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NMR implementation of a quantum delayed-choice experiment
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We report an experimental demonstration of a quantum delayed-choice experiment via nuclear magnetic
resonance techniques. Two spin-1/2 nuclei from each molecule of a liquid ensemble are used as target and ancilla
qubits. The circuit corresponding to the recently proposed quantum delayed-choice setup has been implemented
with different states of an ancilla qubit. As expected theoretically, our experiments clearly demonstrate continuous
morphing of the target qubit between particle-like and wave-like behaviors. The experimental visibility of the
interference patterns shows good agreement with theory.

DOI: 10.1103/PhysRevA.85.022109 PACS number(s): 03.65.Ta, 03.65.Ud, 03.67.−a

I. INTRODUCTION

“Is light made up of waves or particles?” has been an
intriguing question over the past many centuries, and the
answer remains a mystery even today. The first comprehensive
wave theory of light was advanced by Huygens [1]. He
demonstrated how waves might interfere to form a wavefront
propagating in a straight line, and he could also explain
reflection and refraction of light. Soon Newton could explain
these properties of light using corpuscular theory, in which
light was made up of discrete particles [2]. The corpuscular
theory held over a century until the much-celebrated Young’s
double-slit experiment clearly established the wave theory of
light [3]. In Young’s experiment, a monochromatic beam of
light passing through an obstacle with two closely separated
narrow slits produced an interference pattern with troughs
and crests just like one would expect if waves from two
different sources would interfere. Other properties of light
like diffraction and polarization could also be explained easily
using the wave theory. The 20th century developments such as
Planck’s theory of black-body radiation and Einstein’s theory
of the photoelectric effect required quantization of light into
photons [4,5]. But the question remained whether individual
photons are waves or particles. Subsequent developments of
quantum mechanics was based on the notion of wave-particle
duality [6], which was essential to explain the behavior not
only of the light quanta, but also of atomic and subatomic
entities [7].

The wave-particle duality of quantum systems is nicely
illustrated by a Mach-Zehnder interferometer (MZI) (see
Fig. 1) [8,9]. The intensity of the incident light is kept
sufficiently weak so that photons enter the interferometer one
by one. In the open-setup [Fig. 1(a)], it consists of a beam
splitter BS1 providing each incoming photon with two possible
paths, named 0 and 1. A phase shifter in path 1 introduces a
relative phase φ between the two paths. The two detectors D0
and D1 help to identify the path traveled by the incident photon.
Experimental results show that only one of the detectors clicks
at a time [10]. Each click can then be correlated with one of
the two possible paths by attributing the particle nature to the
photons. Here, the phase shifter has no effect on the intensity
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of the photons measured by either detector, and therefore no
interference is observed in this setup.

In the closed setup [Fig. 1(b)], the interferometer consists of
a second beam splitter BS2, which allows the two paths to meet
before the detection. Experimental results again show that only
one detector clicks at a time. But much to the astonishment
of common intuition, the results after many clicks do show
an interference pattern (i.e., the intensities recorded by each
detector oscillates with φ [10]). Since only one photon is
present inside the interferometer at a time, each photon must
have taken both paths in the interferometer and therefore this
setup clearly establishes the wave property of photons.

The naive question by the classical mind-set is “whether
the photon entering the interferometer decides to take one of
the paths or both paths depending on the experimental setup?”
Scientists who believed in a deterministic nature had proposed
that, unknown to the current experimentalists, there exists
some extra information about the state of the quantum system,
which in principle dictates whether the photon should take
either path or both paths [11]. In other words, they assumed
some hidden information availed by the photon coming out of
BS1 about the existence or nonexistence of BS2.

