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Optomechanical cooling of levitated spheres with doubly resonant fields
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Optomechanical cooling of levitated dielectric particles represents a promising new approach in the quest to
cool small mechanical resonators toward their quantum ground state. We investigate two-mode cooling of levitated
nanospheres in a self-trapping regime. We identify a structure of overlapping, multiple cooling resonances and
strong cooling even when one mode is blue-detuned. We show that the best regimes occur when both optical
fields cooperatively cool and trap the nanosphere, where cooling rates are over an order of magnitude faster
compared to corresponding single-resonance cooling rates.
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Extraordinary progress has been made in the past
half-dozen years [1,2] toward the final goal of cooling a small
mechanical resonator down to its quantum ground state and
hence of realizing quantum behavior in a macroscopic system.
Implementations include cavity cooling of micromirrors
on cantilevers [3—6], dielectric membranes in Fabry-Pérot
cavities [7], radial and whispering gallery modes of optical
microcavities [8], and nanoelectromechanical systems [9].
Indeed, the realizations span 12 orders of magnitude [2], up
to and including the Laser Interferometer Gravitational-Wave
Observatory (LIGO) gravity wave experiments. Ground-state
cooling has recently been finally attained [10]. Corresponding
advances in the theory of optomechanical cooling have also
been made [11-14].

Over the past year or so, a promising new paradigm has been
attracting much interest: several groups [15—18] have now pro-
posed schemes for optomechanical cooling of levitated dielec-
tric particles, including nanospheres and even viruses [15,19].
The important advantage is the elimination of the mechanical
support, a dominant source of heating noise. In general, these
proposals involve two fields, one for trapping and one for
cooling. This may involve an optical cavity mode plus a
separate trap, or two optical cavity modes, the so-called “self-
trapping” scenario. Scenarios using two or more cavity modes
have also been investigated in nonlevitated systems [20,21].

Mechanical oscillators in the self-trapping regime differ
from other optomechanically cooled devices in a second
fundamental respect (in addition to the absence of mechanical
support): the mechanical frequency, wys, associated with
center-of-mass oscillations is not an intrinsic feature of the
resonator but is determined by the optical field. In particular,
it is a function of one or both of the detuning frequencies,
81 and §,, of the optical modes. Cooling, in general, occurs
when wy, is resonantly red-detuned with either of the detuning
frequencies (i.e., negative §; , is associated with cooling). For
self-trapping systems, this means w(81,62) ~ —3&;2 so the
relevant frequencies are not independent.

The full implications of this nonlinear interdependence of
the resonant frequencies have not yet been fully elucidated. We
show here that it leads to a rich landscape of multiple cooling
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resonances associated with enhanced cooling. The mechanism
here is unrelated to splittings seen in experiments in the strong-
coupling regime [22]. However, it results in extremely favor-
able cooling regimes, where up to three cooling resonances
can overlap. We investigate in detail the “double-resonance”
regime in which two resonances overlap, and we find it can
produce cooling rates nearly two orders of magnitude stronger
than previously studied “single-resonance” self-trapped cases.

A self-trapping Hamiltonian was investigated in [16] and
corresponds to the setup illustrated in Fig. 1:
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Two optical field modes d;, are coupled to a nanosphere
with center-of-mass position x. H is given in the rotating
frame of the laser, which drives the modes with amplitudes
E, and RE;, respectively. ¢ is the phase between the
optical potentials. The study in [16] investigated the §; >~ 0
regime, where the d; mode is responsible exclusively for
trapping while the d, mode alone provides cooling. Previous
studies [15,16,18] analyzed mechanical oscillations about an
equilibrium position x¢ 2~ 0, corresponding to the antinode of
the trapping mode (field 1). Below, this scenario is referred to
as the “single-resonance” regime.

