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Visualization of superposition states and Raman processes with two-dimensional atomic deflection
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The deflection of atoms in a �-type configuration passing through two crossed standing light waves is proposed
for the probing and visualization of atomic superposition states. For this goal, we use both the large-dispersive
and Raman-resonant regimes of atom-field interaction, giving rise to position-dependent phase shifts of fields,
and perform double simultaneous spatial measurements on an atom. In this way, it is demonstrated that the
deflection spatial patterns of atoms in a �-configuration passing through modes of standing waves are essentially
modified if the atoms are initially prepared in coherent superpositions of their low-level states as well as when the
superposition states are created during the process of deflection. There are similar results for the joint momentum
distributions of atoms. Furthermore, considering both one-photon- and two-photon-excitation regimes of �

atoms, we also illustrate that the two-dimensional patterns of defected atoms qualitatively reflect the efficiency
of the Raman processes.
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I. INTRODUCTION

The ability to prepare atomic systems in superposition
states is important both in fundamental studies of quantum
mechanics as well as for various technological applications,
including the fields of quantum information and quantum
lithography. It is evident that the application of strong,
near-resonant-to-atomic-transition laser light may result in
the production and probing of the coherent superpositions of
atomic and/or molecular states. In this way, many experiments
have been proposed and realized, particularly with single
trapped ions [1] and microwave-cavity quantum electrody-
namics [2] with a single Rydberg atom coupled to a single
field mode. The creation of such quantum states has also been
realized for molecular systems [3], including large organic
molecules [4]; for atomic ensembles [5]; and even for viruses
[6]. Preparation of the atoms or molecules in the coherent
superposition states may lead to substantial changes in optical
properties of a medium composed of the particles. Some of the
most spectacular examples are electromagnetically induced
transparency with extreme changes in the group velocity
of laser pulses, even including complete stopping of laser
pulses (see Refs. [7,8]); enhancement of the efficiency of
nonlinear optical processes [9,10]; and writing and storage
of optical information in meta-stable quantum states [11–13].
The preparation of quantum coherence has also become of
paramount importance for the growing field of quantum
information science [14–16]. There exist some techniques for
probing quantum interference based on the interaction of an
atom in a superposition state with field modes. In this way,
a final detection is realized by the homodyne measurement
of states of a light field after its interaction with an atomic
system as well as by the methods of quantum tomography [17].
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Particularly, much work has been focused on the applications
and developments of the technique of quantum tomography
for atomic beams (see Ref. [18] and references therein).

One of the basic processes of atom optics is the deflection
of atomic beams when interacting with a standing light
wave inside an optical cavity. In this paper we demonstrate
that production of atomic superposition states is qualitatively
displayed in two-dimensional (2D) patterns of deflected atoms
on two crossed standing waves. The analysis is done in
quantum treatment for three-level atoms in a � configura-
tion, interacting with two crossed standing light waves. We
demonstrate that the deflection patterns of the atomic beam
passing through two crossed standing light waves are modified
if the atoms are initially prepared in coherent superpositions
of the lower-level states or as well as when the superposition
states are created during the process of deflection. Our other
goal is to understand how Raman processes under the general
two-photon-resonance condition are exhibited in the atomic
deflection patterns. Considering different interaction regimes
of a � system with off-resonant standing waves, we have
demonstrated that the deflection patterns, in the transverse
plane to the direction of the center-of-atomic-mass motion,
are essentially different for the cases of one-photon and
two-photon Raman interactions.

The approach proposed relies on the problem of atomic spa-
tial localization. In general, the precise spatial measurements
and localizations of quantum particles have been a subject
of considerable interest since the discussion of Heisenberg’s
famous microscope. A particular class of quantum-optical-
localization schemes suitable to determine the position of
a quantum particle on a subwavelength scale makes use of
standing-wave driving fields (see Refs. [19–26]).

