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Fidelity of fermionic-atom number states subjected to tunneling decay
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Atom number states are a valuable resource for ultracold chemistry, atom interferometry, and quantum
information processing. Recent experiments have achieved their deterministic preparation in trapped few-fermion
systems. We analyze the tunneling decay of these states, in terms of both the survival probability and the
nonescape probability, which can be extracted from measurements of the full counting statistics. At short times,
both probabilities exhibit deviations from the exponential law. The decay is governed by the multiparticle Zeno
time, which exhibits a signature of quantum statistics and contact interactions. The subsequent exponential regime
governs most of the dynamics, and we provide accurate analytical expressions for the associated decay rates.
Both dynamical regimes are illustrated in a realistic model. Finally, a global picture of multiparticle quantum
decay is presented.
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I. INTRODUCTION

Successful production and preservation of atomic states
containing an exactly known number of particles (so-called
atomic Fock or atom number states) are of importance
for ultracold chemistry, atom interferometry, quantum in-
formation processing, and investigating the foundations of
quantum physics. Among the methods proposed for creating
atom number states are atom culling in time-dependent traps
[1–6] and the use of similar techniques in optical lattices
[7,8]. Spectacular experimental progress in the deterministic
preparation of few-atom states has been reported in [9,10].
But when the confining potential has finite potential barriers,
which allow tunneling leakage, an initial trapped state with a
well-defined atom number eventually evolves into a mixture
of several atom number states, as shown in Fig. 1. This process
can be quantitatively characterized by the fidelity decay. The
fidelity is often defined as the probability to persist in the
initial atom number state or, somewhat less stringently, by
the nonescape probability, i.e., the probability that the total
number of atoms within the trap remains the same. Unlike
the integrated density profile of an atomic cloud [11,12],
both probabilities refer to all particles occupying a certain
subspace of a Hilbert space simultaneously and are, in this
sense, multiparticle observables.

The purpose of this paper is to investigate the fidelity decay
of an atomic Fock state due to tunneling leakage. Hence, it is
both of fundamental interest to understand the quantum decay
of multiparticle systems and of practical relevance to determine
the decay rates of trapped Fock states [1–6,9,10]. We focus
on ultracold atomic vapors confined in tight, effectively one-
dimensional, waveguides and, more specifically, on polarized
fermions and related fermionized systems, such as a bosonic
cloud in the Tonks-Girardeau (TG) regime [13]. Since the
rate of atom losses due to three-body collisions is suppressed
due to spatial antibunching [14,15], these systems are well
suited for investigating the quantum dynamics of multiparticle
tunneling decay. Although the tunneling decay is expected
to roughly follow an exponential law, deviations are expected

both at short and long times on theoretical grounds. Long-time
deviations from exponential decay in the tunneling dynamics
of multiparticle systems have been studied in [16], and we shall
focus on the short-time and exponential regime. Additional
relevant works include studies of the fidelity decay in a
multiparticle Loschmidt echo [17,18] and different scenarios
of two-particle quantum decay [19–23]. The rest of the paper
is organized as follows: in Sec. II we define the nonescape and
survival probabilities for a general quantum system. In Sec. III
we analyze their short-time evolution and the Zeno effect
[24–26]. In Sec. IV we discuss the decay of one-dimensional
trapped fermions and related systems and investigate the effect
of quantum statistics in terms of the multiparticle Zeno time.
Section V is devoted to the regime governed by an exponential
decay law, an accurate semiclassical approximation for the
corresponding decay rates is provided. Section VI illustrates
the different dynamical regimes in a trap model of relevance to
recent experiments [9,10]. A general picture of multiparticle
quantum decay is outlined in Sec. VII, and the paper ends with
a set of conclusions in Sec. VIII.