Here we investigate the effects of relaxing these restrictions,
allowing both fields to simultaneously trap and cool the
particle, and we find interesting and unexpected implications.
We take ¢ = 7 /4; one field is driven more weakly than
the other, with a ratio R >~ 0.1-1. Below, our analytical
expressions cover arbitrary «, R, Ej, and A, but we compare
with an illustrative set of experimentally plausible parameters:
we take a cavity damping x = 6 x 10° Hz. We considered
driving powers in the range P >~ 1-10 mW, where P = @.
For a laser of wavelength A = 1064 nm and a cavity of
length L ~ 1 cm and waist 25 um, we consider a silica
nanosphere of ~ 100 nm radius, m ~ 9.2 x 10~'® Kg, and
hence a coupling strength A ~ 3 x 103 Hz. The frequency
difference between the modes is |w; — w>| ~ 27 x 10 GHz.
This far exceeds the detunings from cavity resonance, §; 2 ~
1 MHz, and also the mechanical frequencies wy,. Thus the
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FIG. 1. (Color online) Schematic setup: a levitated nanosphere is
trapped and cooled cooperatively by two optical modes. The optical
potential for each mode is shown.

photons are completely distinguishable and can be read out
and driven separately. Nevertheless, since w; o ~ 10" Hz, we
approximate k; >~ k, = k.

Figure 2 illustrates the behavior for R = 0.5. It shows that
allowing both fields to cooperatively trap and cool yields
more than an additive improvement. We denote by r1 and
r2 the set of detunings corresponding to cooling resonances
of modes 1 and 2, respectively: Fig. 2 shows that these
resonances unexpectedly split and separate into new cooling
resonances r 1 £ and »2+. These can overlap to give very strong
cooling associated with multiple resonances. Very strong
cooling is apparent even for regimes in which one mode is
blue-detuned. In addition, although there is no direct coupling
between optical modes, double resonances offer the prospect
of strong (albeit second-order) coupling and entangling of
the two modes via the nanosphere, within a single cavity.
This includes simultaneous resonant and antiresonant regimes
(indicated by the crossing of r2+ and al— in Fig. 2) where
one mode resonantly heats while the other resonantly cools
the mechanical mode.

The dynamics depends on k, m, A, k, 81, 8, E;, and
R. However, transforming to scaled variables reduces this
complexity. We rescale position, time, and field variables
as follows: kx — %, At — 1, then a;» — £1d;,. Note that
below, we drop all the tildes but it is implicit that all variables
are scaled in the resulting Heisenberg equations:

£ = —€[|a?sin2% + |a,|? sin2% — 7/2)],
Gy = iAa) + 1 +id; cos’ & — kady, )

Gy = iAol 4+ R + iy cos*(§ — 1 /4) — kad>.

The dynamics for a given R < 1 depends only on the scaled

driving €2 = ¢ E?, where ¢ = P two scaled detunings

mA3’
Ay, =20812/A, and a scaled damping k4 = ('(Aﬁ; all scaled

frequencies (including cooling rates) are given below as a
fraction of A.

The experimentally adjustable parameters are €, both the
detunings Aj,, and R. We assume k4 =~ 1, though the
analytical expressions are for arbitrary k4. Varying driving
power P ~ 1-10 mW but leaving the cavity and nanosphere
properties unchanged means A remains constant but €2 varies
from ~1 to 100.

We may analyze the cooling classically by replacing
operators by their expectation values and linearizing about
equilibrium fields, introducing the shifts a; — o + aj, a; —
oy + ap, and x — x¢ + x. Hence we find equilibrium photon
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FIG. 2. (Color online) Upper panels: comparison between nu-
merical optical cooling rates (without linearization) and an analytical
expression [Eq. (5)] from linearized dynamics, showing excellent
agreement. R = 0.5. The curves corresponding to different values of
81 £ 2 MHz are shifted relative to each other. At single-resonance r2,
field 2 is resonant with the oscillator and is exclusively responsible
for cooling; field 1 is resonant with the cavity (A] = 0) and traps
the sphere. Subsequently r2+ appear: they are cooling resonances
of field 2, split by field 1; conversely, » 1+ are cooling resonances of
field 1, split by field 2. 72 — ,r1 — ,r 14 overlap giving a broad region
of very strong cooling. The al=+ are heating (Stokes) resonances of
field 1. The al— can coincide with the cooling resonance (2+). Here
field 2 absorbs phonons as fast as field 1 emits them. Lower panels:
unshifted cooling curves at the single-field cooling resonance r2 (i)
and double-resonant cooling (ii), showing that the latter gives over an
order of magnitude stronger cooling. Asterisks are numerical results
and the curves analytical results, corresponding to curves marked (i)
and (ii), respectively, in the upper panels.