In order to break this causal link between the two beam
splitters, Wheeler proposed a modification in the MZI setup
[Fig. 1(c)] in which the decision whether or not to introduce
BS2 is to be made after the photon has already passed through
BS1 [12–14]. This way, there is no causal connection between
the selection of the paths by the photon and the presence of
BS2. Although initially considered as a “thought experiment,”
this proposal has recently been demonstrated by Jacques
et al. [15]. In their experimental setup, the second beam
splitter (RBS) was controlled by a random number generator
(RNG) that chose to switch the beam splitter ON or OFF after
the photon had already passed through BS1. The results of
this delayed-choice experiment was in agreement with Bohr’s
complementarity principle [7]. That is, the behavior of the
photon in the interferometer depends on the choice of the
observable that is measured, even when that choice is made at
a position and a time such that it is separated from the entrance
of the photon into the interferometer by a space-like interval.
Breaking the causal link had no effect on the results of the
wave-particle duality, thus ruling out the existence of hidden
information [15].

More recently, Ionicioiu and Terno have proposed a
modified version [Fig. 1(d)] of Wheeler’s experiment, which
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FIG. 1. (Color online) Different types of Mach-Zehnder interfer-
ometer setups [(a)–(d)] and equivalent quantum circuits [(e)–(h)].
BS1 and BS2 are beam splitters, φ is a phase shifter, and D0 and
D1 are detectors. RBS is a beam splitter switched ON or OFF by a
random number generator (RNG) and QBS is a beam splitter which
is controlled by a quantum system in superposition. In the quantum
circuits, H is the Hadamard gate and Yα = e−iασy is used to prepare
the state of the ancilla qubit.

not only demonstrates the intrinsic duality, but also shows
that a photon can have a morphing behavior between particle
and wave [16]. In their setup, BS2 is replaced with a beam
splitter which is switched OFF or ON depending on the
|0〉 or |1〉 state of a two-level quantum system. Using this
modification, Ionicioiu and Terno have been able to discard
hidden-variable theories which attempt to assign an intrinsic
wave or particle nature to individual photons even before the
final measurement. This proposed experiment is named the
“quantum delayed-choice experiment” [16].

In this article we report an experimental demonstration of a
quantum delayed-choice experiment. Using nuclear magnetic
resonance (NMR) techniques we study the behavior of a target
spin-1/2 nucleus going through a similar situation as that of
a photon going through an interferometer. Another spin-1/2
nucleus acts as an ancilla controlling the second beam splitter.
In Sec. II we briefly explain the theory and in Sec. III we
describe the experimental results.

II. THEORY

In the following we shall use the terminology of quantum
information. The two possible paths of the interferometer are
assigned the orthogonal states |0〉 and |1〉 of a quantum bit. The

equivalent quantum circuits for the different setups of MZI are
shown in Fig. [1(e)–1(h)]. Similar circuits have previously
been used in “duality computers” [17–19]. In these circuits the
Hadamard operator H has the function of the beam splitter
BS1. It transforms the initial state |0〉 to the superposition
(|0〉 + |1〉)/√2 such that both the |0〉 and |1〉 states are now
equally probable. The detection operators for the two detectors
are D0 = |0〉〈0| and D1 = |1〉〈1|.

In the open setup [Fig. 1(e)], the state after the phase shift
becomes |ψp〉 = (|0〉 + eiφ|1〉)/√2. The intensities recorded
by the two detectors are given by the expectation values

Sp,0 = 〈ψp|D0|ψp〉 = 1
2 ,

(1)
Sp,1 = 〈ψp|D1|ψp〉 = 1

2 ,

independent of the phase introduced. Therefore, no interfer-
ence can be observed and, accordingly, this setup demonstrates
the particle nature of the quantum system. The visibility of the
interference

ν = max(S) − min(S)

max(S) + min(S)
(2)

is zero in this case.
The equivalent quantum circuit for the closed interferom-

eter is shown in Fig. 1(f). After the second Hadamard one
obtains the state |ψw〉 = cos φ

2 |0〉 − i sin φ

2 |1〉, up to a global
phase. The intensities recorded by the two detectors are now

Sw,0 = 〈ψw|D0|ψw〉 = cos2 φ

2
,

(3)
Sw,1 = 〈ψw|D1|ψw〉 = sin2 φ

2
.

Thus, as a function of φ, each detector obtains an interference
pattern with visibility ν = 1. This setup clearly demonstrates
the wave nature of the target qubit.