II. NONESCAPE AND SURVIVAL PROBABILITIES

We start by considering the time evolution of the probability
that a multiparticle quantum system, initially prepared in
a (possibly mixed) state �0, will be found inside a certain
subspace D ⊂ H of the Hilbert space H. The ability to
experimentally measure the full counting statistics (FCS) [9]
motivates the introduction of the multiparticle nonescape
probability [16]. Consider the full atom number distribution
p(n,t) = 〈δ(n̂D − n)〉t , where n̂D is the atom number operator
in the subspace of interest D, n = 1, . . . ,N is an integer, and
the expectation value is taken with respect to a time-evolving
state. p(n,t) represents the probability of finding exactly n

particles at time t in the subspace D. Its typical behavior is
exhibited in Fig. 1 for an N -particle metastable Fock state.
The probability to preserve the N -particle Fock state at time t

is given by p(n = N,t), and we shall denote it by PD(t) in the
following.
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FIG. 1. (Color online) Fidelity decay of an atom number state of
polarized fermions induced by tunneling losses. The probability to
find n atoms inside the trap p(n,t) is initially peaked at n = 8. As the
time of evolution goes by, p(n,t) broadens and shifts to lower values
of the mean atom number. The trapping potential model is further
discussed in Sec. VI.

Letting �̂ be the projector on D, we write this probability
as

PD(t) = tr[�0�̂(t)], �̂(t) = exp(iĤ t)�̂ exp(−iĤ t). (1)

Let |n〉 be a basis on H, so that an initial state �0 =∑
n pn|n〉〈n|. Let �̂ = ∑

n |n〉〈n| be the projector associated
with the space spanned by the initial state �0, such that
�̂�0�̂ = �0. The behavior of PD(t) largely depends on
whether �0 is contained withinD. If it is, �̂ can be decomposed
as the sum of projectors

�̂ = �̂ + Q̂, Q̂�0Q̂ = 0. (2)

In this case we will refer to PD(t), satisfying PD(0) = 1, as
the nonescape probability P (t), which must be a nonincreasing
function, at least for short times. In the special case of Q̂ = 0,
PD(t) becomes the survival probability, i.e., that for the system
to remain in its initial state. This we will denote by S(t),
bearing in mind that S(0) = 1. Note that P (t) � S(t) since the
condition for the system to stay within D is less strict than that
for staying in one specific state �0. An obvious example is a
wave packet contained within a spatial region �, for which
the nonescape condition means not leaving �, as opposed to
remaining in the initial state (survival). Finally, if �0 is not
contained in D, we have

�0 = �̂�0�̂ + δ�0, (3)

where δ�0 is the component of the initial state orthogonal toD.
In this case PD(t) may increase even at short times, a simple
example being a wave packet arriving in an initially empty
region of space. Next we consider the short-time evolution of
the two probabilities.

III. THE SHORT-TIME LIMIT

The short-time expansion of the probability to remain in
the subspace D takes the form

PD(t) = tr(�0�̂) − itr(�0[�̂,Ĥ ])t

− tr

[
�0

(
1

2
{�̂,Ĥ 2} − Ĥ �̂Ĥ

)]
t2 + O(t3), (4)

where {Â,B̂} denotes the anticommutator of Â and B̂. As is
well known (see, e.g., [24,25]), vanishing of the term linear in t

leads to the Zeno effect: frequent checks of whether the system
is still contained in D (e.g., projection measurements of �̂)
would prevent it from leaving the subspace. In particular, with
the interval between checks being τ , PD(t) would typically
exhibit an effective exponential decay,

PD(t) ∼ exp(−γ t), γ ≡ τ/τ 2
Z, (5)

where the Zeno time τZ is determined by the coefficient
multiplying t2 in Eq. (4),

τZ = {tr[�0({�̂,Ĥ 2}/2 − Ĥ �̂Ĥ )]}−1/2. (6)

Nonetheless, we shall be concerned with quantum decay in
the absence of measurements. It is readily seen that the linear-
in-time term in Eq. (4) vanishes provided the initial state is
contained in D, i.e., the orthogonal component δ�0 = 0, or
can be neglected, ||δ�0|| � 1. The decay of PD(t) becomes
then quadratic in time and governed by τZ according to

PD(t) = 1 − (t/τZ)2 + O(t3). (7)

Under this condition, from Eq. (6) for the Zeno time, we have

τZ = [�Ĥ�0 − tr(�0Ĥ Q̂Ĥ )]−1/2, (8)

and not merely given by the inverse of the energy variance of
the initial state, �Ĥ�0 = tr[�0Ĥ 2] − tr[�0Ĥ ]2. The last term
in the square brackets vanishes in the case of the survival
probability, Q̂ = 0. Thus, a survival Zeno time never exceeds
that in the nonescape case, reflecting the fact that it is easier to
maintain a system within a larger subset of its Hilbert space.
[Note that τZ in Eq. (8) becomes infinite, as it should, if D
is chosen to coincide with H]. Next we proceed to the case
of several particles confined in a potential trap with tunneling
leakage.

