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Optimal teleportation with a noisy source
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We establish the optimal quantum teleportation protocol for the realistic scenario where both the input state
and quantum channel are afflicted by noise. By taking these effects into account, higher fidelities are achieved.
The optimality of the proposed protocol prevails even when restricted to a reduced set of generically available
operations.
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Introduction. Information theory’s main concern is optimal
data transmission over noisy channels. In his seminal article
from 1948, entitled “A Mathematical Theory of Communi-
cation” [1], Shannon set the foundation for this theory. He
showed that below a certain transmission rate threshold, which
depends on the amount of noise on the channel, there exists a
data codification that enables transmission with asymptotically
negligible error. Since only classical information was consid-
ered, the input could be assumed perfectly prepared with all
the disturbances lumped into the transmission process.

The new theory of quantum information follows the same
steps as its predecessor. A noisy channel theorem, in the same
spirit as the one by Shannon, was proved for the quantum
case by Holevo [2] and Schumacher and Westmoreland [3].
Information is now encoded into quantum bits (or qubits),
and its transmission is via quantum channels. The quantum
realm, however, presents a myriad of new possibilities, with
the teleportation protocol being the most interesting example.
In the protocol devised by Bennett and co-workers [4], an
unknown state is perfectly transmitted between two parties
(usually dubbed Alice and Bob) with the aid of classical
communication and a shared maximally entangled (ME)
state—the latter plays the role of a quantum channel, with
no classical counterpart. See Fig. 1 for a brief review of
the teleporation protocol. As in the classical case, idealized
scenarios are quickly substituted by more realistic ones,
and teleportation over noisy quantum channels has been an
extensively investigated topic [5–9]. The action of the noise
is represented by a (completely positive) map that generically
maps the shared initially pure maximally entangled state into
a mixed state with less entanglement. The teleportation is no
longer perfect. Since the input state is unknown, Alice and
Bob optimize their actions such as to maximize the average
protocol quality (fidelity) over the set of input states. One point,
however, has been hitherto neglected: Quantum information
is unavoidably disturbed by the environment, even before its
transmission through the channel. The proper averaging is
thus not over the uniform distribution of pure input states, but
over the initial input distribution induced by the environment.
As observed in Ref. [10], a priori information about the
distribution of states to be teleported can be used to achieve
higher fidelities. Here we address this issue, and present the
optimal teleportation protocol including the effect of a noisy
source. After that, we discuss the experimentally motivated
scenario where Alice and Bob can implement only a small

subset of all possible physical operations. The gain of the
proposed protocol with respect to previous proposals is then
numerically accessed.

Realistic protocol. Let |ψ〉〈ψ | ⊗ χ be the total initial state.
|ψ〉〈ψ | ∈ Hin is a unknown input state to be teleported, and
χ ∈ HA ⊗ HB is the noisy quantum channel shared by Alice
and Bob. For simplicity, we assume that dimHA = dimHin =
dimHB = n. However, as the initial state cannot be perfectly
created, or is the product of previous processing, the actual
state to be teleported is given as the result of a completely
positive map |ψ〉〈ψ | �→ �[|ψ〉〈ψ |]. The actual state at hand
is thus �[|ψ〉〈ψ |] ⊗ χ .

As in the standard teleportation protocol (STP) (see Fig. 1),
Alice and Bob apply coordinated operations on their systems
aiming for the highest teleportation fidelity. In general, these
local, classically correlated (LOCC) actions can be described
by

�[|ψ〉〈ψ |] ⊗ χ �→
∑

α

(Aα⊗Bα)(�[|ψ〉〈ψ |]⊗χ )(A†
α ⊗ B†

α),

where Aα denotes Alice’s operation on Hin ⊗ HA, and Bα

represents Bob’s reaction on HB [11]. The common index α

indicates the coordinated action, and is exchanged between
Alice and Bob via a classical channel. In order to conserve
probabilities, this operation must satisfy

∑
α A†

αAα ⊗ B†
αBα =

1 ⊗ 1. On average, Bob is left with the output state �out given
by

∑

α

Trin,A[(Aα ⊗ Bα)(�[|ψ〉〈ψ |] ⊗ χ )(A†
α ⊗ B†

α)]. (1)

This expression can be simplified, noting that, by virtue of
the Jamiołkowsi [12] isomorphism, the noisy channel χ can
be written as 1 ⊗ �[|φ〉〈φ|], with �[•] := ∑

�i • �
†
i a com-

pletely positive map, and |φ〉 = ∑n−1
i=0 |ii〉/√n a maximally

entangled state. It then follows that

�out =
∑

α,i

Bα�i{Trin,A[(Aα ⊗ 1)(�[|ψ〉〈ψ |] ⊗ |φ〉〈φ|)

× (A†
α ⊗ 1)]}�†

i B
†
α.