In the circuit corresponding to Wheeler’s experiment
[Fig. 1(g)], the decision of whether or not to insert the second
Hadamard gate is to be made after the first Hadamard gate has
been applied.

In this article, we focus on the next modification; that is,
the quantum delayed-choice experiment [16]. In the equivalent
quantum circuit [Fig. 1(h)], the second Hadamard gate is to
be decided in a quantum way. This involves an ancilla spin
prepared in a superposition state cos α|0〉 + sin α|1〉. This state
can be prepared by rotating the initial |0〉 state of the ancilla
by an angle 2α about the y axis (using the operator Yα =
e−iασy ). The second Hadamard gate is set to be controlled by
the ancilla qubit. If the ancilla is in state |0〉, no Hadamard gate
is applied; else, if the ancilla is in state |1〉, a Hadamard gate is
applied. The combined state of the two-qubit system after the
control-Hadamard gate is

|ψwp,α〉 = cos α|ψp〉|0〉 + sin α|ψw〉|1〉, (4)

wherein the second ket denotes the state of the ancilla. After
tracing out the ancilla, the reduced density operator for the
system becomes

ρwp = cos2 α|ψp〉〈ψp| + sin2 α|ψw〉〈ψw|. (5)
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Again, the intensity recorded by each detector can be obtained
by calculating the expectation values. For example, the
intensity at the detector D0 is

Swp,0(α,φ) = tr[D0ρwp]

= tr[D0|ψp〉〈ψp|] cos2 α + tr[D0|ψw〉〈ψw|] sin2 α

= Sp,0 cos2 α + Sw,0 sin2 α

= 1

2
cos2 α + cos2 φ

2
sin2 α. (6)

It can be immediately seen that the visibility ν for the above
interference varies as sin2 α. When α = 0, the quantum system
has a particle nature and, when α = π/2, it has a wave
nature. In the intermediate values of α, the quantum system is
morphed in between the particle and the wave nature. In the
following section we describe the experimental demonstration
of morphing of a quantum system between wave and particle
behaviors.

III. EXPERIMENT

The sample consisted of 13CHCl3 [Fig. 2(a)] dissolved in
CDCl3. Here 1H and 13C spins are used as the target and ancilla
qubits, respectively. The two spins are coupled by indirect
spin-spin interactions with a coupling constant of J = 209 Hz.
All experiments were carried out at an ambient temperature of
300 K in a 500 MHz Bruker NMR spectrometer.

A. Open and closed interferometers

The pulse sequences corresponding to open and closed
setups of MZI are shown in Figs. 2(b) and 2(c). In these
cases, the circuits [Figs. 1(e) and 1(f)] need only a single
target qubit and no ancilla qubit. Here, the 1H spin is used as
the target qubit, and its interaction with 13C spin is refocused
during the MZI experiments. Ideally, both of these setups need
initializing the target qubit to |0〉 state. In thermal equilibrium
at temperature T and magnetic field B0, an ensemble of
isolated spin-1/2 nuclei exists in a Boltzmann mixture

ρeq = 1
2eε/2|0〉〈0| + 1

2e−ε/2|1〉〈1|, (7)

where ε = γh̄B0/(kT ) is a dimensionless constant which
depends on the magnetogyric ratio γ of the spin. At ordinary
NMR conditions, ε ∼ 10−5 and therefore ρeq is a highly
mixed state. Since preparing a pure |0〉 state requires extreme
conditions, one can alleviate this problem by rewriting the
equilibrium state as the pseudopure state [20]

ρeq = |0〉〈0|pps ≈ 1

2

(
1 − ε

2

)
1 + ε

2
|0〉〈0|. (8)

The identity part neither evolves under the Hamiltonians nor
gives rise to NMR signals and is therefore ignored. Thus, the
single-qubit equilibrium state effectively mimics the state |0〉.

