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Whispering-gallery microcavity lasers possess ultralow thresholds, whereas convenient free-space optical
excitation and collection suffer from low efficiencies due to their rotational symmetries. Here we analytically
study a three-dimensional microsphere coupled to a nanosized scatterer in the framework of quantum optics.
It is found that the scatterer is capable of coupling light in and out of the whispering-gallery modes (WGMs)
without seriously degrading their high-Q properties, while the microsphere itself plays the role of a lens to focus
the input beam on the scatterer and vice versa. Our analytical results show that (1) the high-Q WGMs can be
excited in free space, and (2) over 50% of the microcavity laser emission can be collected within less than 1◦.
This coupling system holds great potential for low-threshold microlasers free of external couplers.

DOI: 10.1103/PhysRevA.85.013843 PACS number(s): 42.60.Da, 42.55.Sa, 42.50.Ct

I. INTRODUCTION

Whispering-gallery mode (WGM) microcavities represent
one of the most promising candidates for a wide range of fun-
damental studies and applications, including cavity quantum
electrodynamics (QED), cavity optomechanics, microlasers,
filters, and biological sensors (for reviews, see [1–4]). Un-
fortunately, due to the rotational symmetry, they suffer from
inefficient coupling with the outside modes, which limits their
applications, especially in microlasers [5]. One of the solutions
is the tapered fiber coupling method [6–8], which possesses
nearly unity efficiency. Nevertheless, convenient free-space
coupling without near-field couplers is eagerly required be-
cause of the experimental limitations [9–11]. For example,
the external couplers are not convenient at low-temperature
chambers; for a higher-index-material resonator [12,13], its
coupling with the tapered fiber is inefficient due to the
phase mismatch. Alternatively, deformed cavities (also named
asymmetric resonant cavity, ARC) are proposed [14–30],
because they allow high-efficiency free-space excitation and
directional emission. The latest developments in ARC studies
include a limaçon-shaped cavity [31–34] and a circular disk
cavity with a linear [35] or point defect [36,37] in it, but
the emission divergence angles are still too broad. Very
recently, highly directional outputs are obtained in an elliptical
microdisk with a notch at the boundary [38], and by placing
a nanoparticle into the evanescent wave region of microcav-
ities [39]. These investigations focused on two-dimensional
(2D) microcavity systems by resorting to numerical
simulations.

However, 2D microcavities exhibit relatively low quality
(Q) factors in experiment and there are significant energy
losses in the perpendicular dimension. Thus, there is an interest
to employ three-dimensional (3D) microcavities, whereas
it is difficult to perform numerical simulations. Here we
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present a cavity quantum electrodynamics treatment of a 3D
microsphere-scatterer coupling system, and derive analytical
expression of the free-space excitation and the emission
directionality. Our results explicitly reveal the underlying
physics and are also suitable for the 2D case.

The paper is organized as follows. In Sec. II, we briefly de-
scribe the microsphere-scatterer coupling system. In Secs. III
and IV, we investigate the free-space excitation of WGMs and
free-space collection of scattered lasing modes, respectively.
Conclusions are presented in Sec. IV.

II. SCATTERER-MICROSPHERE SYSTEM

Figure 1(a) illustrates a schematic of the present system.
A spherical subwavelength scatterer (radius rs) locates on the
surface of a microsphere (radius R) which is doped with gain
medium for the microlaser applications. A Gaussian pump
laser beam (vacuum wavelength λ1, satisfying rs � λ1 � R)
with the polarization in the x-axis direction propagates along
the −z axis, and is incident to the microsphere. Here we have
established the Cartesian and spherical coordinate systems
with the scatterer located at the origin O, as sketched in
the bottom left of Fig. 1(a). The subwavelength scatterer
can be treated as a dipole [40,41], with the dipole moment
induced by the electric fields of the input Gaussian modes, the
excitation and lasing WGMs, and the reservoir modes in the
free space. The Rayleigh scattering results in the interaction
among these modes, by which the input photons are scattered
into the excitation WGMs, and the lasing photons in the WGMs
are scattered into the reservoir modes. The scattered lasing
photons are collimated by the microsphere, giving rise to
directional emission. In Fig. 1(b) the simulation results of the
wave approach are presented, demonstrating this directional
emission mode. As a universal paradigmatic approach, the
quantum treatment of Rayleigh scattering is widely used and
well demonstrated [40,42–45]. This quantum treatment is
necessary because in such a scatterer-microsphere coupling
system there exists a phenomenon similar to the Purcell effect,
since the high state density of WGMs causes the enhanced
scattering between the WGMs and the free-space reservoir
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FIG. 1. (Color online) (a) Schematic illustration of the scatterer-
microsphere coupling system (not to scale). Bottom left: the cor-
responding Cartesian and spherical coordinate systems, with θ the
emitting angle and φ the azimuth angle. (b) Finite element simulations
(COMSOL MULTIPHYSICS) of the directional emission mode. The color
represents the square root of the electric field’s absolute value |E|1/2.
(For clarity, we use |E|1/2 in order to increase the contrast.) The red
arrows indicate the direction of power flow. In the simulation we use
the radii R = 10 μm, rs = 200 nm, microsphere’s refractive index
n = 1.7.

