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Image of an emitting dipole by a superlens
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We consider the emission pattern of a three-dimensional pointlike dipole situated near a left-handed-medium
slab. Unlike earlier work, we focus on the direction normal to the slab surface. It is shown that the evanescent
field may help to narrow the major peak of the image created by the propagating field. We point out that care has
to be taken when applying Snell’s law to the superlens problem. In particular, it cannot explain why the focus is
shifted away from the ideal position when material absorption decreases below some threshold value.

DOI: 10.1103/PhysRevA.85.015804 PACS number(s): 42.25.Bs, 42.79.Bh, 42.30.Wb, 42.50.Nn

I. INTRODUCTION

Negative index materials were first discussed by Veselago
[1], who showed that simultaneous negative dielectric permit-
tivity ε and magnetic permeability μ imply a negative index of
refraction. In these materials, the electric field, the magnetic
field, and the wave vector of a plane wave form a left-handed
system, hence the name left-handed material (LHM). The
refraction of a beam at a vacuum-medium interface is governed
by Snell’s law,

sin θt = 1

n
sin θi, (1)

where n is the medium refractive index and θi is the incidence
angle measured with respect to a line normal to the interface.
When loss due to medium absorption is negligible, n can
be treated as a real quantity and θt bears the meaning of the
beam exit angle. In common materials, the refractive index n

is positive and a deflected beam exits to the opposite side of
the surface normal. Left-handed materials, by contrast, have a
negative n and would deflect the exiting beam to the same side
of the surface normal. This phenomenon was experimentally
observed [2].

For a single slab in free space, applying Eq. (1) twice
to the two vacuum-medium interfaces, one finds that the
slab produces a focusing effect [1]. What is even more
interesting is that a slab of LHM can enhance the evanescent
nonpropagating components of radiation that are usually
confined to the immediate vicinity of a source. This led to
the suggestion that the entire information of a source can
be restored in the image, giving rise to the possibility of a
perfect lens whose image resolution can beat the traditional
diffraction limit of a wavelength [3]. The proposal for a perfect
lens provoked heated debates [4,5], particularly due to the
divergence of the field in between the slab and the focus
point. To deal with this mathematical difficulty, schemes where
extra charges are placed at the foci have been proposed [6]
and realistic factors such as the inherent material loss have
been taken into account [7–10]. Based on the wave-vector
cutoff of the transmitted spectrum, it has been shown that
the subwavelength performance of a LHM-based flat lens is
limited to the near-field zone [7,10]. Related problems such
as the spontaneous decay of a pointlike dipole emitter placed
in the slab’s vicinity [11] and the diffusion of the focal points
from the standpoint of Snell’s law [12] were discussed.

Since the wave-vector cutoff used in Refs. [7,10] is with
respect to the component of the wave vector parallel to the

surface, the derived resolution limit is valid in the plane
of the surface only. Here we explore the possibility of the
superlensing effect in the direction normal to the surface of
the LHM slab via a consideration of the emission pattern
of a point dipole located in its vicinity. Unlike Refs. [7,10],
we employ a method based on the numerics. Namely, the
emission pattern is first calculated using propagating waves
alone (strictly speaking only the intensity of the total field is
measurable), then is compared with that produced by the total
field. We find that the inclusion of the evanescent field indeed
gives rise to some narrowing of the major peak of the image.
Furthermore, we show that while many features of the imaging
system can be explained by the real version of Snell’s law, it
cannot predict the exact positions of the foci.

II. NUMERICAL RESULTS

Being excited by some suitable means, a dipole emitter
(position rA, transition frequency ωA, dipole moment dA)
undergoes the process of spontaneous decay and emits light.
Proceeding along the same lines as in the case of pure
dielectrics [13] and using properties of the Green tensor [14],
the electromagnetic field intensity I (r,t) can be found to be

I (r,t) � |F(r,rA,ωA)|2e−�t , (2)

where, after dropping a small quantum correction,

F(r,rA,ωA) � − ik2
A

ε0
G(r,rA,ωA)dA. (3)

Here � = (2k2
A/h̄ε0) dAIm G(rA,rA,ωA)dA is the dipole spon-

taneous decay rate with kA = ωA/c, and G(r,r′,ω) is the
Green tensor that describes the media surrounding the dipole.
Equation (2) together with Eq. (3) generalize the results of [13]
to the case of an arbitrary dispersing and absorbing mag-
netodielectrics. Apart from a time-dependent exponentially
decaying factor, the spatial pattern of emission is determined
by |F(r,rA,ωA)|2.