It is well known that when atoms pass a standing-wave
cavity mode, the strength of interaction with a field de-
pends on the positions of the atoms. Thus, quadrature-phase
measurements of the field lead to strong localization of the
atomic position below the wavelength of the field in the
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cavity [19,20]. Recently, atomic-localization and center-of-
mass wave-function measurements via multiple simultaneous
dispersive interactions of atoms with different standing-wave
fields have been investigated [27] in addition to the well-
known results for a single-mode cavity [19–26]. Note that
the analogous scheme of atomic deflection has been recently
considered for the investigation of spatial entanglement in the
deflection of V -type atoms [28,29] as well as �-type atoms
[30]. Thus, we apply the measurement-induced-localization
procedure for our scheme, calculating the conditional position
distribution of atoms while considering the two-mode field to
be in a given reference quadrature-phase state. As it will be
shown here, for narrow initial position distributions of atoms,
our scheme permits producing controllable pattern structures
with feature spacing smaller than the wavelength of the light
in the cavity.

For completeness, we also discuss the visualization of
atomic superposition states in the momentum space. In this
vein, the distribution of deflected atoms in terms of the
transverse atomic moment is calculated. It is evident that for
narrow initial atomic wave packets, wider distributions in the
momentum space will be realized.

This paper is organized as follows. In Sec. II we introduce
the system and obtain the formulas for the conditional position
distribution of atoms. In Sec. III we present the results
for the probing of superposition states for both schemes of
measurement—near the cavity zones and outside the cavity
in far-diffraction zones. The momentum distributions are also
calculated. Section IV is devoted to visualization of the Raman
resonance. Section V concludes the paper.

II. ATOMIC DEFLECTION IN THE PRESENCE OF
TWO-PHOTON RAMAN PROCESSES

Let us consider the quantum dynamics of a three-level atom
with a �-type configuration of energy levels moving along
the z direction and passing through cavities that involve two
crossed one-mode standing waves (see Fig. 1). The atomic
beam is adjusted so that only one atom interacts with the
cavity’s electromagnetic field at a time, and the position
patterns of the deflected atoms in the xy plane are measured.
The transition between the two lower levels |1〉 and |2〉 is
dipole forbidden, and the transitions from the upper level
|3〉 to either of the lower levels |1〉 or |2〉 are allowed.
We focus more specifically on the dispersive limit at which

FIG. 1. Schematic diagrams showing the investigated model.
(a) The atomic beam crossing the interaction region. (b) Energetic
levels of a �-type atom with equal energies of the sublevels inter-
acting with modes of opposite circular polarizations with coupling
constants g1 and g2.

the detuning between the two standing-wave frequencies
and the corresponding atomic-transition frequencies are large
compared with the Rabi frequencies. We also neglect the
atomic damping during the time an atom interacts with the
fields.

We consider two standard types of Hamiltonian depending
on two detunings �1 and �2. If the frequencies of the modes
and the duration τ of the atom-field interaction are adjusted
so that �1 − �2 � π/τ , the case of two-photon resonance
�1 = �2 = � can be realized with the following effective
Hamiltonian

Heff =
∑
i=1,2

h̄g2
i

�
a
†
i aiσii + h̄g1g2

�
(a†

1a2σ12 + a1a
†
2σ21). (1)

Here ai and a
†
i are the annihilation and creation operators of the

ith mode, respectively, while σij = |i〉〈j | is the corresponding
transition operator of the � atom. The couplings of the atom to
the two modes are determined by the spatial-mode functions
g1(x) = g01 sin(k1x) and g2(y) = g02 sin(k2y), where g0i =
E0�ei〈i| �d|3〉, i = 1,2, and ki is the wave vector of the ith mode.
E0 is the so-called electric field per photon. �e1 and �e2 are the
polarization vectors while 〈1| �d|3〉 and 〈2| �d|3〉 are the dipole
moments of the corresponding atomic transitions. The last term
in the expression (1) describes the connection between the two
interaction channels due to two-photon (Raman) transitions
between the |1〉 and |2〉 levels. When the condition of the
Raman resonance is not carried out and the contributions
of the Raman transitions may be neglected, the interaction
Hamiltonian reads as

Heff =
∑
i=1,2

h̄g2
i

�i

a
†
i aiσii . (2)