modes [40,42]. In the following we adopt this quantum
approach to analyze the free-space excitation of WGMs and the
free-space collection of scattered lasing modes, respectively.

III. FREE-SPACE EXCITATION

In this section, we develop the theoretical model to describe
the scattering-induced coupling among the surrounding optical
modes. By writing down the total Hamiltonian, we derive
the equations of motion (quantum Langevin equations) for
the free-space excitation process. Then we find analytical
expressions for the coupling coefficients and the excitation
efficiency. We also address the focusing effect of the micro-
sphere, which ensures efficient free-space excitation. Lastly,
specific examples are presented.

A. General Hamiltonian and quantum Langevin equations

Under the rotating-wave approximation, the total Hamilto-
nian for the free-space excitation process can be written as

H tot
1 = H f

cav + H f
in + H f

res + H i
cav-cav + H i

cav-in + H i
cav-res.

(1)

Here the superscript f (i) labels free (interaction) terms. The
first three terms (h̄ = 1)

H f
cav =

∑
m

ω1,ma†
mam, (2)

H f
in =

∫ +∞

−∞
ωb†(ω)b(ω)dω, (3)

H f
res =

∑
j

ωj c
†
j cj , (4)

describe the free radiation parts, where am, b(ω), and cj

denote annihilation operators of the mth excitation WGM,
the input modes, and the j th reservoir mode, with frequencies
ω1,m, ω, and ωj , the commutation relation [am,a

†
m′ ] = δm,m′ ,

[b(ω),b†(ω′)] = δ(ω − ω′), [cj ,c
†
j ′ ] = δj,j ′ , respectively. For

the WGMs in Eq. (2), we can neglect high-order WGMs and
focus on the fundamental WGMs, since they distribute around
the equator of the microsphere, possess the minimum mode
volume, the maximum Q factor, and are the typical lasing
modes in actual experiments. Also, in the system described
in Fig. 1(a), only transverse-electric (TE) WGMs can be
efficiently excited, and transverse magnetic (TM) WGMs can
be safely neglected since the electric field of the TM WGMs
are almost orthogonal to that of the input modes. Therefore,
in Eq. (2) the summation index m runs through clockwise
(CW) and counterclockwise (CCW) propagating fundamental
WGMs, with a degenerate frequency denoted as ω1,m ≡ ω1.

The interaction terms of Eq. (1) are given by

H i
cav-cav =

∑
m,m′

g1,m,m′a†
mam′ , (5)

H i
cav-in =

∑
m

∫ +∞

−∞
[igin,m(ω)b†(ω)am+H.c.]dω, (6)

H i
cav-res =

∑
m,j

(g1,m,j a
†
mcj + H.c.). (7)

