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s-wave-scattering resonances induced by dipolar interactions of polar molecules
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We show that the s-wave-scattering resonances induced by dipolar interactions in polar molecular gases have a
universal large and positive effective range, which is very different from Feshbach resonances previously realized
in cold atoms before, where the effective range is either negligible or negative. Such a difference has important
consequences in many-body physics. At a high-temperature regime, a positive effective range gives rise to a
stronger repulsive interaction energy for positive scattering length, and a weaker attractive interaction energy
for negative scattering length. At low temperatures, we study a polaron problem formed by a single-impurity
molecule, and we find that the polaron binding energy increases at the BEC side and decreases at the BCS side.
All these effects are opposite to narrow Feshbach resonances, where the effective range is negative.
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A polar molecular gas with a strong dipolar interaction is
a system of great interest to both the atomic and molecular
physics and condensed-matter physics communities. The
recent development of the stimulated Raman adiabatic passage
(STIRAP) technique has succeeded in creating a nearly degen-
erate gas of KRb molecules in its rovibrational ground state
[1]. Unfortunately, the KRb molecules are not stable against
two-body decay into K2 and Rb2 molecules [2]. Recently,
a theoretical calculation predicted that this problem can be
avoided by choosing other combinations of alkali-metal atoms,
such as KCs, KNa, NaCs, NaRb, and RbCs [3]. Applying the
STIRP technique to these species is now occurring in many
different laboratories all over the world. It is very promising
that degenerate polar molecular gases can be realized within
the next few years.

For these molecules their electric dipole moments can
be polarized by an external electric field (say, along the ẑ

direction). As the applied electric field increases, the dipole
moment d continuously increases from zero to the permanent
dipole moment, and different molecules have different values
of permanent dipole moment [4]. Therefore the two-body
interaction potential studied here can be modeled as

VD(r) =
{

d2(1−3 cos2 θ)
r3 , r > rc,

∞, r < rc,
(1)

which contains a long-range dipolar interaction and a short-
range nonuniversal potential. θ is the angle between r̂ and ẑ.
Here, for simplicity, we use a hard-core potential to mimic the
short-range behavior of a very complicated realistic potential,
where rc is the core size. We can introduce a length scale
D = md2/(2h̄2), and then the typical dipole energy is given
by h̄2D/(2m〈r〉3) ≈ (kFD)EF. By controlling the electric field,
one can tune kFD from zero to the regime kFD ≈ 1 [4], i.e.,
the dipole energy is comparable to the Fermi energy.

Understanding the two-body problem of two strongly
interacting quantum dipoles is an important step toward
understanding the rich many-body physics of this system.
Previously, the dipolar interaction effects in the high partial-
wave channel have been studied extensively, for instance, the
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p-wave pairing [5,6] and p-wave and d-wave Fermi-surface
distortion [5,7]. The dipolar interaction effects in the s-wave
channel have not been well studied, because they always vanish
in simple mean-field treatments.

In fact, previous studies have shown that, as D increases,
each partial-wave channel will display a series of resonances
where the scattering length of each partial-wave channel
diverges, and we call them dipolar interaction-induced reso-
nances (DIIRs) [8–10]. Among all these channels, resonances
in the s-wave channel are the most pronounced. However, both
the two-body properties and the many-body physics at DIIRs
have not been completely understood. In this Rapid Com-
munication we study both the two-body properties of DIIRs
and two many-body problems of two-component fermionic
molecules across a DIIR, which is a high-temperature regime
with equal population, and a single impurity in a fully polarized
Fermi gas. From these studies we want to emphasize the
significant difference between an s-wave DIIR and other
s-wave resonances. The main conclusions are summarized as
follows:

(i) Near the s-wave resonances the effective range r0 is large
and positive. This is qualitatively different from a magnetically
tuned Feshbach resonance (MFR) studied before, where r0 is
either negligible (wide MFR) or large but negative (narrow
MFR). Across different DIIRs, r0/D is a universal function
of D/as and r0/D ≈ 1.84 at resonance. Therefore kFr0 is of
the order of unity and the effect of r0 cannot be ignored in
many-body physics.

(iii) At high temperature, the attractive interaction energy
of a DIIR is significantly smaller for negative scattering length
as compared to a wide MFR, while for positive as, in the upper
branch, the repulsive energy of DIIR is much larger. Both
can be understood by analyzing the energy dependence of the
scattering length or the two-body energy levels.