The initial position distribution of atoms at the entrance of a
cavity is assumed to be Gaussian, i.e.,

|f (x,y)|2 = 1

2π�x�y
e
− (x−〈x〉)2

2(�x)2 e
− (y−〈y〉)2

2(�y)2 (3)

with the widths �x =
√〈(x − 〈x〉)2〉 and �y =√〈(y − 〈y〉)2〉 centered at the nodes of both waves while the

initial atomic states are considered in general as a|1〉 + b|2〉
with a and b being the weights of the atomic lower states in
the coherent superposition. The cavity modes are assumed to
be initially in a two-mode coherent state

|field〉 = |α1〉1 |α2〉2 , |α〉i = e−N/2
∑

n

αn

√
n!

|n〉i , (4)

where |n〉i are the Fock states for the ith mode and N = |α|2.
In this case, the state vector of this system at time t will have
the form

|�(t)〉 =
∫

dxdy
∑
i=1,2

∞∑
n,m=0

	(i)
n,m(x,y,t)|n〉1|m〉2|i〉|x,y〉,

(5)

where the amplitudes 	(i)
n,m(x,y,t) can be derived from the

following equation and its corresponding initial conditions

ih̄
∂

∂t
|�(t)〉 = Ĥeff |�(t)〉 ,
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|�(t = 0)〉 =
∫

dxdyf (x,y)|x,y〉
⊗(a|1〉 + b|2〉) ⊗ |α1〉1|α2〉2, (6)

by substituting |�(t)〉 in Eq. (6) with the expression (5). In the
case of two-photon resonance, the amplitudes are written as

	(1)
n,m(x,y,t)

= f (x,y)

{
aCn,m + G1

[
exp

(
− i t

�
�n,m+1

)
− 1

]}
, (7a)

	(2)
n,m(x,y,t)

= f (x,y)

{
bCn,m + G2

[
exp

(
− i t

�
�n+1,m

)
− 1

]}
, (7b)

where

G1 = g1g2
√

n(m + 1)

�n,m+1
Cn−1,m+1b + g2

1n

�n,m+1
Cn,ma, (8a)

G2 = g1g2
√

(n + 1)m

�n+1,m

Cn+1,m−1a + g2
2m

�n+1,m

Cn,mb, (8b)

where �n,m = g2
1n + g2

2m is the position-dependent Rabi
frequency and

Cn,m = e−(|α1|2+|α2|2)/2

(
αn

1αm
2√

n!m!

)
. (9)

The functions 	(i)
n,m(x,y,t) describe the amplitude distributions

for the positions of atoms in the xy plane. They are proportional
to the atomic-initial-position distribution and also display
nontrivial spatial features due to position-dependent phase
shifts acquired by � atoms passing through standing waves.

It is well known [18,19] that the measurement of the phase
shift of the cavity fields can be interpreted as a quantum
spatial localization of the atom. In this way, below we inves-
tigate the deflection of atoms with simultaneous quadrature
measurements of the field. We have studied this problem in
details for one-dimensional atomic deflection as well as for
the two-dimensional case in the dispersive limit, assuming a
negligibly small contribution of the Raman transitions in the
system. In this case, there is no exchange of energy between
the field and the atom, i.e., the interaction does not change the
internal atomic state. This situation is cardinally changed for
the � atom under the two-photon-resonance condition. Indeed,
in this case both amplitudes, 	(1)

n,m(x,y,t) and 	(2)
n,m(x,y,t),

corresponding to the two atomic states |1〉 and |2〉, govern the
spatial distribution of deflected � atoms. Thus, the interaction
between the atom and the intracavity field beside the initial
position of the atom depends also on its internal states. The
latter allows visualization of the atomic coherence in the final
position distribution of the atom.

III. PROBING AND VISUALIZATION OF THE ATOMIC
COHERENCE BY THE DEFLECTION PATTERNS

A. Position distributions

In this section, we focus on studies of position distributions
assuming that the cavity modes are in a given reference state.
Two schemes of joint measurements have been proposed
up to now, based on quadrature measurements of standing-

wave fields as well as on measurements of the phase states
[18,19]. We start by considering the case of the quadrature
measurement; the other case will be considered in Sec. IV.
To realize this we consider implementation of a quadrature
measurement on the field and use the following expression for
the field quadrature state:

|χθ 〉 = (2π )−1/4e[−(a†eiθ −χθ )2/2+χ2
θ /4]|vac〉. (10)