Here H i
cav-cav describes the interaction between the cavity

modes, which results in the scattering into the same (m = m′)
or the counterpropagating (m �= m′) WGMs with amplitude
coupling strengths g1,m,m′ ; H i

cav-in represents the scattering
between the input modes and the WGMs with coefficients
gin,m(ω); and H i

cav-res describes WGM-reservoir scattering with
coefficients g1,m,j . Without loss of generality, in the following
the coupling coefficients g1,m,m′ , gin,m(ω), and g1,m,j are
assumed to be real for notational convenience. The degenerate
CW and CCW WGMs have the same coupling strength in
the scattering process, and thereby we denote g1,m,m′ ≡ −g1,
gin,m(ω) ≡ gin(ω), and g1,m,j ≡ g1,j . Note that in Eq. (1) we
have neglected interacting terms such as H i

in-in, H i
res-res, and

H i
in-res, since they do not directly affect the cavity modes, and

have a minor effect on the system dynamics.
The eigenmodes of the system are the symmetric

and antisymmetric standing modes, given by a± = (aCW ±
aCCW)/

√
2. Using the Heisenberg equations and the Markov

approximation [46,47], we obtain (see Appendix A for details)

da+
dt

= −i(ω1 − 2g1)a+ − (κin + κR)a+ −
√

2κinbin − ξ,

(8)
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where

κin = 2πg2
in(ω1 − 2g1), (9)

κR = 2π
∑

j

g2
1,j δ(ω − ω1 + 2g1), (10)

denotes the input-WGMs energy coupling strength and the
decay of the WGMs induced by the Rayleigh scattering to
the reservoir. bin is the input field and ξ is the noise operator
related to the reservoir.

B. Scattering coefficients and excitation efficiency

In the full quantum theory, gin(ω) and g1 can be calculated as
follows. The quantized electric field of the excitation WGMs at
position R is given by E1(R) = [E(+)

1 (R) + E
(−)
1 (R)]êx . Here

êx is the unit vector along the x axis direction,

E
(+)
1 (R) =

√
h̄ω1

2ε0εcV1
f1(R)(aCWeik1·R + aCCWe−ik1·R) (11)

is the positive frequency component of the field and E
(−)
1 (R)

is its adjoint; k1 is the wave vector of the CW mode; ε0 is
the dielectric permittivity of the vacuum and εc denotes the
relative permittivity of the microsphere;

V1 =
∫

ε(R)|E1(R)|2 dR3

max[ε(R)|E1(R)|2]
(12)

is the mode volume of the WGMs, which can be calculated
as [48]

V1 =3.4π3/2

(
λ1

2πn

)7/6

R11/6 (13)

for a microsphere; and f1(R) = |E1(R)/E1, max| is the normal-
ized field distribution function of the WGMs. The quantized
electric field of the input beam at position (r,z) is given by
Ein(r,z) = [E(+)

in (r,z) + E(−)
in (r,z)]êx , where r = (xêx,yêy).

The positive frequency component reads

E(+)
in (r,z) = −i

∑
k

√
h̄ωk

2ε0V k

fin,k(r)bke
ikz, (14)

where εb denotes the relative permittivity of the surrounding
medium, bk is the annihilation operator of the kth mode, Vk

[fin,k(r)] is the corresponding mode volume (field distribution
function). The expression can be rewritten as an integral
form [47]

E(+)
in (r,z) = −i

∫
dω

√
h̄ω

4πε0cA(z)
fin(r)b(ω)eikz. (15)

Here c is the speed of light in vacuum; A(z) is the mode area
on the x-y plane, given by

A(z) =
∫

ε(r)|Ein(r)|2 dr2

max[ε(r)|Ein(r)|2]
. (16)

For Gaussian beam A(z) = ∫∫ ∞
−∞ e−2(x2+y2)/w(z)2

dx dy =
πw(z)2/2, where w(z) is the spot radius at z. The quantized

electric field of the reservoir is given by Ej (R) = [E(+)
j (R) +

E
(−)
j (R)]êj , where

E
(+)
j (R) =

√
h̄ωj

2ε0V j

aj e
ikj ·R, (17)

with Vj , kj , and êj being the mode volume, wave vector, and
unit vector along the polarization direction, respectively, of the
j th reservoir mode.