Let z be the direction normal to the structure surface, the
dipole be located in layer 0, the slab occupy layer 1, and the
field point be located in layer 2. The Green tensor can be
expanded into plane waves

G(20)(r,rA,ω)= i

4π

∫ ∞

0
dk‖k‖

eiβ0zA+iβ2z

2β2
G̃

(20)
(r,rA,ω,k‖),

(4)
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where k‖ = kxx̂ + kyŷ and βj =
√
εj (ω)μj (ω)ω2

c2 − k2
‖ , j =

0,1,2, and the specific form of G̃
(20)

can be found in
Ref. [15]. Next, we assume that the slab is placed in vacuum,
ε0,2 = μ0,2 = 1, its permittivity and permeability being close
to −1 and having small, positive imaginary parts which
characterize the degree of material absorption ε1 = μ1 =
−1 + iγ , γ � 1. Note that γ ∼ 10−1 is the typical range of
absorption in presently realized LHMs. The Green tensor can
be decomposed into two parts,

G(20)(r,rA,ωA) = (G(20))1 + (G(20))2, (5)

where (G(20))1 = ∫ kA

0 dk‖ · · · represents propagating waves
and (G(20))2 = ∫ ∞

kA
dk‖ · · · represents evanescent waves.

A. Ten-wavelength thick slab

The emission pattern along the z axis for some represen-
tative values of γ is plotted in Fig. 1 using Eqs. (3) and
(4). The position of the image, and the half width at half
maximum (HWHM) of the total field peak and that of the
propagating field peak are listed in Table I. Consider first the
case of an atomic transition dipole moment oriented parallel
to the slab surface. If we compare the HWHM of the peaks
due to the propagating field, (δI )x1/λA listed in Table I, with
that in the lossless case (δI )x1/λA � 0.443, it is evident that
material loss broadens the peaks. The broadening decreases
with a decreasing γ . For γ ∼ 10−5 and below, the broadening
is insignificant. Now if we compare the width of the peak
associated with the propagating field (Table I, line 4) with that
of the total field (Table I, line 3), we find that the latter is
narrower than the first for γ = 10−5,10−7,10−9 (boldface).
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FIG. 1. The emission pattern along the z axis as a function of the
distance from the (1/2) interface to the field point. The parameters are
zA = 5λA, d = 10λA, and ε1 = μ1 = −1 + iγ with γ = 10−1 (solid
line), 10−3 (dashed line), 10−5 (dotted line), and 10−12 (dot-dashed
line). For the first case the scale is to the left of the figure, while for
the last three cases the scale is to the right. The dipole moment is
(a) parallel and (b) normal to the slab surface.

TABLE I. Position and HWHM of the image. x0(z0),(δI )x[(δI )z],
and (δI )x1[(δI )z1] are the image position, the HWHM of the total
peak, and the HWHM of the peak associated with the propagating
field for x(z)-oriented dipole moment.

γ 10−1 10−3 10−5 10−7 10−9

x0/λA 4.747 4.987 4.897 4.824 4.754
(δI )x/λA 1.685 0.49 0.441 0.437 0.436
(δI )x1/λA 1.674 0.489 0.445 0.443 0.443
z0/λA 4.643 4.974 4.801 — —
(δI )z/λA 1.326 0.566 0.547 — —
(δI )z1/λA 1.321 0.564 0.532 — —

It can be seen from Fig. 1(a) that for large material loss
(γ = 10−1 and 10−3, solid and dashed curves), the evanescent
field is mostly absorbed by the slab, whereas for small material
loss (γ = 10−5 and 10−12, dotted and dot-dashed curves), its
enhancement is clearly evident. The peak narrowing thus can
be attributed to the contribution from the evanescent field.
Numerical results in the table show that when γ is reduced
from 10−7 to 10−9, the resolution is not improved as much
as when it is reduced from 10−5 to 10−7. The same trend
has been noticed with respect to the resolution in the x

direction [7,10]. As γ is reduced even further, the enhancement
of the evanescent field by the slab is so strong that the image
is submerged in the evanescent field tail [Fig. 1(a), dot-dashed
curve]. The general picture is more and more resembling that in
the case of zero absorption where the evanescent field between
the slab and the focal point diverges.

