects, etc.). The problem we thus
consider is the time evolution of a state initially prepared
as a superposition of |L〉 and |R〉. We regard the potential
well barrier, the parity-violating energy difference ε as part
of the overall perturbation H1. So we decompose H1 =
δσx + εσz + H2, where the first two terms act only within the
two-dimensional subspace of the ground-state enantiomers,
and H2 induces transitions from these to the other (electronic-
vibrational) levels. These specific considerations show up only
at the stage where we display the explicit matrix elements of
the effective two-level Hamiltonian. The following analysis
is, however, independent of the explicit form of the overall
perturbation H1.

A. Mass matrix

We have a system described by the Schrödinger wave
function |�(t)〉 whose time evolution is given by (h̄ = 1):

i
d

dt
|�(t)〉 = (H0 + H1)|�(t)〉. (9)

022114-2



MULTISTATE TRANSITIONS AND QUANTUM . . . PHYSICAL REVIEW A 85, 022114 (2012)

We write the full Hamiltonian H = H0 + H1, here |L〉 and
|R〉 are the two degenerate discrete eigenstates of H0, that
is, a pair of mirror-image enantiomers, and the perturbation
H1 induces transitions from these states to other (possibly
unbound) eigenstates |k〉 of H0 and possibly also between |L〉
and |R〉. The problem to solve is the time evolution of a state
initially prepared as a superposition of the two degenerate
chiral states. In terms of the interaction representation, the
state vector

|ψ(t)〉 = eiH0t |�(t)〉 (10)

satisfies the equation

i
d

dt
|ψ(t)〉 = eiH0tH1 e−iH0t |ψ(t)〉 = H ′

1|ψ(t)〉, (11)

so that the time dependence of |ψ(t)〉 arises solely from the
perturbation term H1. We expand the interaction representation
wave function in terms of the complete set of eigenstates:

|ψ(t)〉 = a(t)|L〉 + b(t)|R〉 +
∑

k

ck(t)|k〉, (12)

subject to the initial conditions a(0) = a0,b(0) = b0, and
ck(0) = 0. Then Eq. (11) leads to the following set of coupled
equations for the probability amplitudes:

i
da(t)

dt
= 〈L|H1|L〉a(t) + 〈L|H1|R〉b(t)

+
∑

k

〈L|H ′
1|k〉ck(t), (13)

i
db(t)

dt
= 〈R|H1|L〉a(t) + 〈R|H1|R〉b(t)

+
∑

k

〈R|H ′
1|k〉ck(t), (14)

i
dck(t)

dt
= 〈k|H ′

1|L〉a(t) + 〈k|H ′
1|R〉b(t)

+
∑

j

〈k|H ′
1|j 〉cj (t). (15)

We may omit the prime on H1 for the matrix elements
taken within the |L〉,|R〉 subspace in Eqs. (13) and (14),
since these are assumed to be degenerate in mass. Applying
the Weisskopf-Wigner [17] approximation procedure to this
multilevel system yields the effective two-level quantum-
mechanical description [see Eq. (A14)]

i
d

dt
� = (M − i�)�. (16)

The Hermitian mass and decay matrices M = M† and � =
�† have the explicit matrix elements at order O(H 2

1 )

Mαβ = mδαβ + 〈α|H1|β〉 − P
∑

k

〈α|H1|k〉〈k|H1|β〉
Ek − m

, (17)

and

�αβ = 2π
∑

k

〈α|H1|k〉〈k|H1|β〉δ(Ek − m), (18)

where the indices α,β stand for the states L or R.
The only assumptions that go into obtaining the result in