(iii) At low temperature, we consider a polaron formed by a
single-impurity molecule immersed in the Fermi sea. We find
that the polaron binding energy is larger compared to a wide
MFR at the BEC side and the resonance regime, while it is
smaller at the BCS side.

Two-body problem. Using D as the length unit r → r/D

and ED = h̄2/(mD2) as the energy unit E → E/ED, the two-
body Schrödinger equation can be written in dimensionless

020702-11050-2947/2012/85(2)/020702(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.020702


RAPID COMMUNICATIONS

ZHE-YU SHI, RAN QI, AND HUI ZHAI PHYSICAL REVIEW A 85, 020702(R) (2012)

form as [
−1

2
∇2 + 1 − 3 cos2 θ

r3

]
� = E� (2)

in the regime r > rc and the boundary condition is given
by �(r = rc) = 0. Expanding the wave function in terms of
spherical harmonics as �(r,θ,ϕ) = ∑

lm
1
r
Rlm(r)Ylm(θ,ϕ), the

Schrödinger equation can be reduced to

− 1

2

d2

dr2
Rlm + 1

r2
Hm

l,l′ (r)Rl′m(r) = ERlm, (3)

where H
(m)
ll′ = l(l + 1)δll′ + 〈Ylm|(1 − 3 cos2 θ )|Yl′m〉/r . Hll′

couples all l to l ± 2 and m is still a good quantum
number. Moreover, since the dipolar coupling decays (1/r3)
faster than the centrifugal barrier term (1/r2), at large
distance, coupling between different l effectively vanishes.
The asymptotic behavior of the scattering wave function
still can be decoupled as different partial-wave channels, so
one can introduce a scattering length for each partial-wave
channel [11,12].

Here we will focus on the s-wave channel since it has
no centrifugal barrier and the interaction effect is expected
to be the strongest. However, it is easy to note that H00 = 0,
which means one cannot obtain any interaction effect if directly
projecting the Schrödinger equation (2) into the |l,m〉 = |0,0〉
state. The interaction effect in the s-wave channel comes from
its coupling to a higher partial-wave channel. Following a
simple second-order perturbation argument, one can obtain an
effective potential from a virtual process between |0,0〉 and
|2,0〉,

−〈00|(1 − 3 cos3 θ )|20〉〈20|(1 − 3 cos2 θ )|00〉D2

r6

6
r2

∝ −D2

r4
.

Hence, as D increases, the effective potential becomes deeper
and deeper, which introduces a series of bound states and
causes scattering resonances. This is the basic mechanism
of DIIR. Since the energies of those intermediate states for
this induced interaction are h̄2l(l + 1)/(m〈r〉2) 
 2EF for
l = 2,4,6, . . . , we expect that the presence of a Fermi sea and
the Pauli blocking effect will not strongly affect the induced
interaction, which justifies using the induced interaction in
many-body studies.

Following Ref. [10], we first diagonalize the matrix Hll′

by a unitary matrix X(r) as X†(r)H (r)X(r) = �(r). Trans-
lating the radial wave function as �l = X

†
ll′Rl′ , Eq. (3) will

become

−1

2

d2

dr2
�l + qll′ (r)

d

dr
�l′ + vll′ (r)�l′ = E�l, (4)

where q(r) = − 1
2X†(r)dX(r)/dr and v(r) = �(r)/r2 −

1
2X†(r)d2X(r)/dr2. At a large distance, because H (r) be-
comes effectively diagonal, X becomes an identity matrix
and �l still has the same asymptotic behavior as Rl .
At an intermediate and short distance, the diagonal part
of v(r) contains the centrifugal potential contribution for
all l �= 0, which separates the s-wave from other partial
waves. Because of this energy separation, we can take the
approximation that only keeps the diagonal terms of qll′

and vll′ . The infinite number of the coupled differential
equation of Eq. (3) is reduced to a set of decoupled
equations

−1

2

d2

dr2
�l + qll(r)

d

dr
�l + vll(r)�l = E�l. (5)

In Eq. (5), v00(r) �= 0 is the induced interaction in the s-wave
channel. Numerically solving Eq. (5) for l = 0, we obtain
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FIG. 1. (Color online) (a) Scattering length as/rc as a function of D/rc. (b) kD cot δk as a function of (kD)2 at different D/rc as marked in
(a). (c) r0/D as a function of −D/as across different resonances.
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FIG. 2. (Color online) (a) εint/εkin as a function of −λ/as for a DIIR (solid line) and a wide MFR (dotted line). λ/D = 1. Inset: The same
plot for λ/D = 70. (b) εint/εkin for DIIR with different temperatures. λ/D = 2 (green dashed line), λ/D = 1 (blue solid line), and λ/D = 0.5
(red dotted-dashed line). Positive εint/εkin at the positive as side excludes the contribution from the bound state.