Let us have a closer look at the peaks’ positions. At
γ = 10−1, the curve is peaked away from the ideal focal
point z/λA = 5, at a position closer to the surface. When γ

decreases from 10−1 to 10−3, the peak location approaches
the ideal focal point. Since in this range of γ , no evanescent
field enhancement is observed [see Fig. 1(a), solid and dashed
curves], the shift is due solely to the influence of the material
loss on the propagating field. As γ is reduced further from 10−3

to 10−5, 10−7, and 10−9, instead of keeping on approaching the
ideal focal point, the peak is pulled back toward the slab. The
evanescent field, which is enhanced noticeably in this range of
γ , obviously causes this reversal in the direction of the shift
of the image.

From the above analysis, it becomes clear that there is only
a finite range of γ where the peak narrowing can occur. The
value of γ must not be too large such that evanescent waves
are not completely absorbed by the slab and can contribute to
the image. On the other hand, it must not be too small such that
the enhanced evanescent waves tail does not swallow up the
peak produced by propagating waves. For the parameters used
in Fig. 1 and Table I, such an optimal range of γ apparently
does not exist for a z-oriented dipole moment [Fig. 1(b)]. This
can be explained by the fact that a z-oriented dipole couples
more strongly to the evanescent field than an x-oriented dipole
does, resulting in that the enhanced evanescent field swallows
up the peak before any narrowing can occur.

B. Single-wavelength thick slab

Let us consider now a one-wavelength thick slab. In the
case of an x-oriented atomic dipole moment and γ = 10−1
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FIG. 2. The emission pattern along the z axis as a function of the
distance from the (1/2) interface to the field point. The parameters are
zA = 0.5λA, d = λA, and ε1 = μ1 = −1 + iγ with γ = 10−1 (solid
line), 3 × 10−3 (dashed line), 10−3 (dotted line), 5 × 10−4 (dot-dashed
line), and 10−4 (double dashed line). For the first case the scale is to
the left of the figure while for the last four cases the scale is to the
right. The dipole moment is (a) parallel and (b) normal to the slab
surface.

[Fig. 2(a), solid curve], numerical results for evanescent and
propagating field separately (not shown) indicate that the first
is insignificant in comparison with the latter. The closeness
to the surface and the spread of the peak led to the fact
that only half of it is visible. For γ in the range from 10−1

to 10−3, the peak associated with the propagating field is
located close to the surface, at a distance where the propagating
and the evanescent fields are comparable. These two interfere
destructively, destroying the peak [Fig. 2(a), dashed curve]. As
γ is reduced from 10−3 (dotted curve) to 10−4 (double dashed
curve), the peak created by the propagating field is sufficiently
far from the surface so that the same trend as in the case
of d = 10λA can take place, that is, the peak gets narrower
while its position is shifted toward the ideal focal point at
z = 0.5λA. The amount of narrowing achievable here is much
more impressive compared to the case of the 10-wavelength
thick slab discussed above. Namely, for γ = 10−3, 5 × 10−4,
and 10−4, the HWHM (δI )x/λA are 0.25, 0.225, and 0.214,
respectively, which are much smaller than the HWHM of the
peaks generated by the propagating field alone (δI )x1/λA =
0.452, 0.448, and 0.445. The numbers mean about 50%
narrowing. However, there is a tradeoff in that the peaks are
strongly asymmetric, that is, the image is distorted. The half
peak on the slab side is narrower than that on the other side.
This confirms the role of the evanescent field in the peak
narrowing because the evanescent field is stronger on the slab
side of the peak rather than on the free space side. When γ is
decreased further, the growing contribution of the evanescent
field gradually swallows up the image peak. This takes place at
a larger value of γ than in the case of thicker slabs [cf. Fig. 1]
due to a closer proximity of the image to the surface. For slabs

thinner than about 0.7λA, no clear formation of the image is
found. In the case of a z-oriented dipole moment, this already
occurs at d = λA, as can be seen from Fig. 2(b).

III. SNELL’s LAW

Certain features of the imaging system obtained from the
numerical computations above can be inferred from Snell’s
law. For a complex n, θt in Eq. (1) is also complex and no
longer has the meaning of an angle of refraction. If we denote
by θ ′

t the angle between the normal of the surface of constant
real phase and the normal of the boundary, then [16]

sin θ ′
t = 1

N
sin θi, (6)

where

N =
√

sin2 θi + n̄2q2(cos γ − κ sin γ )2, (7)

n = √
ε1μ1 = n̄(1 + iκ), (8)

q2 cos 2γ = 1 − 1 − κ2

n̄2(1 + κ2)2
sin2 θi, (9)

q2 sin 2γ = 2κ

n̄2(1 + κ2)2
sin2 θi . (10)

In Eq. (8), n̄ and κ are real. For ε1 = μ1 = −1 + iγ , we have
n̄ = −1 and κ = −γ .