Eqs. (16)–(18) are that the dynamics is determined by the

time-dependent Schrödinger equation, the higher order terms
O(H 3

1 ) are neglected, and that the Hamiltonian H is Hermitian
(see the Appendix for details). This result allows for the
possibility of energy-conserving decay channels through the
decay matrix �. Assuming that the chiral enantiomers are not
unstable, there will be no decay, that is, no fragmentation nor
dissociation of the enantiomers into other molecular species.
Barring this possibility, there will be no contribution from
Eq. (18) because Ek > m. One might nevertheless be tempted
to think that � could automatically account for effects of
elastic collisions. Indeed, the full operator structure M − i�

of the right-hand side of Eq. (16) implies complex energies
for the spectrum and is reminiscent of the terms that are
added phenomenologically to the molecular Hamiltonian as
a way of simulating approximately the effects of collisions
and radiative effects [14]. However, its inclusion would imply
exponential decay in the probabilities PL(t),PR(t) themselves,
as well of course in the optical activity ∼(PL − PR), so that,
e.g., PL(t),PR(t) → 0 as time increases, whereas collisional
effects yield instead PL(t),PR(t) → 1

2 [32]. Henceforth, we
set � = 0 in the remainder of this paper.

B. Eigenvalues and eigenvectors: CPT and T invariance

The underlying assumed invariance affects the form of the
eigenvalues and eigenvectors of Eq. (16), and it is therefore of
interest to consider independently the implications of first CPT
and then T invariance. The former applies only for the case of
the so-called CP enantiomers, which require the existence of
mirror image molecules composed of antiparticles [16], that is,
the CP partner of |L〉 is |R̄〉, the anti-right-handed molecule;
whereas the CP partner of |R〉 is |L̄〉, the anti-left-handed
molecule.

Thus the solution of the eigenvalue problem

M�± = λ±�±, (19)

assuming CPT invariance, so that M11 = M22 (and �11 = �22)
[20], is given by [19]

|�±〉 =
(

p

±p∗

)
1√

2|p|2
, (20)

where

λ± = M11 ± |M12|, (21)

and p is the complex number

p2 = M12. (22)

From Eq. (20), and in terms of the CP enantiomers, we have

|L〉 = eiα

√
2

(|�+〉 + |�−〉), (23)

|R̄〉 = eiα

√
2

(|�+〉 − |�−〉), (24)

where e−iα = p/|p|.
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If on the other hand we assume only T invariance,
then M∗

12 = M12 [20], and in this case the eigenvalues and
eigenvectors of Eq. (19) are given by [16]

λ± = 1

2
(M11 + M22) ± 1

2

[
(M11 − M22)2 + 4M2

12

]1/2
, (25)

|�+〉 = cos φ|L〉 + sin φ|R〉, (26)

|�−〉 = − sin φ|L〉 + cos φ|R〉, (27)

where cot 2φ = (M11−M22)
2|M12| .

C. Corrections to the optical activity

Now we can determine how the inclusion of multiple states
affects the optical activity with respect to the simplest HS
model. We prepare the state to be initially |L〉 and assume
first only T invariance. Using Eqs. (25)–(27), we find the wave
function at any time is given by

|�(t)〉 = (cos2 φ e−iλ+t + sin2 φ e−iλ−t )|L〉
+ sin φ cos φ(e−iλ+t − e−iλ−t )|R〉. (28)

Following a sequence of steps similar to those in Sec. II, we
can evaluate the probabilities PL,PR and the optical activity in
the presence of multistate transitions. The probabilities to be
in state |L〉 or |R〉 at any time t � 0 are given by

PL(t) = cos2(	t) + (M11 − M22)2

4	2
sin2(	t), (29)

PR(t) = M2
12

	2
sin2(	t). (30)

We find that

�(t) = �max

1
4 (M11 − M22)2 + M2

12 cos(2	t/h̄)

	2
, (31)

where the explicit matrix elements Mαβ are given by Eq. (17)
and 	 = 1

2 [(M11 − M22)2 + 4M2
12]1/2.

When CPT invariance holds, M11 = M22, and then the
optical activity is given by

�(t) = �max cos(2	t/h̄), (32)

where now, 	 = |M12|. If we denote the oscillation periods
τCPT and τT when CPT or T invariance is imposed, then we
have the general result that

τCPT > τT , (33)

so that the oscillation period in the case of the hypothetical
CP enantiomers is longer than that for the P enantiomers, for
a given interaction Hamiltonian H1.