The interaction via scattering yields the Hamiltonian
[40,42,43,45]

H i = − 1
2 ps · Es, (18)

where

Es = E1(0) + Ein(0,0) + Ej (0), (19)

ps = ε0αEs (20)

are the total electric field at the position of the scatterer (the
origin O of the coordinate system) and the total polarization of
the scatterer; α = 4πr3

s (εs − 1)/(εs + 2) is the polarizability
of the spherical scatterer with εs being its relative permittivity.
Note that for Gaussian beam the maximum electric field is at
the center of the beam, yielding fin(0) = 1. Using the above
equations, we obtain the coupling coefficients as

g1 = αω1f
2
1 (0)

2εcV1
, (21)

gin(ω) = −1

2
αf1(0)

√
ω1ω

2πεccV1As
, (22)

g1,j = −1

2
αfc(0)

√
ωlωj

εcVlV j

(êx · êj ), (23)

and thereby the in-coupling strength can be obtained as

κin = α2f 2
1 (0)ω1(ω1 − 2g1)

4εccV1As
, (24)

κR = (n5 + 1)α2ω1(ω1 − 2g1)3f 2
1 (0)

12πc3εcV1
, (25)

where As = πw2
s /2, with ws being the spot radius at the z = 0

plane (where the scatterer is located).
The excitation efficiency can be defined as η = 1 − Tmin,

where Tminis the minimum value of the transmission. From
Eq. (8), we obtain (see Appendix B for details)

η = 4κin(κ0 + κR)

(κ0 + κin + κR)2
. (26)

C. Focusing effect of the microsphere and specific examples

To realize efficient coupling, the input beam should be
focused into a small spot on the scatterer, since κin is in
inverse proportion to the mode area As, as shown in Eq. (24).
In fact, the microsphere is a natural optical lens which
possesses ultrashort focal length, capable of focusing the light
spot significantly. Numerical simulation shows that circular
dielectric cylinders illuminated by a plane wave can generate
nanojets with waists smaller than the diffraction limit [49,50].
Here we use Gaussian beam input and analytically treat the
problem using Gaussian beam transform laws. The sphere can
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FIG. 2. (Color online) (a) Illustration of the microsphere-induced
focusing effect, with w0 being the input beam waist and ws being the
resulting spot radius at the z = 0 plane, after being focused by the
microsphere. (b) ws vs w0 for different cavity refractive index n. Inset:
spot radius minification ws/w0 as a function of w0. The dotted vertical
lines indicate w0 = 5 μm. Here the microsphere’s radius R = 10 μm.

be viewed as a thick lens, with the focal length

F = nR

2(n − 1)
, (27)

where n is the relative refractive index between the sphere
and the environment (n = √

εc). As depicted in Fig. 2(a), the
input light is assumed to be Gaussian beam with a waist radius
w0 (w0 < R), and the distance between the beam waist and
the center of the microsphere is s. After being focused by the
sphere, the beam waist becomes

w′
0 = Fw0√

(s − F )2 + z2
R

, (28)

with its distance to the center of the microsphere given by

s ′ = s(s − F ) + z2
R

(s − F )2 + z2
R

F, (29)

where zR ≡ πw2
0n/λ1 is the Rayleigh range. Then the spot

radius at the z = 0 plane is

ws = w′
0

√
1 +

(
s ′ − R

z′
R

)2

, (30)

with z′
R ≡ πw′2

0 n/λ1.
In Fig. 2(b) we give a specific example, where R = 10 μm,

s = 0; for dopant Er3+, the excitation wavelength λ1 = 977 nm
(lasing wavelength λ2 = 1550 nm). We plot the resulting spot
radius ws as a function of the input beam waist w0 for different
refractive index n = 1.5,1.7,1.9. It is shown that for relatively
large input beam waist, the microsphere is able to focus the

beam intensely, especially when n approaches 2. For F � zR,
i.e., w2

0 
 λ1R/[2π (n − 1)], we obtain ws � (|2 − n|/n)w0,
which indicates a |2 − n|/n times decrease of the sport radius,
as further plotted in the inset of Fig. 2(b). This is consistent with
the ray optics predictions. Therefore, it is of great advantage
to make use of the cavity itself as a microsized lens.