Equation (6) has the form of Snell’s law, but with N

depending not only on the refractive index, but also on the
incidence angle θi . This leads to a degeneration of the focal
point into a diffused focal spot [12]. Using the assumption
γ � 1 to expand N in terms of κ and keeping only the leading
order term, we obtain

sin θ ′
t � 1

n̄
√

1 + γ 2 tan2 θi

sin θi . (11)

Equation (11) shows that the angle of refraction θ ′
t is smaller

than that occurring in the absorptionless case. Since the angle
of refraction in the medium 2 is equal to θi (the configuration
under consideration is symmetric), this brings the second focal
point closer to the surface, as can be figured out from Fig. 3
after a little geometry. According to Eq. (11), the image always
moves toward the ideal focal point as the absorption decreases.
The real version of Snell’s law thus cannot explain the reversed
shift of the image away from the ideal focal point after the
material absorption decreases below some threshold value.

zA z

source
image

0 1 2
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θi tθ’

d

FIG. 3. The shifting and smearing of the image due to material
absorption in accordance with the real version of Snell’s law. The
dashed lines represent rays of light when the material absorption is
neglected.
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This is because the ray-optics picture represented by Eqs. (6)–
(11) does not take into account evanescent waves.

IV. CONCLUSIONS

We have derived a formula for the spatial pattern of
the field emitted by a dipole surrounded by an arbitrary
magnetodielectrics and used it to investigate the emission
pattern of a dipole located near an LHM slab, concentrating
on the possibility of the superlensing effect in the direction
normal to the surface. The main peak in the image generated
by the propagating field alone is compared with that generated
by the total field, and a narrowing of the latter is regarded as
a signature of the superlensing effect. Some peak narrowing
has been found to exist but is very fragile. It manifests itself
for slab thicknesses of about a single wavelength only, and
at the price of strong image distortion. It favors the dipole
orientation parallel to the surface, and is highly sensitive to

material absorption. The material absorption must not be too
large such that the evanescent field is sufficiently enhanced
to contribute to the peak, but not too small such that the
tail of the enhanced evanescent field does not swallow up
the peak. These limitations are quite severe and may render the
superlensing effect impractical. We have shown that due to the
contribution of the evanescent waves, the position of the peak
shifts in a peculiar way as the material absorption decreases:
it first approaches the ideal focal point, then moves away
from it. The latter cannot be described by the real version of
Snell’s law.
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[15] M. S. Tomaš, Phys. Rev. A 51, 2545 (1995).
[16] M. Born and E. Wolf, Principles of Optics (Cambridge Univer-

sity Press, Cambridge, 1999).

015804-4

http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
http://dx.doi.org/10.1103/PhysRevLett.84.4184
http://dx.doi.org/10.1103/PhysRevLett.90.107401
http://dx.doi.org/10.1103/PhysRevLett.90.107401
http://dx.doi.org/10.1364/OL.32.000053
http://dx.doi.org/10.1126/science.1139266
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/10.1103/PhysRevLett.88.207403
http://dx.doi.org/10.1103/PhysRevLett.88.207403
http://dx.doi.org/10.1016/j.physb.2003.08.015
http://dx.doi.org/10.1134/S0021364009050038
http://dx.doi.org/10.1209/0295-5075/94/20006
http://dx.doi.org/10.1209/0295-5075/94/20006
http://dx.doi.org/10.1016/S0375-9601(03)00168-3
http://dx.doi.org/10.1103/PhysRevB.67.193106
http://dx.doi.org/10.1063/1.1650548
http://dx.doi.org/10.1364/OL.30.000075
http://dx.doi.org/10.1364/OL.30.000075
http://dx.doi.org/10.1103/PhysRevA.71.011804
http://dx.doi.org/10.1103/PhysRevA.71.011804
http://dx.doi.org/10.1016/j.physleta.2005.07.031
http://dx.doi.org/10.1103/PhysRevE.73.016604
http://dx.doi.org/10.1103/PhysRevE.73.016604
http://dx.doi.org/10.1103/PhysRevA.79.022903
http://dx.doi.org/10.1103/PhysRevA.79.043812
http://dx.doi.org/10.1103/PhysRevA.64.013804
http://dx.doi.org/10.1103/PhysRevA.64.013804
http://dx.doi.org/10.1103/PhysRevA.68.043816
http://dx.doi.org/10.1103/PhysRevA.51.2545