In all the cases [Fig. 2(b)–2(d)], the first Hadamard gate
on the target qubit is followed by the phase shift. A 100 Hz
resonance offset of the 1H spin was used to introduce the
desired phase shift φ(τ ) = 200πτ , with the net free-precession
delay τ . Experiments were carried out at 21 linearly spaced
values of φ in the range [0,2π ]. The 13C spin was set on

FIG. 2. (Color online) Molecular structure of chloroform (a) and
pulse sequences (b)–(d) for different setups of MZI. Figures (b)
and (c) correspond to the open and closed setups, respectively,
and (d) corresponds to the quantum delayed-choice experiment.
The unfilled rectangles are π pulses. Shaped pulses are strongly
modulated pulses corresponding to the Hadamard gate (H ), the Yα

gate, and the control-Hadamard (cH) gate. π/2 detection pulses are
shown in dotted rectangles. J is the coupling constant and τ is the
phase-shifting delay. G1 and G2 are two pulsed-field gradients for
destroying coherences. In (d) two separate experiments for 1H and
13C are recorded after applying respective π/2 detection pulses. ρeq,
ρp = |ψp〉〈ψp|, ρw = |ψw〉〈ψw|, and ρwp = |ψwp〉〈ψwp| represent the
states at different time instants.

resonance and the J evolution during τ was refocused with a
π pulse on 13C.

Unlike the open interferometer [Fig. 2(b)], the closed
interferometer [Fig. 2(c)] has a second Hadamard gate. In
both of these cases, the intensity recorded by the D1 detector
corresponds to the expectation value of the D0 = |0〉〈0|
operator, which is a diagonal element of the density operator.
To measure this element, we destroy all the off-diagonal
elements (coherences) using a pulsed-field gradient (PFG)
G1, followed by a (π/2)y detection pulse. The most general
diagonal density operator for a single qubit is ρ = 1

21 + cσz,
where c is the unknown constant to be determined. After
applying the (π/2)y detection pulse, we obtain 1

21 + cσx .
The corresponding NMR signal is proportional to c. The
experimental NMR spectra for the open and closed setups
are shown in Fig. 3. These spectra are normalized with respect
to equilibrium detection. Since both pathways created by BS1
are equally probable in the open MZI, c = 0 and therefore the
spectrum vanishes. On the other hand, because of the second
beam splitter (BS2) in the closed MZI, c becomes φ dependent,
and hence the interference pattern appears.
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particle

wave

FIG. 3. (Color online) Experimental spectra obtained after open
(top trace) and closed (bottom trace) setups of MZI. Each spectrum
(pair of lines) corresponds to one of the 21 linearly spaced values of
φ in the range [0,2π ].

The corresponding intensities Sp(w),0 = c + 1/2 are shown
in Fig. 4. The theoretical values from expressions (1) and (3)
are also shown as solid lines. The experimental visibility of
interference in the particle case is 0.02 and that in the wave
case is 0.97. As explained in the previous section, the open
setup demonstrates the particle nature and the closed setup
demonstrates the wave nature.

B. Quantum delayed-choice experiment

The circuit for the quantum delayed-choice experiment
is shown in Fig. 1(h) and the corresponding NMR pulse
sequence is shown in Fig. 2(d). This circuit requires one
target qubit (1H) and one ancilla qubit (13C). The equilibrium
state of the two-qubit system does not correspond to a
pseudopure state and therefore it is necessary to redistribute
the populations to achieve the desired pseudopure state. We
used a spatial averaging technique to prepare the pseudopure
state [20]:

ρpps = 1 − ε′

4
1 + ε′|00〉〈00|, (9)

where ε′ is the residual purity.
All the gates on the target and the ancilla were realized using

strongly modulated pulses (SMPs) [21,22]. The SMPs were
constructed to be robust against rf amplitude inhomogeneities,
which normally have a distribution of about 10% about
the mean. Robust pulses were achieved by calculating the
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FIG. 4. (Color online) Experimental intensities Sp,0 (particle) and
Sw,0 (wave) at various values of φ.

Hilbert-Schmidt fidelity between the desired operator and
the experimental operator for different possible rf amplitude
distributions, and then maximizing the average fidelity [23].
An average fidelity of over 0.995 was achieved for each gate.
After the control-Hadamard gate, the state of the two-qubit
system is expressed by the density operator ρwp [Eq. (5)] up
to the unit background.