Expanding Aα in a maximally entangled basis Aα =∑
rs aα

rs |φUr
〉〈φUs

|, where |φUα
〉 = U†

α ⊗ 1|φ〉, and defining
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FIG. 1. Teleportation protocol: From ideal to real. In the standard
teleportation protocol (STP), first row, Alice and Bob share a max-
imally entangled state |φ〉 := ∑n−1

i=0 |ii〉/√n. The total initial state
|ψ〉 ⊗ |φ〉 can be rewritten as

∑
α |φUα

〉 ⊗ Uα|ψ〉/n, with |φUα
〉 =

U†
α ⊗ 1|φ〉 a ME state and Tr(U†

αUβ ) = nδα,β . Alice measures her two
parties with projectors Mα = |φUα

〉〈φUα
|. With probability 1/n2 she

gets one of the ME states, and sends to Bob via a classical channel (not
shown), its index α. With this information, Bob performs a unitary
transformation Tα = U†

α , and recovers the initial state without gaining
any knowledge about it. In the second row, Alice and Bob share a
nonmaximally entangled state χ . To maximize the protocol fidelity,
Alice and Bob optimize the measurement basis and unitary operations
over the uniform distribution of initial pure states, as the source of
input states is assumed noiseless. The realistic case in the third row,
where noise is present in both the channel and source, and Alice and
Bob are allowed to perform more general operations, is detailed in
the text.

the operatorsAr
α = 1/n

∑
p〈φUr

|Aα|φUp
〉Up, we can write the

output state as

�out =
∑

α,r

Bα�
[
Ar

α � [|ψ〉〈ψ |]Ar†
α

]
B†

α.

The most general teleportation protocol can thus be recast as
the map � : Hin �→ HB : |ψ〉〈ψ | �→ �out = ∑

k 
k|ψ〉〈ψ |
†
k

with 
k={α,r,i,j} := Bα�iAr
α�j , where we used the decompo-

sition for the map �[•] = ∑
j �j • �

†
j . We can thus define an

effective teleportation map as acting on the original pure state,
and not on the mixed state which Alice actually manipulates.

The still undefined operations {Ar
α} and {Bα} are to be fixed

by optimizing the protocol for all possible input states. Even
though the unknown system being teleported is in a mixed
state, the primary goal of the protocol is to teleport the original
pure state. Therefore, the figure of merit to be optimized is the
average fidelity of the output state with the pure input state,
i.e., f = 〈ψ | �out |ψ〉.

The evaluation of f is obtained by following the general
framework developed in Ref. [5]. The maximal average fidelity
for the optimal protocol is then given by

f max = n

n + 1
Fmax (χ,�) + 1

n + 1
, (2)

where Fmax, defined as

max
�

〈φ| (1 ⊗ �) ◦ � [χ ] |φ〉 , (3)

is the maximal singlet fraction attainable by the combined
action on χ of the trace-preserving operation � and the deco-
herence map 1 ⊗ �. The maximization is taken over operations
�[•] := ∑

α,r (ArT
α ⊗ Bα) • (ArT

α ⊗ Bα)†, which refer to the
LOCCs of Eq. (1). The transposition operation T is taken on

the computational basis. This concludes the protocol, which
constitute our main result.

Discussion. To highlight the importance of acknowledging
the presence of noise in the input distribution of states, we
compare the protocol introduced above with the two main
protocols for handling noisy teleportation.

(i) Optimal teleportation versus distillation + STP: In
Ref. [5] the authors realized that, in the noiseless input case,
the optimal teleportation protocol is equivalent (in the sense
of average fidelity) to an optimal distillation of the resource
state followed by a STP. Explicitly, when � = 1, we have that
Fmax is

max
�

〈φ|�[χ ]|φ〉 = 〈φ|�STP[�∗]|φ〉,

where �∗ = �∗[χ ], with �∗ the optimal distillation, and
�STP[•] = 1/n2 ∑

α UT
α ⊗ U†

α • (UT
α ⊗ U†

α)† represents the
standard teleportation protocol. This is easily realized by
noting that the singlet fraction is invariant under the STP, i.e.,
〈φ| �STP [O] |φ〉 = 〈φ| O |φ〉 for any O. Therefore, Eq. (2)
tells us that performing the STP with the optimal distilled
state �∗ yields the same average fidelity as performing the
optimal teleportation protocol �∗ with the original resource χ .
This equivalence was then used by Verstraete and Verschelde
(VV) [7] to design an optimal teleportation protocol via the
best distillation procedure.