The time-average optical activity for the case of P enan-
tiomers is 〈

θ (t)

θmax

〉
t

=
1
4 (M11 − M22)2

1
4 (M11 − M22)2 + M2

12

. (34)

If CPT invariance is assumed, then the time-average of Eq. (32)
is zero: 〈

θ (t)

θmax

〉
t

= 0. (35)

As mentioned earlier, we write H1 = δσx + εσz + H2, where
the first two terms act only within the two-dimensional sub-
space of the enantiomers |L〉,|R〉, and H2 induces transitions
from these to the other levels |k〉, thus we evaluate

Mαβ = mδαβ + 〈α|δσx + εσz|β〉
− P

∑
k

〈α|H2|k〉〈k|H2|β〉
Ek − m

. (36)

If we shut off the perturbation H2, then from Eq. (17) it is easy
to check that Eq. (31) reduces to the optical activity of the
isolated two-state system, Eq. (8). By the same token, Eq. (32)
reduces to Eq. (4) in this same limit.

Note that since M is Hermitian, PL(t) + PR(t) = 1 contin-
ues to hold, even allowing for transitions to the other states |k〉.
If � were not vanishing, then these probabilities would decay
exponentially in time.

IV. FORMAL ANALOGIES TO THE K-MESON SYSTEM

In the context of symmetry breaking in physics, Wigner
pointed out some time ago a strictly formal analogy be-
tween K mesons and chiral molecules [31]. The neutral K0

meson and its antiparticle K̄0 are related by the combined
operations of charge conjugation and parity (CP): |K̄0〉 =
CP |K0〉 [20]. From this, one defines superpositions [33]
|K1〉 = 1√

2
(|K0〉 + |K̄0〉) and |K2〉 = 1√

2
(|K0〉 − |K̄0〉) that

are eigenstates of CP: CP |K1〉 = |K1〉 and CP |K2〉 = −|K2〉.
The chiral molecules are interrelated by the parity operation:
|L〉 = P |R〉,|R〉 = P |L〉, and the eigenstates of definite parity
are the mixtures |+〉 = 1√

2
(|L〉 + |R〉) and |+〉 = 1√

2
(|L〉 −

|R〉), as P |+〉 = |+〉 and P |−〉 = −|−〉. These algebraic
relationships led Wigner to propose a formal analogy be-
tween neutral kaons and enantiomers, namely, the state-vector
associations (↔)

|L〉 ↔ |K0〉, (37)

|R〉 ↔ |K̄0〉, (38)

|+〉 ↔ |K1〉, (39)

|−〉 ↔ |K2〉. (40)

This analogy can be made more encompassing by extending
these relationships to the dynamic level. The kaons are
eigenstates of the strong Hst and electromagnetic Hγ inter-
actions: (Hst + Hγ )|K0〉 = mK |K0〉 and (Hst + Hγ )|K̄0〉 =
mK |K̄0〉 and are degenerate in mass. The weak interaction
Hweak connects K0 and K̄0 with other continuum states,
which causes the various decay modes and removes their
degeneracy. The Schrödinger equation (9) describes the time
evolution of a neutral kaon system, within the two-level
approach in Eqs. (16)–(18). For this, one makes the specific
identifications

H0 = Hst + Hγ , (41)

H1 = Hweak, (42)

where now the indices α,β stand for the states K0 or K̄0 and
m = mK = mK̄ [19–21,34]. Due to kaon decays, the decay
matrix � is nonzero. The eigenvalue problem for (M − i�)
has been worked out in full detail [19]. The eigenvalues have
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real and imaginary parts, and these can be expressed as m1,2 −
i
2γ1,2 [20]. So if we prepare a state which is initially pure K0,
at any later time the probability to find a K̄0 is [21] (h̄ = 1)

P (K̄0,t) = 1

4
[e−γ1t + e−γ2t − 2e−(γ1+γ2)t cos(m2 − m1)t],

(43)

= cos2 (m2 − m1)t

2
, (γ1,2 → 0), (44)

which describe decaying meson oscillations. In the limit of
zero decay (second line) these would become pure oscillations
and thus formally similar to the chiral oscillations derived
above. These considerations raise Wigner’s static analogy
relating state vectors to a dynamic one, between effective
two-level Schrödinger equations, oscillations in the transition
probability between L and R, Eq. (6), and the strangeness
oscillations of the neutral kaon system.