The interference Swp,0 [in Eq. (6)] due to the detection
operator D0 = |00〉〈00| can be obtained by measuring the first
diagonal element of the density matrix, and hence the complete
density matrix tomography is not necessary [24]. As in the
single-qubit case, we apply a PFG G2 which averages out
all the coherences and retains only the diagonal part of the
density matrix. The most general diagonal density matrix of a
two-qubit system is of the form

ρ = 1
41 ⊗ 1 + c1σz ⊗ 1 + c21 ⊗ σz + c3σz ⊗ σz, (10)

with the unknown constants c1, c2, and c3.
Recording the target spectrum after a (π/2)y pulse on the

above state gives two signals proportional to c1 + c3 and
c1 − c3. The spectra of the target qubit at various values of
φ and α are shown in Fig. 5. The signals obtained after
applying a (π/2)y pulse on either qubit after preparing the
|00〉 pseudopure state are used to normalize these intensities.
In each spectrum, the left transition (corresponding to the |0〉
state of the ancilla), vanishes because of the particle nature
(similar to the top trace of Fig. 3) and the right transition
(corresponding to the |1〉 state of the ancilla) displays the
interference pattern because of the wave nature (similar to the
bottom trace of Fig. 3).

Similarly, recording the ancilla spectrum after a (π/2)y
pulse gives two signals proportional to c2 + c3 and c2 − c3.
From these four transitions one can precisely determine
all three unknowns c1, c2, and c3, and obtain the popu-
lation Swp,0 = 1/4 + c1 + c2 + c3. Calculated experimental
intensities Swp,0 are shown in Fig. 6(a). The intensities were
measured for five values of α in the range [0,π/2] and for 21

π/8

α = 0

π/2

3π/8

π/4

FIG. 5. (Color online) Experimental spectra obtained after the
quantum delayed-choice experiment with (π/2)y detection pulse on
target (1H) qubit. These spectra are recorded with 21 equally spaced
values of φ ∈ [0,2π ] and at different α values (as indicated).
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FIG. 6. (Color online) Intensities Swp,0(α,φ) versus phase φ for
different values of α (a) and the visibility ν versus α (b). The
theoretical values are shown by solid lines and the experimental
results are shown by symbols.

values of φ in the range [0,2π ]. The theoretical values from
expression (6) are also shown in solid lines. The experimental
values were found to have small random errors with a standard
deviation less than 0.01. The significant systematic errors
are due to experimental limitations such as radiofrequency
inhomogeneity and spectrometer nonlinearities.

The visibility ν calculated at different values of α are
plotted in Fig. 6(b). The theoretical visibility varies as sin2 α

as explained in Sec. II. There appears a general agreement
between the quantum mechanical predication (solid line) and
the experiments (symbols).

IV. CONCLUSIONS

We have studied the open and closed setups of a Mach-
Zehnder interferometer using nuclear-spin qubits and demon-
strated the particle-like and wave-like behaviors of the target
qubit. Previously, NMR interferometers have been used to
study dipolar oscillations in solid state NMR [25] and to
measure geometric phases in multilevel systems [26–28]. We
have reported an experimental demonstration of the quantum
delayed-choice experiment using NMR interferometry.

Bohr’s complementarity principle is based on mutually
exclusive experimental arrangements. However, the quantum
delayed-choice experiment proposed by Ionicioiu and Terno
[16] suggests that we can study the complementary properties
like particle and wave behavior of a quantum system in a single
experimental setup if the ancilla is prepared in a quantum
superposition. This experiment is the quantum version of the
Wheeler’s delayed-choice experiment. The quantum delayed-
choice experiment suggests a reinterpretation of comple-
mentarity principle: instead of complementary experimental
setups, the new proposal suggests complementarity in the
experimental data.

NMR systems provide perfect platforms for studying such
phenomena. In our experiments, we found a general agreement
between the intensities and the visibilities of the interference
with the theoretically expected values. These experiments not
only confirm the intrinsic wave-particle duality of quantum
systems but also demonstrate continuous morphing of quantum
systems between wave and particle behavior of the target qubit
depending on the quantum state of the ancilla qubit.
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