Here, parameter θ is an angle characterizing the one-mode
field quadrature in the Wigner plane, χθ is the corresponding
eigenvalue, and |vac〉 denotes the vacuum state with zero
photons in the cavity. Here, we are interested in the calculation
of the probability of finding an atom at position (x,y) provided
that a measurement of the two field modes with angles θ1 and θ2

is performed. Using the reference state as |χθ1〉1|χθ2〉2, where
the quadrature state |χθi

〉i corresponds to the operator ai , we
obtain the joint probability as

W (χθ1 ,χθ2 ,x,y)

=
∑
i=1,2

|1〈χθ1 |2〈χθ2 |〈i|〈x,y|�(t)〉|2

=
∑
i=1,2

∣∣∣∣∣
∞∑

n,m=0

	(i)
n,m(x,y,t)1〈χθ1 |n〉12〈χθ2 |m〉2

∣∣∣∣∣
2

. (11)

We obtain the general expression for the factor 〈χθ |n〉 using
the formula (10). This matrix element can be calculated as
follows:

〈χθ |n〉 = 1

π

∫
〈χθ |α〉〈α|n〉d2α, (12)

where

〈χθ |α〉 = e−|α|2/2

(2π )1/4

[
e−(αe−iθ−χθ )2/2+χθ /4

]
(13)

and

〈α|n〉 = e−|α|2/2 (α∗)n√
n!

. (14)

Similarly, the factors corresponding to the states |χθ1〉1 and
|χθ2〉2 can be calculated.

In the following, we show how various initial atomic states
in the form a|1〉 + b|2〉, where |a|2 + |b|2 = 1, with definite
quadrature measurements can change the joint probability.
Some typical results are depicted in Fig. 2 as 2D distri-
butions for the various superposition states a|1〉 + b|2〉 as
well as for the joint probabilities in the 3D representation.
The examples are taken for the measurement angles θ1 =
θ2 = 0, α1 = α2 = 2, χθ1 = χθ2 = 4, and �x = �y = 0.2λ1,
where λ1 = 2π/k1. Considering the 2D position distributions
at the fixed parameters θ1 = θ2 and α1 = α2, we conclude that
the atomic distributions are turned in the xy plane around the
center x = y = 0, depending on the coefficients a and b. The
figures showing these features are presented in Figs. 2(a)–2(f).

As our analysis shows, the orientation of the distribution
changes with the value of the fraction a/b when it is varying
from −∞ to ∞ and any given orientation corresponds to
a particular value of a/b. In general, the fraction a/b is a
complex number, and we can represent it as (a/b)reale

iϕ , where
ϕ ∈ (−π/2,π/2) and (a/b)real ∈ (−∞,∞). It turns out that
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FIG. 2. (Color online) A set of diagrams showing the atomic distribution’s circular dependence on the initial internal atomic state.
Bright colors indicate high probability, and dark colors indicate low probability. The parameters are θ1 = θ2 = 0, α1 = α2 = 2, χθ1 = χθ2 =
4, �x = �y = 0.2λ1, and λ1 = 2π/k1. (a) a = −1, b = 0; (b) a = −1/

√
2, b = 1/

√
2; (c) a = −0.2, b = 0.98; (d) a = 0.2, b = 0.98;

(e) a = 1/
√

2, b = 1/
√

2; and (f) a = 1, b = 0. (a1) is the same as (a) in the 3D representation. (e1) is the same as (e) in the 3D representation.

the additional factor eiϕ does not change the orientation of the
spatial distribution but changes the level of its stretching in the
direction of orientation. Thus, the distributions corresponding
to (a/b)real and (a/b)reale

iϕ are qualitatively the same. This
fact provides the possibility to calculate the (a/b)real fraction
from a given final-atomic-position distribution.

Thus, we demonstrate in Fig. 2 that the atomic superposition
state can be qualitatively probed in two-dimensional patterns
of deflected atoms. Indeed, the distribution corresponding to
the superposition state 1√

2
(|1〉 + |2〉) [Fig. 2(e)] is turned on

π/4 relative to the position distribution of � atoms that are
initially in the state |1〉 [Figs. 2(a) and 2(f)].