We must point out, however, that the consideration given to
a two-state model involving CP enantiomers in Secs. III B and
III C is strictly a mathematical illustration only and can never
be realized experimentally. This is because such molecule-
antimolecule transformations would require a huge violation
of baryon number conservation [30]. This problem does not
arise in the K-meson system because mesons have baryon
number zero (mesons are not baryons!)

V. DISCUSSION

A number of criticisms of the simplest two-state HS model
have been marshalled in the past: namely, that it could only
apply at exceedingly low temperatures, that it neglects the
radiation field, and that it does not account for collisions. It
has been suggested that perhaps the most serious problem
arises from the multistate nature of real molecules [14]. It
is the latter objection which motivates the work presented
here, providing us the incentive to consider the multistate
nature in a fairly general way. One aspect (and only one)
of this complex problem is the influence of transitions to a
tower of excited (electronic-vibrational) states of enantiomers
induced by an appropriate external field or perturbation. In
this situation, results from Weisskopf-Wigner perturbation
theory demonstrate that we can continue to employ an effective
two-state description, where the influence of the tower of
multiple states is accounted for by the matrix elements of the
effective Hamiltonian or mass matrix acting in the subspace of
the two enantiomers. The effects that multiple states have on
the racemization and optical activity can then be worked out in
terms of the explicit matrix elements of the specific interaction
responsible for these transitions. The importance of assuming
CPT or T invariance is underscored here. These results hold
generally. The main result is that a two-state approach remains
valid, because the inclusion of the multiple states can be
included in an effective Hamiltonian description. An approach
such as this may prove useful for interpreting proposed
spectroscopic measurements of molecular parity violation,
such as represented in Fig. 1 of Ref. [35], involving transitions
to excited levels.

In comparison to the general results obtained here, much
of the theoretical work has focused on the explicit calcu-
lations of the parity-violating energy difference in chiral

molecules; see [35] for a recent review. These involve ab initio
computations of the PV interactions employing techniques
such as nonrelativistic and relativistic (Dirac)-Hartree-Fock
and multiconfigurational self-consistent (MCSCF) levels, as
well as density functional theory (DFT) [22–29]. There the
primary objective is the (numerical) evaluation of effective
parity-violating Hamiltonians which requires using many-
body quantum-mechanical wave functions, to account for the
multiple nuclei and electrons [35] involved. In these inves-
tigations, the dominant contribution to the parity-violating
energy difference between enantiomers Epv is calculated from
matrix elements connecting the ground-state singlet with
excited triplet states. Thus, it should be possible to employ
an effective two-level description in these more complex
theoretical approaches as well.

Regarding collisional effects, a two-level approach has been
used to describe how racemization depends on the interaction
of the enantiomers with the environment [32]. This might
suggest that both the multistate nature of real molecules and
collisional effects with the surrounding medium might be able
to be combined in an overall effective two-level description.

Finally, we have also further developed the formal dynam-
ical analogies between the system of enantiomers and the
kaon system. The unifying framework is provided by the WW
perturbation theory. We note that a formal comparison between
chiral molecules and neutrinos was recently invoked to derive
properties of the oscillations between isolated enantiomers in
a two-level HS-type approximation [36].
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APPENDIX : REDUCTION FROM MULTILEVEL
TO A TWO-STATE SYSTEM

The main steps of the Weisskopf-Wigner (WW) time-
dependent perturbation theory [17–19] and Appendix A of
Ref. [21] are reviewed and adapted here to a doublet of mass-
degenerate enantiomers. We emphasize that the WW method is
general and provides a way to reduce an a priori multiple-level
quantum system to an effective two-level system, independent
of the actual form of the specific Hermitian Hamiltonians
involved.