fields, o) = [ka —iAT]7! and ar = R[ka —iA3]7", as well
as position tan 2xy = |az|? /|0t |2

Here, AT = Aj+ 3(1+cos2x) and A} = Ay + (1 +
sin 2xp). The dimensionless mechanical frequency is

03 (A1, Ay) = 2€*(Jay |* cos 2xp + || sin2x).  (3)
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Closely related forms of this “self-trapping” frequency expres-
sion have been noted previously [15-18], but the implications,
other than for xo 2~ 0, have not been investigated.

To first order, the linearized equations of motion are

¥ = —a)jzux — 62(g1 sin 2xgy — g2 cos 2xg),
d] = l'A'fa] —i(XleianC()—KAa], (4)

a = iAﬁag + ianx cos2xy — kKadaz,

where g; = (afa; + o;a}’). From the above, we can obtain the
contribution from the two photon fields to the optomechanical
cooling:

r
7= Q[Si(wm) + S2(wm) — Si(—on) — Sa(—op)], (5)

ey . oy sin® 2xp
where Q=57 with S(w) = (Aot

and S)(w) =
lorz |? cos? 2xg
[A3 —w]P+k3
calculate a numerical I" by evolving the equations of motion in
time and looking at the decay in x(¢) (its variance in particular).
The analytical cooling rates give excellent agreement with
numerics in all but the strongest cooling regions.

The single-field cooling resonance r2 occurs for xg >~ 0,
A7 =0, and A = —wy, thus here for Ay = —1 (ie., §; =
—A). Conversely, there is also a single-field cooling resonance
r1 for xg = /4. Away from these extreme cases, both cooling
resonances are split by the effect of the other field, wherever
0 < x¢ < /4. Note that we need only consider the case R <
1, i.e., field 2 is always driven more weakly than field 1. The
range R > 1 represents simply an interchange in the role of
the fields: unlike previous studies, we no longer have a distinct
trapping field and a cooling field.

From Fig. 2, we see r2+ occur for the same A, thus the
same equilibrium photon field «,; however, they correspond
to photon fields «; and o, respectively, and thus to different
AI—L = +y;, where 2y is the splitting (about A7 = 0) between
r2+ and r2— seen in Fig. 2.

The transformation oy — «f leaves both the mechanical
frequency wm(Af,Az) and xo(Af,Az) unchanged. Hence the
cooling rates are similar for both »2+.

We can estimate the splitting AT by requiring
wm(AT,A2) = oy (A7, Ar) = A% since oy (AT,A) >~ AS
are the conditions for the optomechanical resonance r2+.

. 2
Thus we obtain y; = /(Ag)f#h0 — Ki. Close to r2, we can

simplify y; >~ A;f; 73 Similarly, y,, the splitting between

2621'?2 — K2
(AY)? sin2xg A

Thus the splittings increase with driving power and R.
Though the behavior is reminiscent of optical bistabilities,
we stress that the splitting here is of the cooling resonances.
In Fig. 3, the deep cooling region due to the three overlapping
resonances r1 £ ,r2— is shown for scaled parameters, thus
this is generic behavior not due to any particular value of A,
E|, or m but a function only of the subset of scaled variables.

We now analyze the relative merits of single-resonance
versus double-resonance cooling. Single-field cooling cor-
responds to r2 in Fig. 2. Cooling rates are obtained from
Eq. (5) by taking xo >~ 0, AT =0, and A} = —wy. Further,
we can approximately estimate cooling rates purely in terms of

. Note that net cooling occurs for I' < 0. We also

rld,isy, =
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FIG. 3. (Color online) Dimensionless cooling rates I' as a
function of scaled (dimensionless) detunings for €> = 24, =1
and R = 1/2. The inner contour corresponds to I' = 1/2 (where
I' =1 would correspond to a maximal cooling rate = «x/2). The
outer contour indicates I' = 1/80, with intermediate contours at
I'=1/4, 1/8, 1/20, and 1/40, respectively. The black contour
denotes I' = 0 and indicates the boundary between cooling and

heating.