As our analysis shows, for higher values of the parameters
α1 and α2 than those that have been used in our example,
the forms of the distributions are essentially the same. The
slight differences are related to additional relatively small
structures that do not change the spatial-orientation features
of the distribution. Thus, obtained results are applicable also
for more intensive electromagnetic fields. The choice of the
particular values θ1 = θ2 = 0 of the parameters θ1 and θ2 are
conditioned by the explicitness of the effects described above.
The above results are mainly valid also for the other values
of the measurement angles θ1 and θ2 although they differ in
details from the results presented in Fig. 2.

B. Position distribution in the far-diffraction zone

For the completeness of our analysis, we added in this
section calculations for the position distribution of atoms in
the far-field-diffraction zone. This analysis is important for
an experimental verification of the obtained effects. It allows
us to consider the obtained effects for realistic experimental
conditions and hence defining the spatial resolution necessary
for the detection of these effects.

To modify previous calculations, we use the expression for
the free Hamiltonian of atoms Hfree = p̂2/(2m) and rewrite

the state vector of a system at time t + t0, where t is the free
propagation time, in the following form

|�(t + t0)〉 = exp

(
− i

h̄
Hfreet

)
|�(t0)〉

=
∫

dxdy
∑
i=1,2

∞∑
n,m=0

	̄(i)
n,m(x,y,t)|n〉1|m〉2|i〉|x,y〉,

(15)

where

	̄(i)
n,m(x,y,t) = − iM

2πh̄t

∫
dx ′dy ′	(i)

n,m(x ′,y ′,t0)

× exp

{
iM
2h̄t

[(x − x ′)2 + (y − y ′)2]

}
. (16)

From Eq. (15), it is clear that for calculations of the
position distribution in the far-field-diffraction zone, we can
use the expression (11) just by replacing 	(i)

n,m(x,y,t) with
	̄(i)

n,m(x,y,t). The results of the numerical calculations of the
distributions for the near- and far-field regions are depicted
in Fig. 3, which shows a slight difference between them.
The distribution in Fig. 3(b) corresponds to the distance
L = vt = 50 cm from the exit of the cavity at which v is
the velocity of the atomic-mass center in the z direction, and
for its value we have chosen 100 m/s.

C. Momentum distributions

The other approach analyzing the atomic deflection process
concerns the momentum distributions of atoms. In this section,
we shortly discuss the momentum distribution in the deflected
patterns of the Gaussian atomic wave packet, assuming the
width of the wave packet to be much smaller than the
wavelength of the modes. We calculate the probability of
finding an atom with the transverse momentum (px,py)
provided that a measurement of the two field modes with
angles θ1 and θ2 is performed. This procedure is similar to
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FIG. 3. (Color online) The position distribution W (x,y) for �x =
�y = 0.2λ1, λ1 = 2π/k1, and the initial internal state of the atom a =
1 and b = 0. Brighter colors indicate higher values of the distribution.
The distribution (a) at the exit of the cavity and (b) at a distance
L = vt = 50 cm from the exit of the cavity.

the calculation of the conditional position distribution made
above. Thus, the momentum distribution is written as

P (χθ1 ,χθ2 ,px,py)

=
∑
i=1,2

|1〈χθ1 |2〈χθ2 |〈i|〈px,py |�(t)〉|2

=
∑
i=1,2

∣∣∣∣∣
∞∑

n,m=0

	̃(i)
n,m(px,py,t)1〈χθ1 |n〉12〈χθ2 |m〉2

∣∣∣∣∣
2

, (17)

where the amplitude in the momentum space is calculated by
the Fourier transformation over the spatial variables

	̃(i)
n,m(px,py,t) = 1

2π

∫ ∫
dxdy	(i)

n,m(x,y,t)

× exp

[
− i

h̄
(pxx + pyy)

]
. (18)

We illustrate the momentum distributions for narrow initial
atomic wave packets, which obviously correspond to a wider
distribution in the momentum space. As the analysis shows,
in contrast to the position distributions, the dependence of
the momentum distributions on initial internal states is not so
evident, but in some cases it is still possible to find visible
relations between the distribution and the initial internal state.
The momentum distributions for two cases of initial atomic
superposition states with the coefficients a = −1/