Now we study the in-coupling strength κin and Rayleigh-
scattering-induced decay κR as a function of the scatterer’s
radius rs as shown in Figs. 3(a) and 3(b), where we have
set w0 = 5 μm, and other parameters: εs = 12 (silicon),
f1(0) = 0.4. (We will use these parameters unless specified
otherwise.) The free-space excitation efficiency for different
radii of both the scatterer and the microsphere is presented
in Figs. 3(c) and 3(d), which show that a more than 10%
excitation efficiency can be obtained for suitable parameters.
In Fig. 3(c), for small scatterer, the cavity intrinsic decay κ0

dominates over κin and κR, which results in low excitation
efficiency. For a large scatterer, κ0 can be neglected compared
with κR, yielding a constant excitation efficiency decided by
κin and κR. In Fig. 3(d), smaller microspheres possess smaller
mode volumes, resulting in larger κin and κR, and thereby larger
excitation coefficients. In addition, smaller microspheres have
stronger focusing effects, leading to larger κin. To obtain
a better excitation efficiency, we should increase κin and
meanwhile decrease κ0 and κR. This can be realized by using
a smaller input beam waist and by using microcavities with
proper refractive index, which lead to the small mode area As,
as discussed above.

IV. FREE-SPACE COLLECTION

For the free-space collection process, the Hamiltonian is
similar to that of the free-space excitation process [Eq. (1)]
by dropping the terms containing the input modes. Note that

FIG. 3. (Color online) (a),(b) In-coupling strength κin and
Rayleigh-scattering-induced decay κR as a function of the scatterer’s
radius rs for different cavity refractive index n. (c),(d) Excitation
efficiency η as a function of rs and R. In (a)–(c), we use R = 10 μm,
corresponding to the dotted vertical line in (d); in (d), rs = 50 μm,
corresponding to the dotted vertical line in (a)–(c).
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the energy scattered from the lasing WGMs into the reservoir
modes is just the output of laser emission. Quite different
from the ordinary case in which this kind of scattering leads
to pure damping and is always harmful, here it is a kind of
useful resource and plays a key role in obtaining directional
laser emission. This scattering offers an interface between the
WGMs inside the microcavity and the optical modes outside
the cavity, where we use the coefficient κout to denote the
out-coupling strength. Following the calculation of scattering
coefficients in the above section, we obtain

κout = 2π
∑

j

g2
2,j δ(ω − ω2 + 2g2) (31)

= (n5 + 1)α2ω2(ω2 − 2g2)3f 2
2 (0)

12πc3εcV2
, (32)

where

g2 = αω2f
2
2 (0)

2εcV2
, (33)

g2,j = −1

2
αf2(0)

√
ω2ωj

εcV2V j

(êx · êj ), (34)

and V2 [f2(0)] is the mode volume (field distribution function)
of the lasing WGMs.

Figure 4 plots κout as a function of the radii of the scat-
terer and the microsphere. For rs = 50 nm and R = 10 μm,

FIG. 4. (Color online) Out-coupling strength κout as a functions
of the scatterer’s radius rs (a) and the microsphere’s radius R (b) for
different cavity refractive index n.

FIG. 5. (Color online) (a) Spherical plot of u(θ,φ). (b) u(θ,φ) vs
θ for various φ. Inset: the corresponding polar plot of u(θ,φ). Here
we use n = 1.5.

κout is several megahertz, which corresponds to Qout =
ω2/κout ∼ 108. Therefore, the high-Q properties of the lasing
modes can be maintained.

In the following we analyze the emission directionality
originating from Rayleigh scattering and the collimating effect
of the microsphere. Finally, the emission directionality and
energy collection ratio for various parameters are presented.

A. Scattering directionality

The factor êx · êj in Eq. (34) indicates that g2,j depends on
the direction, resulting in the direction-dependent out-coupling
coefficient κ(θ,φ), which satisfies κout = ∫∫

κ(θ,φ)d, with
 being the solid angle and d = sin θ dθ dφ. After normal-
ization, we can define u(θ,φ) = κ(θ,φ)/κout, which can be
calculated as

u(θ,φ) =
⎧⎨
⎩

3n5(1−sin2 θ cos2 φ)
4π(n5+1) , 0◦ � θ < 180◦,

3(1−sin2 θ cos2 φ)
4π(n5+1) , 180◦ � θ < 360◦.