IV. MULTIPARTICLE ZENO TIMES OF FERMIONIZED
SYSTEMS

Consider N noninteracting particles initially trapped in a
potential well VI (x), which, at t = 0, is instantly converted
into a trapping potential with a finite barrier V (x), as shown in
Fig. 2, thus allowing the particles to escape into the continuum.
The Hamiltonian of the system reads

Ĥ (x1, . . . ,xN ) =
N∑

i=1

ĥ(xi),

(9)
ĥ(xi) = −∂2

xi
/2 + V (xi), i = 1,2, . . . ,N.

Spin-polarized fermions fall within this description, and
certain strongly interacting systems can be described in
a similar way. This is the case of bosonic atoms in the

022107-2



FIDELITY OF FERMIONIC-ATOM NUMBER STATES . . . PHYSICAL REVIEW A 85, 022107 (2012)

FIG. 2. The “bathtub” trapping potential V (x) (solid line). Also
shown is the initial well VI (x) (dashed line).

Tonks-Girardeau regime, where strong zero-range hard-core
interaction leads to fermionization [13]. In this case there is
a one-to-one correspondence (the Bose-Fermi mapping [13])
between the symmetric state of strongly interacting bosons

T G(x1, . . . ,xN ) and the antisymmetric state of the dual
system of noninteracting fermions 
F (x1, . . . ,xN ),


T G(x1, . . . ,xN ) = A
F (x1, . . . ,xN ), (10)

where the antisymmetric unit function A = ∏
1�j<k�N

sgn(xk − xj ). It follows that for the Tonks-Girardeau gas both
the nonescape and the survival probabilities coincide with
those calculated for the corresponding system of noninter-
acting fermions [16],

P T G(t) = P F (t), ST G(t) = SF (t). (11)

Both of these systems were found to be optimal for the
preparation of atomic Fock states using atom-culling tech-
niques [1–6,9,10]. In the following discussion we will simply
refer to a “fermionic” system, bearing in mind that the results
apply both to the Tonks-Girardeau gas with infinitely strong
contact interactions and to a system of noninteracting polarized
fermions.

The ground state of a fermionic system is given by the Slater
determinant, and we choose


F
0 (x1, . . . ,xN ) = 1√

N !
detNn,k=1[φn(xk)], (12)

where |φn〉, n = 1, . . . ,N , are the N lowest eigenstates of the
one-particle Hamiltonian, ĥ|φn〉 = εn|φn〉. In order to study the
effect of quantum statistics on the Zeno time it is instructive
to consider also the ground state for distinguishable particles,


dist
0 (x1, . . . ,xN ) =

N∏
n=1

φn(xn), (13)

and the somewhat artificial case of a bosonic excited state
where the same first N levels are occupied by noninteracting
particles obeying Bose-Einstein statistics,


B
0 (x1, . . . ,xN ) = 1√

N !
perNn,k=1[φn(xk)], (14)

where per stands for the permanent, i.e., the sum on the right-
hand side of all permutations of indices k for a fixed order
of indices n. Note that these three states, Eqs. (12), (13), and
(14), all have the same energy.

The survival Zeno times [Eq. (8) with Q̂ = 0] for the three
cases are calculated by inserting in Eq. (8) the appropriate
initial state, (12), (13), or (14). For distinguishable particles
the calculation is straightforward, for polarized fermions the
matrix elements in Eq. (8) can be evaluated using the Slater-
Condon rules [27], and for bosons an extension of the latter
is required to symmetric states. The result can be written in a
compact form,

τZ =
{∑

n

�ĥn + 2α
∑
n<k

|〈φn|ĥ|φk〉|2
}− 1

2

, (15)

where �ĥn = 〈φn|ĥ2|φn〉 − 〈φn|ĥ|φn〉2 and α = 0 for dis-
tinguishable particles, α = −1 for fermions, and α = 1 for
excited bosons.