experimental parameters (driving power, R, and ). Assuming
Sr(—wpy) > Sr(+wy) and that the field 1 contribution to
cooling is negligible, near 2, the mechanical frequency w3, =

2 . .
iiz. Hence, the single-resonance (SR) cooling rate becomes
A

—Tsr ~ (R2ex2) (27262 + V2uch) ™! ©6)

(recall this is a scaled cooling rate thus given in units
of A). Single-field cooling is a maximum if € = Kf\/«/i, where
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FIG. 4. (Color online) Comparison between single-resonant (SR)
cooling due to r2 and double resonant (DR) cooling, i.e., simultaneous
cooling by r1— and r2—, as a function of laser driving power.
Double resonance yields two orders of magnitude greater cooling
for strong driving. The inset shows a cooling maximum of r2
at weak driving €2 =~ 1/2; here the system is on the edge of the
sideband-resolved regime wy = k4. The upper axes give input laser
powers corresponding to A = 3 x 10° Hz= k/2,m =9 x 1078 Kg,
and R = 0.5.
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wpy = k/2 (in unscaled units), and is thus at the edge of

the resolved sideband regime. Here, —I'sg ~ R—z; this gives
optimal cooling I' ~ « only if R ~ 1. This cooling maximum
is independent of k4: it depends only on R. As the driving is

2,2
increased, if 2¢2 > /ci, then —I'sg ~ ;\/'%’; o 1/€. Thus the

single-resonance cooling rate falls off quite rapidly as the
driving amplitude is increased: the cooling cannot be improved
by increasing the driving amplitude.

To obtain the corresponding double-resonant rate (DR), one
must first identify the e-dependent pair of detunings for which
—wp(A,A2) = AT =~ Aj.Evenif r1 — ,r2— do not cross in
Fig. 2, the sidebands approach within their width x and overlap
significantly. One can still obtain a good approximation to the
cooling rate in terms of driving parameters. In this case, there
are contributions to cooling from both field 1 and field 2.
Adding them both,

— Tpr ~ (R + RY[kaom (0, +k2)]. (@

where the frequency is given by the expression w3, =

_TK’Z‘ + 1./« + 8€2. The contribution from mode 2 o R*

while that of mode 1 o R*; both contribute significantly
for R 2 0.5. Assuming wy >> kg4, this reduces to —I'pr ~
273/4(R? + R%)€'? /i 4, hence T'pg o €'/2. Figure 4 shows
that Eqs. (6) and (7) both give excellent agreement with exact
numerics. In the double-resonant case, the cooling is stronger
and increases with increasing €. In contrast, the single-resonant
cooling I'sg o 1/€ and this cannot be improved by increasing
€. Self-trapping cooling cannot be considered simply in terms
of an additive contribution from two intracavity intensities; the
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response of wy, to the driving is also important. In the double-
resonant case, wy o €'/? for strong driving. In contrast, for
the single-resonant case wy; o € and strong driving pushes the
r2 resonance into the far-detuned regime.

A study of the quantum cooling shows that, in the ab-
sence of mechanical damping, the minimum phonon numbers
attainable are 71y, << 1 for both single and double-resonant
cooling, provided the driving is strong, i.e. if € >> 1. However,
a current key technical barrier to the first actual realization of
cavity-cooled levitated oscillators is in pumping down to a
sufficiently high vacuum (pressure P ~ 10~% mBar) to ensure
the mechanical damping rate y,; o P is negligible without
losing an untethered levitated object. A detailed study of
Langevin-Heisenberg equations in our system, including gas
collisions, confirms previous estimates [15] that for typical
regimes with I' > y), the final equilibrium temperature
Teqg ~ Tg"’?’"‘, where T, is the gas temperature. Thus, as seen
in Fig. 4, for 5 mW, for example, the DR regime will attain
ground-state cooling at a pressure about 40 times higher than
the SR regime.

In conclusion, our study shows that the two-mode self-
trapping regime reveals a range of unexpected features, includ-
ing the double and triple cooling resonances and strong cooling
at blue-detuning. Although other proposals also permit strong
cooling rates, the multiple sidebands provide an exceptionally
broad region of strong cooling.
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