This correspondence, however, breaks down for noisy input
states. Although mathematically it still remains true that
max�〈φ|(1 ⊗ �) ◦ � [χ ] |φ〉 = 〈φ|�STP[�′

∗]|φ〉, where now
�′

∗ = �′
∗[χ ] with �′

∗ the optimal operation in Eq. (3),
physically the equivalence would assume that the effect of
the noise � in the input states can—as in the classical
paradigm—be absorbed in the channel (resource state). For
a sensible correspondence still to prevail in the noisy input
scenario, we must require that 〈φ| �STP ◦ (1 ⊗ �)[�′

∗] |φ〉 =
〈φ| (1 ⊗ �) ◦ �STP[�′

∗] |φ〉. This is not true, in general.
In this way, in a realistic scenario, the protocol proposed

by VV is no longer the optimal one and must be replaced by
the protocol here introduced. Operationally, the reason for the
latter to be at least as good as the first is clear: The realistic
protocol allows Alice to perform general, collective operations
on both input and (half) resource states, which is obviously
superior than acting only on the resource state as in the VV
protocol, or even separately on input and resource states.

(ii) Unitaries + projective measurements: The realistic
protocol, (2) and (3), supposes the ability to perform the
most general operations on Alice and Bob’s parties. This
may be impracticable. The most general LOCC operation
may, for instance, require an infinite amount of classical
communication exchange. The optimization of the protocol is
thus only defined given an specific experimental realization
and the accessible operations at the moment. A trade-off
between protocol quality and experiment complexity should
be always observed. Arguably the simplest protocol is the
one where Alice performs projective measurements on a
maximally entangled basis {|φUα

〉〈φUα
|}, and Bob applies

unitary transformations {Tα} depending on the measurement
outcome. Within these operations we can exactly pinpoint
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the advantage of taking into account the noise on the source,
because (3) reduces to

Fmax = 1

n2
max

{Uα,Tα}

∑

α,k,l

∣∣ 〈φ| �T
k ⊗ Tα�lUα |φ〉 ∣∣2

, (4)

with the optimization taken over all unitary bases {Uα}, and
all sets of unitary matrices {Tα}. Here again, it is clear that the
case where the noise in the source is not taken into account
is far from general. In fact, by setting �k ∝ 1, each term in
Eq. (4) is equal to

∑
l | 〈φ| 1 ⊗ Vα�l |φ〉 |2, with Vα = UαTα .

As the Tα’s are not subjected to any constraint, each of these
terms can be optimized independently over Vα’s. The optimal
fidelity is thus obtained for any choice of measurement basis.
This simplified case was obtained in Ref. [6]. When �k ∝ 1,
the optimization is much more challenging, as each term in the
sum is “coupled” to the others via the unitary basis constraint.

Another interesting scenario is recovered when the map
� (and/or �) is covariant, i.e., �[Uα • U†

α] = Wα�[•]W†
α ,

with Wα unitary. In this case, each term in Eq. (4) is
proportional to

∑
k,l | 〈φ| �T

k ⊗ TαWα�l |φ〉 |2, and can be
independently optimized, as TαWα is another unitary without
constraints. Furthermore, the noise in the source can now be ab-
sorbed into the noise in the channel, 〈φ| �T

k ⊗ TαWα�l |φ〉 =
〈φ| 1 ⊗ TαWα�l�k |φ〉, resembling the classical communica-
tion paradigm.

Further insight is also possible for weak interactions
with the environments. Under this assumption, one ex-
pects that the initial state is only slightly perturbed. Thus
�T ⊗ �[|φUα

〉〈φUα
|] ≈ (1 − ε)|φUα

〉〈φUα
| + ε�Uα

is a good
approximation, with ε � 1, and �Uα

a state which de-
pends on the initial state and channels. Equation (4) then
becomes

Fmax = 1

n2
max

{Uα,Tα}

∑

α

(1 − ε)|〈φ|1 ⊗ TαUα|φ〉|2

+ ε
〈
φTT

α

∣∣�U∗
α

∣∣φTT
α

〉
. (5)

As ε � 1, the best strategy is to maximize the first term in
Eq. (5), leading to Tα = U†

α . This prescription is the same as
for the STP (see the caption of Fig. 1)—as expected from the
limiting case of no noise. One difference should, however, be
pointed out: The choice of Alice’s measurement basis (and
hence of Bob’s operations) is no longer inconsequential. The
noise action might break the equivalence among the bases,
defining a preferred direction. In Eq. (5) this is easily seen
by the possibility of maximizing the second term with an
appropriate choice of {Uα}.