In Eq. (15), the first sum, common to all statistics, depends
on the spread of the energy in the initial one-particle states
induced by the tunneling decay. This contribution dominates
the Zeno time. The second sum arises from the indistinguisha-
bility of the particles and the associated symmetrization of the
initial state and, more precisely, from its immanant (either
determinant or permanent) structure. While it reduces the
survival Zeno time for noninteracting excited bosons, it in-
creases τZ in polarized fermions and bosons in the TG regime,
leading to a slowing down of their decay. The symmetrization
imposed by exchange quantum statistics plays no role, as
it follows from the fact that the multiparticle Zeno time is
shared by dual systems related by the Bose-Fermi mapping.
The different corrections to τZ arise only for indistinguishable
particles and are manifest thanks to the effect that contact
interactions (including as such the Pauli exclusion principle)
have on the energy dispersion of the initial state. We recall that
short-time decay PD(t) = 1 − (t/τZ)2 = O(t3) is governed
by the Zeno time. Also, we recall that when the system is
frequently observed, its lifetime γ −1 becomes proportional to
τ 2
Z; see Eq. (5). It follows that a fermionic state (or bosons

in the TG regime) decays over short times more slowly
than noninteracting excited bosons. This result is somewhat
counterintuitive in nature, given that as a result of the Pauli
exclusion principle (or hard-core contact interactions in the TG
gas) fermionized systems exhibit spatial antibunching, while
noninteracting bosons prefer to group together (bunching).
However, this intuition applies only in subsequent stages
of evolution, while the short-time dynamics is exclusively
governed by the energy dispersion of the initial state.

In the following section we shall describe the rates
associated with the subsequent exponential decay, where
the indistinguishability of the particles and density-density
correlations play a subdominant role with respect to the energy
distribution. The intuition based on spatial bunching applies
to the long-time asymptotics of multiparticle quantum decay.
At long times, deviations from the exponential decay occur
due to the possibility that the decay products recombine to
reconstruct the initial state. As a result, spatial bunching and
antibunching effects play the dominant role, and fermionized
systems decay according to a power law PD(t) ∝ 1/tα with
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an exponent α > 0 about N times larger than in the case of
noninteracting bosons [16].

V. EXPONENTIAL REGIME AND DECAY RATES OF
FERMIONIZED SYSTEMS

We shall now turn our attention to the regime characterized
by exponential decay, most easily observed in experiments.
While manipulating cold atoms, one may be interested in
maintaining exactly N of them in a specified region of space
�, usually large enough to enclose the trap subspace. The
corresponding nonescape probability is obtained from Eq. (1)
by choosing the projector onto the corresponding part of the
multiconfigurational space,

�̂ =
N∏

n=1

∫
�

|xn〉〈xn|dxn. (16)

For a fermionic system starting in its ground state (12) the
nonescape probability reads [16] (we drop the superscript
F in the following and include a subscript for the particle
number N )

PN (t)= detNn,k=1[〈φn(t)|χ�|φk(t)〉], (17)

where 〈φn(t)|χ�|φk(t)〉 = ∫
�

dxφ∗
n(x,t)φk(x,t), while for the

probability to survive in state (12), SN (t), one has [16–18]

SN (t) = ∣∣detNn,k=1[〈φn(0)|φk(t)〉]∣∣2
. (18)

Once the initial state is prepared, after the Zeno time
scale, each of the single-particle states {|φk〉} involved in
the Slater determinant (12) experiences a nearly exponential
decay, i.e., |φk(t)〉 ≈ exp(−γkt)||φk(0)〉, k = 1, . . . ,N . Then,
the N -particle survival and nonescape probabilities decay
exponentially,

PN (t) ≈ exp(−�t)PN (0), SN (t) ≈ exp(−�t)SN (0), (19)

with a decay rate

� = 2
N∑

k=1

γk. (20)

Individual decay constants γk are given by the imaginary parts
of the complex energies Ek corresponding to the first N leading
poles qk of the reflection amplitude for the potential trap in the
complex momentum q plane, γk = ImE(qk) = ReqkImqk .

One can avoid precise determination of the momentum pole
positions by making instead a simple semiclassical estimate
[28]. Let Ek be the energy of the kth bound state in the
initial trap and xk

0 < xk
1 < xk

2 be the three turning points in the
quenched potential satisfying V (xk

i ) = Ek (i = 0,1,2), e.g.,
for a potential where the left barrier is arbitrarily wide so that
tunneling losses occur only through the right barrier, as in the
case depicted in Fig. 2.