its asymptotic behavior of �l=0 as sin(kr + δk), where k =√
2mE/h̄.
Scattering resonances and effective range. Once we obtain

an s-wave phase shift from solving Eq. (5), we can define the
s-wave scattering length as as = − limk→0 tan δk/k. We plot
as/rc as a function of D/rc in Fig. 1(a). It displays a series
of resonances as D/rc increases, and the resonance window
in the D/rc axes gets wider for larger D/rc. The locations
of the resonances can be determined by an intuitive WKB
estimation [10]. This approach precisely captures all s-wave
resonances with relatively wide windows [9], and misses some
extremely narrow ones which are due to a bound state in an
even higher partial-wave channel and are coupled to an s-wave
channel by the ignored off-diagonal coupling in qll′ and vll′ .
We ignore them because they are too narrow to be studied
experimentally.

We expand the phase shift as k cot δk = −1/as + r0k
2/2 +

· · · . In Fig. 1(b) we find that kD cot δk is a very good
linear function of (kD)2, and the positive slope means that
r0 is positive. In Fig. 1(c), we plot r0/D as a function of
D/as for different resonances with different D/rc. It is very
remarkable that all these curves across different resonances
perfectly coincide with each other, which shows that r0/D is
a universal function of D/as. In other words, the short-range
physics (rc/D) is irrelevant in determining r0. Inspired by
the relation between the effective range and the physical
range of a square-well potential, we fit the curve by r0/D =
α0 + α1D/as + α2(D/as)2, and find α0 = 1.8390 ± 0.0006,
α1 = −10.168 ± 0.002, and α2 = 158.2 ± 0.1. All the high-
order coefficients are several orders of magnitudes smaller. At
resonance, r0 ≈ 1.84D. Noting that D can be of the same order
of 1/kF, we can therefore realize resonances in a cold atom
system with a large and positive effective range. This is very
important for using cold atoms to simulate nuclei and neutron
matter [13].

High-temperature regime. In the remainder of this Rapid
Communication, we will investigate the many-body effects
of a positive effective range. We shall compare DIIR with a
zero-range model for a wide MFR, which gives a constant

phase shift of k cot δk = −1/as for all k, and r0 = 0. First,
we study the high-temperature regime by a second-order
virial expansion, because the resonant interaction manifests
itself in the interaction energy even above a degenerate
temperature, and can be measured easily by the spectroscopy
method.

By second-order virial expansion, we have

b2 =
∑

e|Eb|/(kbT ) +
∫ +∞

0

dk

π

dδk

dk
e−λ2k2/(2π), (6)

where we have ignored all the contributions from high partial
waves, and λ =

√
2πh̄2/(mkbT ). The interaction energy is

given by

εint = 3kbT n

2
(nλ3)

[
− b2√

2
+

√
2

3
T

∂b2

∂T

]
. (7)

In Fig. 2(a), we compare εint/εkin for a DIIR with a wide
MFR, and in Fig. 2(b) we show εint/εkin for a DIIR with
different temperatures, where εkin = 3kbT n(nλ3)/2. On the
side with as > 0, negative εint includes the contribution from
the bound state, while positive εint excludes the bound-state
contribution, which corresponds to the physics of “the upper
branch.”

First, for scattering states, it is known that εint/εkin ap-
proaches ∓0.5 as one approaches a wide MFR from the
negative and positive side of as [14]. For a DIIR, we find
for as < 0 that the attractive interaction energy is weaker for
a DIIR, and for as > 0, the repulsive interaction energy is
stronger. This is strongly in contrast to a narrow MFR (r0 < 0)
where the opposite effect is found by Ref. [15]. This can be
understood from an argument based on the energy dependence
on scattering length. Let us consider a situation where as

not very close to resonance, and r0 is nonzero, but is still
small compared to λ2/as. Because a(k̄) = 1/(1/as − r0k̄

2/2)
(k̄ denotes a thermal average of k, and is of the order of
1/λ), for as < 0, one finds |a(k̄)| < |as| for r0 > 0, and
|a(k̄)| > |as| for r0 < 0; for as > 0, one finds |a(k̄)| > |as|
for r0 > 0, and |a(k̄)| < |as| for r0 < 0. This is consistent
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FIG. 3. (Color online) (a) Polaron energy E/EF as a function of −1/(kFas) for kFr0 = 0 (wide resonance, solid line), kFr0 = 0.2 (dashed
line), and kFr0 = 0.5 (dotted line). (b) E/EF as a function of kF r0 for 1/(kFas) = −1 (solid line), 1/(kFas) = 0 (dashed line), and 1/(kFas) = 0.2
(dotted line).

with r0 dependence of the interaction energy shown in
Fig. 2(a).