(35)

The normalized out-coupling coefficient u(θ,φ) represents
the angular distribution of output energy. In Fig. 5(a) we
present u(θ,φ) for given azimuth angles φ = 0◦,45◦,90◦,
respectively. Note that for 0◦ � θ < 180◦ the environment is a
dielectric cavity with permittivity of εc, while for 180◦ � θ <

360◦ it is a vacuum with permittivity of 1. As shown in Fig. 5,
the light tends to be scattered to the z axis (θ = 0◦,180◦), but
the scattering along the +z axis is much stronger due to the
asymmetry environment. Note that for φ = 90◦, the scattering
is uniform in the same environment, since in this case the
scattered light has the same polarization with the WGMs.
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FIG. 6. (Color online) (a) Illustration of the microsphere-induced
collimating effect. (b) � vs θ for n = 1.5,1.7,1.9. The dotted
vertical lines correspond to the critical angles of total reflection for
n = 1.5,1.7,1.9 (from right to left). Inset: transmission as a function
of θ for φ = 0◦ (solid) and 90◦ (dashed); here n = 1.5.

B. Collimating effect of the microsphere

Although the scattered light tends to propagate along the
z axis, the divergency angle is too wide. To obtain better
directionality, once again we can make use of the microsphere
itself, which behaves as a thick lens. As depicted in the inset of
Fig. 6(b), the emitted light for 0◦� θ < (180◦/π ) arcsin(1/n)
(the critical angles of total reflection) passes through the
microsphere, and finally yields the output angle �, given by

� = f (θ ) = |2θ − arcsin(n sin θ )|. (36)

Note that for (180◦/π ) arcsin(1/n) � θ < 90◦, the light is
totally reflected on the microsphere surface. From Fig. 6(b) we
can see that the output angle � has a much smaller divergence
than the emitting angle θ , which stems from the collimating
effect of the microsphere.

The output energy density function can be obtained as

p(�,φ) =
∑

T (f −1(�),φ)u(f −1(�),φ)
df −1(�)

d�
, (37)

where

T (θ,φ) = Tp(θ,φ) cos2 φ + Ts(θ,φ) sin2 φ; (38)

Tp (Ts) is the transmission for the p-polarization (s-
polarization) component, calculated from the Fresnel formula;
θ = f −1(�) is the inverse function of f (θ ), which is a
multiple-valued function, and

∑
means the summation over

each section of the multiple valued function. Note that p(�,φ)
has singularities, thus the full width at half maximum definition
of the divergence angle fails. To quantify the emission

FIG. 7. (Color online) (a) Half-energy angle �1/2 vs n for φ =
0◦,90◦.

directionality, we define a half-energy angle �1/2, given by
P (�1/2,φ) = 1/2, where

P (�,φ) =
∫ �

0
p(�′,φ)d�′ (39)

is the energy ratio (energy distribution function), representing
how much energy distributes in the interval [0,�]. This half-
energy angle represents that the output angle of half light is
smaller than �1/2.

In Fig. 7 we plot the half-energy angle as a function of
the refractive index for φ = 0◦ and 90◦. Note that these two
cases set the lower and upper bounds, as inferred from the
emission pattern in Fig. 5(a). Remarkably, �1/2 can be less
than 1◦ (for refractive index around 1.9), which indicates much
better directionality than previous predictions based on other
mechanisms, to the best of our knowledge.

As two specific cases, the energy density function p(�,φ)
and the energy ratio P (�,φ) for n = 1.5 and 1.9 are plotted
in Figs. 8(b)–8(e). For n = 1.5, more than 80% emission

FIG. 8. (Color online) Energy density p(�) and energy ratio
P (�) as functions of � different n and φ. (a),(b) n = 1.5; (c),(d)
n = 1.9.
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energy can be collected within � � 11◦. For n = 1.9, very
good directionality can be obtained, with over 50% collection
efficiency for � � 0.7◦.

For widely used microcavities with the refractive index not
equal to 1.9 (e.g., silica, calcium fluoride, lithium niobate), the
optimal emission directionality can be obtained by optimizing
the shape of the microcavity (e.g., using deformed cavities)
and the position of the scatterer (e.g., embedding the scatterer
inside the microcavity). Note that this optimal refractive
index is irrelevant to the size, shape, and material of the
scatterer.