The semiclassical probability to tunnel in one attempt
across the potential barrier is given by (see, e.g, [29])

T (Ek) ≈ exp[−2S(Ek)]

{1 + exp[−2S(Ek)]/4}2
, (21)

where S(Ek) ≡ ∫ xk
2

xk
1

dx{2[V (x) − Ek]}1/2 is the complex ac-

tion corresponding to the classically forbidden region x1 <

x < x2. Since the period of the bound motion is given by

τk = 2
∫ xk

1

xk
0

dx{2[V (x) − Ek]}−1/2, the particle impacts on the

barrier with an approximate frequency nk = 1/τk . Multiplying
T by the number of impacts per unit time gives individual
decay rates

2γk ≈ τ−1
k T (Ek), k = 1, . . . ,N, (22)

which together with Eq. (20) yield the desired rate of the
exponential decay in Eqs. (19).

VI. THE MODEL AND RESULTS

As a realistic model of a one-dimensional trap we consider
a smooth bathtub potential (Fig. 2, dashed line)

VI (x) = −1

2
V0

[
1 − tanh

( |x| − L/2

σ1

)]
, (23)

whose right wall is instantly turned into a barrier of finite width
at t = 0 (Fig. 2, solid line),

V (x,t) = −1

2
V0

[
1 − tanh

( |x| − L/2

σ

)]
�(a − x)

− 1

2
V0

[
1 + tanh

(
x − a − L1/2

σ1

)]
�(x − a).

(24)

Here V0 is the depth of the initial well (and also the barrier
height of the metastable potential), L and L1 are the widths
of the well and barrier, respectively, and σ (σ1) determine the
smoothness of the inner (outer) potential walls. It is convenient
to introduce the dimensionless variables (we reintroduce
Planck’s constant h̄)

x → x/L, t → t/t0, V0 → V0t0/h̄, (25)

with t0 ≡ mL2/h̄. The absorbing potential introduced by
Manolopoulos [30,31] is employed to avoid unphysical
reflections at the boundaries of the numerical grid Lbox

1,2 .
Bound one-particle eigenstates of the initial well φn(x,0)
are obtained by a standard finite-difference technique and
then evolved in time using the Crank-Nicolson scheme
to yield φn(x,t) required in Eqs. (17) and (18). We
use L1/L = 0.08, σ/L = σ1/L = 0.01, a/L = 0.55, and
V0t0/h̄ = C2π2, where C is the capacity of the well, i.e.,
the maximum number of bound states it supports. We also
note that, for 23Na atoms in a potential well with L =
80 μm, t0 is about 2.39 s. Finally, we chose Lbox

1 /L = −20,
Lbox

2 /L = 30, and the absorbing potential identical to that used
in [6]. For the calculation of the nonescape probability (1) for
a fermionized system in its ground state (12) we chose the
spatial region � in Eq. (16) to include most of the trap,

� = (−∞,a], (26)

so that δ�0 in Eq. (3), now associated with exponential tails of
the φn(x) extending into the right classically forbidden region
of VI (x), is small. Figure 3 shows the decay dynamics of PN

and SN for different fermionic-atom number states when the
initial well supports a maximum of C = 8 bound states. The
two curves are remarkably similar, given that SN is sensitive to
the population of individual one-particle states, while PN only

022107-4



FIDELITY OF FERMIONIC-ATOM NUMBER STATES . . . PHYSICAL REVIEW A 85, 022107 (2012)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.5 1 1.5 2

N=4
N=8

ln
 (

P
N

N
(0

))
/N

t/t
0

(a)

0.998

0.999

1

0 0.005

P
N

t/t
0

N=4

1 (t / Z )2

Z = 0.44t0

0.98

0.99

1

0 0.004 0.008
t/t

0

N=8

Z = 0.054t0

1 (t / Z )2

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1

N=4
N=8

ln
(S

N
)/

N

t/t
0

(b)

0.9988

0.9992

0.9996

1

0 0.004 0.008 0.012

S
N

t/t
0

N=4

Z = 0.35t0

1 (t / Z )2

0.94

0.96

0.98

1

0 0.002 0.004 0.006 0.008
t/t

0

N=8

Z = 0.036t0

1 (t / Z )2

FIG. 3. (Color online) Nonescape and survival probabilities for
fermionic-atom number states with N = 4 and N = 8 leaking out of
potential (24) with C = 8. The insets show the quadratic behavior of
PN(t) and SN(t) in the short-time regime (solid line) and the fitted
quadratic parabola (dots).

depends on whether atoms have left the region �. In agreement
with the discussion in the previous sections, two regimes can
be identified. The short-time behavior is characterized by a
decay quadratic in time, as shown in the inset of Fig. 3.
Subsequently, as dictated by Eq. (19), the exponential law
holds. The associated transition is illustrated in Fig. 4 for an
N = C = 12 fermionic Fock state and occurs approximately
on the time scale

τq ≈ τ 2
Z�, (27)

where the Zeno time τZ and decay rate � are given by Eqs. (15)
and (20), respectively.