√
2 and

FIG. 4. (Color online) The momentum distribution P (px,py) for
�x = �y = 0.2λ1 and λ1 = 2π/k1. Brighter colors indicate higher
values of the distribution. The initial internal states of the atom are
(a) a = −1/

√
2, b = 1/

√
2 and (b) a = 1/

√
2, b = 1/

√
2. We use

the dimensionless momenta scaled in units of h̄k.

b = 1/
√

2 and a = 1/
√

2 and b = 1/
√

2 are shown in Fig. 4.
Comparing Figs. 4(a) and 4(b), we realize that the ranges of
localizations of the momenta for these cases are stretched in
perpendicular directions, i.e., the distribution corresponding
to the superposition state 1√

2
(|1〉 + |2〉) is turned on π/2

relative to the momentum distribution of � atoms that are
initially in the state 1√

2
(|1〉 − |2〉). Comparing the results of

the momentum distributions with the corresponding position
distributions in Figs. 2(b) and 2(e), we conclude that they are
in accordance with uncertainty relations.

IV. EVIDENCE OF RAMAN RESONANCE IN
ATOMIC DEFLECTION

In this section we illustrate the principal differences
between the cases of interaction in Raman resonance and
ordinary off-resonance from the point of view of an atomic-
beam deflection by two crossed standing waves. In this way,
we derive the amplitudes 	(i)

n,m(x,y,t) in Eq. (5) for the
interaction Hamiltonian (2). For the atomic initial internal state
a|1〉 + b|2〉, the amplitudes are written as

	(1)
n,m(x,y,t) = f (x,y)Cn,m exp

(
−i

g2
1 t

�1
n

)
a, (19a)

	(2)
n,m(x,y,t) = f (x,y)Cn,m exp

(
−i

g2
2 t

�2
m

)
b. (19b)

Considering different regimes of interaction of the � atom
by using the spatial amplitudes of Eqs. (7), (8), and (19),
we demonstrate that the deflection patterns are essentially
different for the cases of one-photon and two-photon inter-
action. The most convenient approach to realize our goal is the
investigation of the conditional position distribution of atoms,
provided that the two-mode field is in a given phase state

|�R〉 = |ϕ1〉1|ϕ2〉2, (20)

where

|ϕ〉i = 1√
2π

∑
n

e−iϕn|n〉i . (21)

The discussed distribution is

W (x,y) =
∑
i=1,2

|〈x,y|〈i|〈�R|�(t)〉|2. (22)

Using the formulas (5) and (19)–(22), we obtain the
following expression for W (x,y):

W (x,y) = 1

(2π )2

∑
i=1,2

∣∣∣∣∣
∑
n,m

	(i)
n,m(x,y,t)e−i(nϕ1+mϕ2)

∣∣∣∣∣
2

. (23)

Obviously, distributions (19) and (23) crucially depend on
phases ϕ1 and ϕ2, which concretize the ranges of atom-wave
interactions. We choose ϕ = 0, which gives the best spatial
localization of the scattered atoms. Thus, the probability
W (x,y,ϕ = 0) = W (x,y) describes the selected scattering
events of only those atoms that have passed the nodes of the
field with the spatial-mode functions sin(k1x) and sin(k2y).
As it was shown earlier, such a joint measurement procedure
plays the role of a spatial filter. Experimentally, this procedure
can be realized by a mechanical slit or mask placed in front of
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FIG. 5. (Color online) The position distribution function W (x,y)
for the case of �1 �= �2, �x = �y = 0.3λ1, and λ1 = 2π/k1. The
initial state of the atom is described by (a) a = 1, b = 0 and
(b) a = 1/

√
2, b = 1/

√
2.

a node of the electromagnetic field. For a detailed discussion
of this point, see Ref. [18].