In fact, the latter is also true for some relevant noise
scenarios, for which the optimization in Eq. (4) can be
explicitly carried out. For example, it is easy to show that when
� and/or � represent computational errors (bit-flip, phase-flip,
or bit-phase-flip) or the interaction with a zero-temperature
reservoir [13], the optimal protocol will have Tα = U†

α , and
the maximum fidelity can be obtained, for instance, setting
{Uα} = {1,σx,σy,σz}, corresponding to a STP. Not all the
choices of {Uα}, however, lead to the best fidelity.

Numerics. Now we set out to quantify the gain in taking
into account the noise in the input state distribution. Below
we numerically optimize Eq. (4), corresponding to the proto-
col restricted to unitaries and projective measurements (ii),

specialized to a system of qubits (dimHi = 2, for i =
A,B,in). To emphasize the importance of considering the
effects of noise on the input state, we compare our realistic
protocol with the one proposed by Albeverio, Fei, and Yang
in Ref. [6] (hereafter referred to as the AFY protocol). The
latter was intended for noisy quantum channels and pure input
states. Since the AFY protocol does not require optimization
over the measurement basis, we randomly choose a different
maximally entangled basis and apply the protocol to realistic
situations where � = 1. The optimization is performed with
the genetic algorithm routine GENMIN [14].

We first address the scenario where both channel and
input states are subjected to different, randomly generated,
noisy processes [15]. By considering channels with a given
strength, the typical relative gain of the realistic protocol can be
determined by optimizing Eq. (4) for many different random
channel configurations. We gauge the strength of � by the
amount of entanglement loss of the quantum resource when
compared to the perfect channel, γ (�) = 1 − Neg(�[|φ〉〈φ|]),
with Neg an entanglement measure [16]. Likewise, for the
noise � on the input states, we use the fidelity loss λ(�) =
1 − 〈ψ | � [|ψ〉〈ψ |] |ψ〉, averaged over the set of pure input
states. For the numerical investigations, we generated channels
with strength parameters within intervals of length 0.01. See
Fig. 2 for the results.

It is clear from these results that, independent of the amount
of entanglement in the resource state, the stronger � is, the
greater is the advantage of taking it into account. Furthermore,
out of a sample of 38 620 random noise configurations tested,
in only ∼4.6% of the instances our realistic protocol could
be classically simulated (f max < 2/3). For the AFY protocol
∼25% of the cases gave an average fidelity below the classical
threshold of 2/3. As expected, the weaker the noise on the
resource state is (smaller γ ’s), the smaller is the difference
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γλ

λ λ

(a) γ = 0.25 (b) γ = 0.4

(c) γ = 0.5 (d)

FIG. 2. Random channels scenario. Realistic protocol rela-
tive gain over AFY for randomly generated noisy scenarios.
(a)–(c) The shaded region shows the relative gain range for different
measurement bases. Markers indicate the relative gain over AFY
using the best measurement basis (diamonds), the worst (circles),
and the average relative gain (squares) [relative gain defined as
100(f max − f AFY)/f max]. (d) Average relative gain in respect to
AFYmax for λ = 0.225 (triangles), 0.375 (squares), and 0.475 (circles)
as a function of γ .
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between the AFY protocols, as the influence of carefully
choosing the measurement basis is reduced. Additionally,
having more quantum correlations at its disposal, the realistic
protocol can achieve larger relative gains [shown in Fig. 2(d)
for three values of λ].

Second, we compared the protocols when all the qubits
are under the influence of identical bit-flip maps: EBP[•] =
(1 − p) • +pσx • σx , with 0 � p � 1/2. In this scenario, the
realistic protocol gives fidelities above the classical threshold
for the entire range of p. The relative gain of the realistic
protocol against the average AFY increases monotonically
with the noise strength, with a gain of 5.8% at p = 0.25, where
the average AFY fidelity reaches the classical boundary. As
mentioned previously, for this case the STP is already the best
protocol. This was observed in our numerical experiment with
all three protocols, STP, AFYmax (with an optimal choice for
Alice’s basis), and our realistic protocol, yielding the same
maximum average fidelity. In addition, we generated close to
10 000 numerical experiments, with � and � representing
computational errors, finite-temperature reservoirs, or com-
positions of these [13]. These showed that as long as the
STP outperforms any classical strategy, it reaches the optimal

fidelity of Eq. (4), suggesting that, within the restricted set of
operations considered, the STP is a robust protocol against the
aforementioned decoherence processes.

Conclusions. Teleportation spots yet another trait of quan-
tum communications: Quantum information is disturbed by the
environment even before its transmission, and this disturbance
cannot in general be accommodated as a faulty communication
channel. Recognizing this is not only of conceptual impor-
tance, but also has practical implications. The teleportation
protocol proposed here appeals to this mindset shift in order
to obtain sizable gains in communication quality.
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