FIG. 4. (Color online) (a) Nonescape and (b) survival probabil-
ities for a fermionic 12-atom state leaking out of potential trap in
Eq. (24) with capacity C = 12 (solid line) (all times are in units of
t0). Also shown are the short-time quadratic fits (dashed line) and
the times tq beyond which the quadratic approximation fails (vertical
dashed line).

We first focus on the short-time dynamics, where the
characteristic scale of the decay is given by the Zeno time
τZ . As the energy dispersion of the initial state with respect
to the Hamiltonian for t > 0 increases, the corresponding τZ

is reduced. In particular, this is expected from Eq. (15) for
increasing particle number N . Figure 5 shows the survival
Zeno time τZ as a function of N . Its dependence on the particle
number is enhanced as N approaches C, and the initial Fock
state involves energy components closer to the brim of the
trap, which result in the spatial extension of the atomic cloud

0
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1
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α −N / 2

FIG. 5. (Color online) Dependence of the survival Zeno time τZ

on the number of trapped fermions N for a potential (24) with C = 8.
The analytical Zeno times given by Eq. (15) (squares) are shown
together with the numerical values extracted from a parabolic fit
to the exact short-time decay dynamics (dots). The inset shows the
corresponding exponential fits to the dependence of τZ on N .
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FIG. 6. (Color online) Loss of fidelity for fermionic-atom number
states leaking out of potential trap described by Eq. (24) for two
different capacities C = 12,30 (N � C). The fidelity is evaluated at
the transition time tq beyond which the quadratic approximation fails
(cf. Fig. 4), that is, right before the exponential regime sets in.

beyond the trap region � due to the existence of tunneling tails
for x > a. Indeed, it is found numerically that the suppression
of the Zeno-time is approximately exponential with respect to
N , τZ(N ) ≈ τZ(1) exp(−N/2); see the inset in Fig. 5.

This rapid decline of τZ(N ) might suggest that the short-
time deviations from the exponential law should be irrelevant
for Fock states with already moderate numbers of atoms.
However, this is not completely the case, as is illustrated in
Fig. 4, which demonstrates that the fidelity decay of a Fock
state also accelerates with the number of atoms and becomes
significant already at the end of the quadratic evolution,
provided N is sufficiently close to C. To quantify this effect,
we evaluated the transition time tq(N ) (Fig. 4, vertical dashed
line) such that for t � tq the quadratic approximation to PN (t)
or SN (t) starts to fail. (Note that tq is not the same as τZ , which
determines the curvature of the short-time parabolic decay.)
The plot of the fidelity factor PN (tq)/PN (0) vs N shown in
Fig. 6 confirms that as N/C approaches unity a significant
fidelity decay of an atom number state occurs before the
exponential regime sets in. The effect is more pronounced
for small traps, the goal of current experimental efforts.

We next focus on the characterization of the exponential
regime. The dependence of the decay rate (20) on the number
of particles N is in good agreement with the semiclassical
estimate derived from Eq. (22), as shown in Fig. 7. This is
to be contrasted with the case of a trap with thin potential
barriers [11], where the decay rate of any single-particle
excited state is soon governed by the longest-lived resonance,
favoring the observation of multiple exponential regimes

FIG. 7. (Color online) Dependence of the exponential decay rates
for SN (t) (squares) and PN (t) (triangles) on the number of trapped
atoms N for a potential trap in Eq. (24) of capacity C = 8. The
observed survival decay rates are in excellent agrement with the
analytical prediction based on Eq. (22).

(for N = 2 with a δ barrier; see [21]). In such a case the
multiparticle decay rate becomes � = 2γ1N , linear in N . Note
that expression (20) for the decay rates equally applies to
distinguishable particles or excited states of noninteracting
bosons. Its success in reproducing the decay rates extracted
from exponential fits to the exact decay dynamics points out
that the indistinguishability of the particles and the many-body
correlations among them plays a subdominant role in the
exponential regime. Nonetheless, as the initial state includes
states closer to the brim of the trap, Eq. (21) loses accuracy.