The results of concrete calculations based on Eq. (23) are
depicted in Figs. 5 and 6 for the different regimes of interaction.
In Fig. 6 the position-distribution functions W (x,y) are
depicted in the case of two-photon resonant interaction and for
two different choices of the initial coherence of the internal
atomic state. As we can see, these results are similar to those in
Figs. 2(a1) and 2(e1) obtained for the quadrature-measurement
scheme. The case of different detunings leading to one-photon
atomic transitions is depicted in Fig. 5. Comparing two types
of the graphics allows us to make clear the peculiarities of
coherent Raman processes in comparison with corresponding
one-photon processes from the point of view of atomic optics.

Let us consider the probability distributions depicted in
Figs. 5(a) and 6(a) that correspond to the situation when atoms
enter the cavity being initially in the lower state |1〉. As we
see, the position distribution in Fig. 5(a) shows a high spatial
localization of deflected atoms in the x direction while in
the y direction their behavior has remained unchanged, i.e.,
determined by the initial Gaussian distribution. In other words,
the impact of the initial field state is the one-dimensional
distribution of the atoms. It could be anticipated because in this
case the atom and the field interact through only one channel
(the interaction between the first mode of the field and the
|1〉 ↔ |3〉 transition) as the atom, due to the off-resonant nature
of the interaction, always remains in the state |1〉. In contrast
to this, in the case of two-photon resonance, the two-photon
|1〉 ↔ |2〉 transition leads to the activation of the interaction
between the second mode of the field and the |2〉 ↔ |3〉
transition. As a result, the structure of the position distribution
in Fig. 6(a) has acquired some features indicating this fact.
The distribution showing the localization near some points in
both the x and y directions is described by two-dimensional
patterns. Particularly, it is expressed by the emergence of four
additional walls forming a structure resembling two closed
cycles [see Fig. 6(a)].

If the atom enters the cavity in a superposition of two lower
|1〉 and |2〉 states, the impact of the field on the atomic position
distributions contains two-dimensional localization patterns
even in the case of the absence of Raman transitions [see
Figs. 5(b) and 6(b)]. The difference between the distributions
of the two considered regimes becomes obvious when we
analyze the graphics in the following manner. If Raman
resonance is violated, the position distribution [see Fig. 5(b)]

FIG. 6. (Color online) The position distribution function W (x,y)
for the case of �1 = �2, �x = �y = 0.3λ1, and λ1 = 2π/k1. The
initial state of the atom is described by (a) a = 1, b = 0 and
(b) a = 1/

√
2, b = 1/

√
2.

is described by two perpendicular planes of symmetry passing
through the x and y axes. It expresses the fact that the
impact of the interaction between the first mode and the
|1〉 ↔ |3〉 transition and the impact of the interaction between
the second mode and the |2〉 ↔ |3〉 transition are independent.
They depend only on the populations in the corresponding
atomic levels, which in this regime at the beginning of
the interaction are equal to |a|2 and |b|2, respectively [see
Eq. (1)]. In the two-photon-resonance regime, the |1〉 ↔ |2〉
transition destroys this independence and, hence, leads to the
breaking of the symmetry. This fact is evidently reflected in
Fig. 6(b) in which x and y are not axes of symmetry for the
distribution.

V. SUMMARY

By calculating the concrete conditional spatial distributions
of �-structured atoms after passing two crossed standing
light waves, we have shown that two-dimensional patterns
of deflected atoms contain important information concerning
the low-level atomic superposition states as well as reflect
the efficiency of the two-photon resonant Raman process.
Thus, we have developed an approach for the testing and
visualization of superposition states as well as for probing
the Raman resonance in a new nonspectroscopic manner.
In more detail, we have studied how various initial atomic
superposition states a|1〉 + b|2〉 in the Gaussian atomic beam
are visualized in both 2D and 3D distributions of the joint
probabilities. In this way, we have demonstrated that at fixed
values of the parameters θ1 = θ2 and α1 = α2, the atomic
spatial patterns are turned in the xy plane around the center x =
y = 0 on an angle depending on the values of the coefficients
a and b describing the weights of the atomic-lower-state
probabilities in the initial superposition state. This analysis
has been done for both near- and far-field-diffraction zones
as well as in the momentum space. Considering two regimes
of the interaction of �-type atoms with a two-mode field,
we have clearly demonstrated with the spatial patterns the
peculiarities of coherent Raman processes in comparison with
corresponding one-photon processes from the point of view of
atomic optics.
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