To derive Eq. (16) from Eqs. (13)–(15), introduce the two-
component column vectors

φ(t) =
(

a(t)

b(t)

)
, Ck =

( 〈k|H1|L〉
〈k|H1|R〉

)
, (A1)

then the first WW approximation consists in truncating the
solution of the Eqs. (13)–(15) to second order in H1. This
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implies they can be written as follows by using 〈k|H ′
1|L〉 =

eiwkt 〈k|H1|L〉,〈k|H ′
1|R〉 = eiwkt 〈k|H1|R〉:

i
dφ(t)

dt
= hφ(t) +

∑
k

C∗
ke

−iwkt ck(t), (A2)

i
dck(t)

dt
= CT

k φ(t)eiwkt , (A3)

where wk = Ek − m (mL = mR ≡ m), and h is the submatrix
of H1 in the two-state subspace:

h =
( 〈L|H1|L〉 〈L|H1|R〉

〈R|H1|L〉 〈R|H1|R〉

)
. (A4)

Solve Eq. (A3) for ck and substitute these solutions back
into Eq. (A2). The resultant equation for φ(t) can be solved in
closed form via a Laplace transform [21] and yields

φ(t) = 1

2πi

∫ ∞

−∞
dy

e(iy+ε)t

y − iε + W(iy + ε)
φ0, (A5)

where φ0 = φ(0) is the initial condition, and

W(s) = h −
∑

k

Dk

wk − is
, Dk = C∗

kCT
k . (A6)

Up to this point, the solution Eq. (A5) is exact to O(H 2
1 ).

If we regard the perturbation H1 as small, then the second-
order contribution to the matrix W should receive its main
contribution to the integral from the neighborhood of y = 0.
The second WW approximation consists in replacing W by its
value at y = 0, which leads to the integral

φ(t) = 1

2πi

∫ ∞

−∞
dy eiyt

[
y + h − P

∑
k

Dk

wk

− iπ
∑

k

δ(wk)Dk

]−1

φ0, (A7)

and which follows from the identity (P denotes the Cauchy
principal part) [18]

lim
σ→0

1

x ± iσ
= P

1

x
∓ iπδ(x). (A8)

Evaluating the integral Eq. (A7) yields the general solution

φ(t) = e−iW0tφ0, (A9)

where

W0 = h − P
∑

k

Dk

wk

− iπ
∑

k

δ(wk)Dk. (A10)

The time dependence in the interaction representation of
the two-level wave function in the WW approximation is given
by

i
d

dt
φ(t) = W0φ(t). (A11)

Returning now to the Schrödinger representation � = e−iH0tφ,

i
d

dt
� = (H0 + e−iH0tW0 eiH0t )�, (A12)

= (H0 + W0)�, (A13)

= (M − i�)�. (A14)

Here

M = m1 + h − P
∑

k

Dk

wk

, (A15)

and

� = 2π
∑

k

δ(wk)Dk, (A16)

are known as the mass and decay matrices, respectively.
Since the two-level subsystem is degenerate, H0 = m1 and
so [e−iH0t ,W0] = 0.
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[12] B. Darquié, C. Stoeffler, A. Shelkovnikov, C. Daussy,

A. Amy-Klein, C. Chardonnet, S. Zrig, L. Guy, J. Crassous,
P. Soulard, P. Asselin, T. R. Huet, P. Schwerdtfeger, R. Bast, and
T. Saue, Chirality 22, 870 (2010).

[13] R. A. Harris and L. Stodolsky, J. Chem. Phys. 74, 2145 (1981).
[14] M. Quack, Angew. Chem. Int. Ed. 28, 571 (1989).
[15] M. Quack, Adv. Chem. Phys. 50, 395 (1982).
[16] L. D. Barron, Chem. Soc. Rev. 15, 189 (1986).
[17] V. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930); 65,

18 (1930).
[18] W. Heitler, The Quantum Theory of Radiation (Dover,

New York, 1984).
[19] T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. 106, 340

(1957).
[20] T. D. Lee, Particle Physics and Introduction to Field Theory

(Harwood Academic, New York, 1990).
[21] P. K. Kabir, The CP Puzzle (Academic, London, 1968).
[22] A. Bakasov, T. K. Ha, and M. Quack, J. Chem. Phys. 109, 7263

(1998).
[23] P. Lazzeretti and R. Zanasi, Chem. Phys. Lett. 279, 349

(1997).
[24] J. K. Laerdahl and P. Schwerdtfeger, Phys. Rev. A 60, 4439

(1999).