VII. DISCUSSION

Given the recent flurry of works dealing with few-body
quantum decay [11,12,16–23], it is interesting to establish the
current understanding and point out some aspects deserving
further studies. In particular, combining the results obtained in
this manuscript with those in [16], we identified the following
stages in multiparticle quantum decay of systems with contact
interactions. As in the single-particle decay, three regimes are
found.

Short-time asymptotics: Zeno regime. A quadratic-in-time
quantum decay occurs that is characterized by the multipar-
ticle Zeno time, i.e., the inverse of the energy variance of
the quenched Hamiltonian (that is, for t > 0) evaluated in the
initial state, Eq. (15). The main contribution to this time scale
arises from the energy spread of the initial state. Nonetheless,
in the presence of interactions there is a counterintuitive
correction reflecting the indistinguishability of the particles.
This correction slows down the decay of polarized fermions
with respect to degenerated states of noninteracting bosons.
It would be clarifying to consider systems with generalized
exclusion statistics [32] and compare the multiparticle quan-
tum decay between systems with finite-interactions related by
Bose-Fermi duality [33].

Exponential regime. Following the Zeno regime, exponen-
tial decay sets in, characterized by multiparticle decay rates
well described in a semiclassical approximation, i.e., Eq. (22).
The dependence of the decay rates is dominated by the energy
spread of the initial state. This is expected to be the general
behavior for smooth potentials, but for finite interactions
the question remains as to the validity of the semiclassical
approximation. For example, considering a one-dimensional
Bose gas [22], does Eq. (22) evaluated at the quasimomenta of
the initial state (Bethe roots) describe accurately the decay rate,
or are there important corrections arising from correlations
among the particles? Interestingly enough, the exact decay
dynamics of two fermions for arbitrarily thin potential barriers
exhibits a transition among different decay rates [21]. The
observability of multiple exponential regimes for arbitrary
particle number N and as a function of the potential features
well deserves further studies.

Long-time asymptotics: postexponential power-law decay.
The subsequent regime is characterized by a power-law decay
and arises due to the possibility that the decay products
recombine to form the initial state in a classical sense.
This regime is governed by the short-range density-density
correlations, which lead to a dramatic dependence of the
power-law exponents on the particle number N [16]. The
current understanding would benefit from studies for systems
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with finite and long-range interparticle interactions as well as
two- and three-dimensional systems with degeneracy arising
from angular momentum. The power-law exponents in these
systems are expected to exhibit a rich dependence on N .

We note that a deep understanding of multiparticle quantum
decay is relevant across very different fields of physics,
beyond quantum foundations. For instance, a good control
of the particle number might be key to advancing the field of
quantum simulation with ultracold gases, and this goal is being
currently pursued in different laboratories [9,10]. Similarly, the
short-time quantum decay is at the heart of certain applications,
such as dynamical decoupling schemes for high-fidelity
quantum memories, quantum gates, quantum computing,
and generally extending the coherence times in quantum
systems [34]. At the same time, the existence of different
stages of quantum decay may have important cosmological
implications [35].

VIII. CONCLUSIONS

In summary, we have analyzed the many-body tunneling
decay of trapped fermionic-atom number (Fock) states in
a realistic model of relevance to recent experiments [9,10].
We focused our attention on the fidelity decay resulting
from tunneling leakage, quantified as a decrease in the
nonescape or survival probability, and identified the signatures
of contact interactions and quantum statistics in the short-time

multiparticle decay. Even though the survival and nonescape
Zeno times rapidly decrease with the number of atoms N , as N

approaches the maximum capacity of the trap a substantial loss
of fidelity is found already at the end of the quadratic (Zeno)
evolution, before the exponential regime sets in. Moreover,
explicit expressions for the decay rates in the exponential
regime have been provided. Our results are amenable to
experimental verification by standard techniques, e.g., by
registering the time evolution of the full counting statistics
in a trap which allows leaking by quantum tunneling (see,
for example, Ref. [9]). Finally, we note that strong s-wave
scattering in ultracold bosons or spin polarization in fermions
suppress three-body losses, facilitating the study of genuinely
quantum losses in these systems.
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