V. CONCLUSION

In summary, based on the cavity-QED approach, we ana-
lytically investigate the microsphere-scatterer coupling system
in which the high-Q WGMs can be efficiently excited through
free space and the resulting laser is capable of emitting with
high directionality. In this system, a subwavelength scatterer
placed in the vicinity of the microsphere serves as an interface
between the input light, the WGMs, and the output light. We
take advantage of the microsphere itself to focus the input
beam with small spot area, and collimate the output beam with
ultrasmall divergence angle. Our results show that the high-Q
WGMs can be excited with an efficiency larger than 10%.
More importantly, the half-energy angle of the output light
can be as narrow as 0.7◦, which is a great improvement over
the 2D microcavity lasers [38,39]. This holds great potential
for novel microsized laser sources and has broad applications
in micro- and nanophotonics.
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APPENDIX A: DERIVATION OF QUANTUM
LANGEVIN EQUATIONS

Starting from the total Hamiltonian H tot
1 [Eq. (1)], the

Heisenberg equations of motion can be derived as

dam

dt
= −iω1am −

∫ +∞

−∞
gin(ω)b(ω)dω

+ ig1

∑
m′

am′ − i
∑

j

g1,j cj , (A1)

db(ω)

dt
= −iωb(ω) + gin(ω)

∑
m

am, (A2)

dcj

dt
= −iωj cj − ig1,j

∑
m

am. (A3)

The eigenmodes of the system are the symmetric
and antisymmetric standing modes, given by a± = (aCW ±
aCCW)/

√
2. Then the above equations can be rewritten

as

da+
dt

= −iω1a+ −
√

2
∫ +∞

−∞
gin(ω)b(ω)dω

+ i2g1a+ − i
√

2
∑

j

g1,j cj , (A4)

da−
dt

= −iωca−, (A5)

db(ω)

dt
= −iωb(ω) +

√
2gin(ω)a+, (A6)

dcj

dt
= −iωj cj − i

√
2g1,j a+. (A7)

Formal integrations of Eqs. (A6) and (A7) yield

b(ω) = e−iω(t−t0)b0(ω) +
√

2gin(ω)
∫ t

t0

e−iω(t−t ′)a+(t ′)dt ′,

(A8)

cj = e−iωj (t−t0)cj,0 − i
√

2g1,j

∫ t

t0

e−iωj (t−t ′)a+(t ′)dt ′,

(A9)

where b0(ω), cj,0 denotes the value of b(ω), cj at t = t0,
respectively. In both equations the first terms represent the
free evolution of the modes while the second terms arise from
the interaction with the WGMs.

Substituting the solutions into Eq. (A4), we finally obtain

da+
dt

= −i(ω1 − 2g1)a+ − (κin + κR)a+ −
√

2κinbin − ξ,

(A10)

where

κin = 2πg2
in(ω1 − 2g1) (A11)

represents the input-WGMs energy coupling strength,

bin = 1√
2π

∫ +∞

−∞
b0(ω)e−iω(t−t0)dω (A12)

describes the input field,

κR = 2π
∑

j

g2
1,j δ(ω − ω1 + 2g1) (A13)

denotes the damping of the WGMs induced by the scattering
to the reservoir, and

ξ = i
√

2
∑

j

g1,j e
−iωj (t−t0)cj,0 (A14)

is the noise operator related to the reservoir. In deriving
Eq. (A10), we have used the Markov approximation [46].

APPENDIX B: DERIVATION OF EXCITATION
EFFICIENCY

Taking the intrinsic decay rate κ0 of the WGMs into account,
and using the input-output relation [46,47]

bout = bin +
√

2κina+, (B1)
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we obtain

bout = bin + 2κinbin + √
2κinξ

i(ω − ω1 + 2g1) − (
κ0
2 + κin + κR

) . (B2)

Then the transmission can be obtained as T = 〈b†outbout〉/
〈b†inbin〉. For optical frequency and room temperature, the initial
states of the reservoir modes are almost all vacuum states. Thus
the expectation values of the noise operators can be neglected.

Therefore, we obtain the minimum value of the transmission,

Tmin =
(

2κin − κ0 − 2κR

2κin + κ0 + 2κR

)2

. (B3)

Thus the excitation efficiency η = 1 − Tmin can be obtained
as

η = 4κin(κ0 + 2κR)

(κ0 + 2κin + 2κR)2
. (B4)
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