022114-6

http://dx.doi.org/10.1007/BF01397249
http://dx.doi.org/10.1016/0370-2693(78)90030-8
http://dx.doi.org/10.1103/PhysRevA.80.012110
http://dx.doi.org/10.1103/PhysRevA.80.012110
http://dx.doi.org/10.1016/0375-9601(75)90064-X
http://dx.doi.org/10.1016/0009-2614(86)80098-7
http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4195::AID-ANIE4195>3.0.CO;2-W
http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4195::AID-ANIE4195>3.0.CO;2-W
http://dx.doi.org/10.1039/b209457f
http://dx.doi.org/10.1016/0375-9601(86)90072-1
http://dx.doi.org/10.1016/0375-9601(86)90072-1
http://dx.doi.org/10.1007/BF00700442
http://dx.doi.org/10.1023/A:1020535415283
http://dx.doi.org/10.1002/chir.20911
http://dx.doi.org/10.1063/1.441373
http://dx.doi.org/10.1002/anie.198905711
http://dx.doi.org/10.1002/9780470142745.ch6
http://dx.doi.org/10.1039/cs9861500189
http://dx.doi.org/10.1007/BF01336768
http://dx.doi.org/10.1007/BF01397406
http://dx.doi.org/10.1007/BF01397406
http://dx.doi.org/10.1103/PhysRev.106.340
http://dx.doi.org/10.1103/PhysRev.106.340
http://dx.doi.org/10.1063/1.477360
http://dx.doi.org/10.1063/1.477360
http://dx.doi.org/10.1016/S0009-2614(97)01060-9
http://dx.doi.org/10.1016/S0009-2614(97)01060-9
http://dx.doi.org/10.1103/PhysRevA.60.4439
http://dx.doi.org/10.1103/PhysRevA.60.4439


MULTISTATE TRANSITIONS AND QUANTUM . . . PHYSICAL REVIEW A 85, 022114 (2012)

[25] J. Thyssen, J. K. Laerdahl, and P. Schwerdtfeger, Phys. Rev.
Lett. 85, 3105 (2000).

[26] R. Berger, N. Langermann, and C. van Wüllen, Phys. Rev. A 71,
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[36] P. Bargueño, R. Pérez de Tudela, and I. Gonzalo, Int. J. Quantum
Chem. 111, 430 (2011).

022114-7

http://dx.doi.org/10.1103/PhysRevLett.85.3105
http://dx.doi.org/10.1103/PhysRevLett.85.3105
http://dx.doi.org/10.1103/PhysRevA.71.042105
http://dx.doi.org/10.1103/PhysRevA.71.042105
http://dx.doi.org/10.1063/1.1869467
http://dx.doi.org/10.1063/1.1869467
http://dx.doi.org/10.1103/PhysRevA.71.012103
http://dx.doi.org/10.1016/S0009-2614(02)00111-2
http://dx.doi.org/10.1016/S0009-2614(02)00111-2
http://dx.doi.org/10.1016/0009-2614(94)00253-3
http://dx.doi.org/10.1038/scientificamerican1265-28
http://dx.doi.org/10.1016/0022-4073(91)90027-N
http://dx.doi.org/10.1016/0022-4073(94)90048-5
http://dx.doi.org/10.1007/BF02456794
http://dx.doi.org/10.1016/S0022-4073(00)00065-0
http://dx.doi.org/10.1016/S0022-4073(00)00065-0
http://dx.doi.org/10.1103/PhysRev.97.1387
http://dx.doi.org/10.1103/PhysRev.97.1387
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104511
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104511
http://dx.doi.org/10.1002/qua.22583
http://dx.doi.org/10.1002/qua.22583