An alternative way to understand this result is through
analyzing energy levels. Let us consider two molecules
confined in a large hard sphere so that the two-body wave
function ψ(r) has to vanish at r = R. The energy levels of
the s-wave states are determined by En = h̄2k2

n/m, where
kn satisfies the equation knR + δkn

= nπ . In the limit as →
0−, δk = 0 and k0−

n = nπ/R, while for as → 0+, δk = π

and k0+
n = (n − 1)π/R. For a wide MFR, at resonance,

δk = π/2, and all kn is given by (n − 1/2)π/R, which is
responsible for εint/εkin = ±0.5 at resonance [15]. For a DIIR,
at resonance, k satisfies kR + arctan[2/(r0k)] = nπ . At a
given temperature, the system is dominated by states with
k ∼ 1/λ. Hence, arctan[2/(r0k)] is always smaller than π/2 if
r0 > 0 and it decreases to zero as the temperature increases.
Therefore, the downshifts of the energy levels E0−

n − En are
smaller compared to a wide MFR, and they decrease as
the temperature increases. The upshifts of the energy levels
En − E0+

n are larger compared to a wide MFR, and they
increase as the temperature increases. This is also consistent
with the temperature dependence of εint/εkin as shown in
Fig. 2(b).

The effective range r0 also has an effect on the bound-
state energy. The bound-state energy is given by the pole
of scattering amplitude f (E) = 1/(1/as − r0E/2 − i

√
E),

which gives

E = − h̄2

ma2
s

1 − √
1 − 2r0/as

r0/as
� − h̄2

ma2
s

(
1 + r0

2as

)
. (8)

For the same as, the binding energy |E| is larger with positive
r0. For the same reason, for a narrow MFR with negative r0,
the binding energy is smaller. In the inset of Fig. 2(a) we show
that at a lower temperature, the attractive interaction energy of
a DIIR will finally exceed that of a wide MFR. This is because,
for a lower temperature, the contribution of the lowest bound
state will gradually become dominant, and the larger binding
energy finally overwhelms the smaller contribution from the
scattering states.

Single-impurity problem at low temperature. In general,
the low-temperature many-body physics at resonance is too
sophisticated to be studied by a simple method. Here, in order
to illustrate that the effect of r0 at low temperature could be
different from that in high temperatures, we consider a simpler
situation where one single-impurity molecule is dressed by a
Fermi sea of majority molecules and forms a polaron. For
wide resonance, such a problem can be well described by a
variational wave function or T -matrix approach [16]. Here we
apply a similar approach to DIIR and obtain the following
self-consistent equation for polaron energy E :

E =
∑

|q|<|kF|

1
V m
4π

[
1
as

− mr0
2

(
E + ε

↑
q − εb

q

)] + I (E)
, (9)

whereI (E,q)=∑
|k|>kF

( 1
ε

↑
k +ε

↓
p+q−k−ε

↑
q −ε

↓
p −E − 1

εr
k
) − ∑

|k|<kF

1
εr

k
,

εr
k = k2/m, and εb

k = k2/(4m). The details for obtaining this
equation are similar as the same impurity problem across
a narrow MFR [17]. We find that the effective range has
a more dramatic effect on polaron binding energy at the
BEC side than at the BCS side, as shown in Fig. 3(a). We
find that at the BCS side, a positive r0 will decrease the
polaron binding energy |E | while it will increase |E | at
the resonance regime and the BEC side. Such an effect is
also opposite to the polaron near a narrow MFR [17], and
for narrow resonances, such an effect has been observed
in a recent experiment [18]. In both cases, it is caused
by and can be understood from the energy dependence
on the scattering length [17]. It will be very interesting
to observe the countereffect in dipolar gases of polar
molecules, so that the effects of the effective range in
many-body systems will be established in a comprehensive
way.
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