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Signatures of single-site addressability in resonance fluorescence spectra
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Pioneering methods in recent optical-lattice experiments allow focusing laser beams down to a spot size that is
comparable to the lattice constant. Inspired by this achievement, we examine the resonance fluorescence spectra
of two-level atoms positioned in adjacent lattice sites and compare the case where the laser hits only one atom
(single-site addressing) with cases where several atoms are illuminated. In contrast to the case where the laser
hits several atoms, the spectrum for single-site addressing is no longer symmetric around the laser frequency. The
shape of the spectrum of fluorescent light, therefore, can serve as a test for single-site addressing. The effects we
find can be attributed to a dipole-dipole interaction between the atoms due to the mutual exchange of photons.

DOI: 10.1103/PhysRevA.85.013842 PACS number(s): 42.50.Nn, 37.10.Jk, 42.25.Fx

I. INTRODUCTION

Over the course of the past decades, the exploration of the
radiative properties of laser-driven atomic systems advanced at
a stunning pace in the field of quantum optics. The fluorescence
light of a coherently driven two-level atom is a common
example in most textbooks [1,2]. For a coherent laser drive,
the predicted Mollow spectrum is a symmetrical three-peak
spectrum with a center-sideband separation given by the Rabi
frequency and the detuning of the driving laser field [3–5].
Taking more than one atom into account, other interesting
features of the spectrum arise due to effects of coherent and
incoherent inter-atomic interactions [6]. The question to what
extent the fluorescence spectrum is altered in the presence of
collective effects, thus, is of great interest since it contains
information about the physical setup of the atomic system [7].

In this paper, we clarify how the shape of the spectrum
alters when a single atom within the atomic ensemble is
addressed by an external driving field. Therefore, we compare
the spectra of the situation where a laser illuminates all atoms
with the situation where the laser illuminates only one atom.
The usual symmetry of the spectrum breaks down if the
distance between neighboring atoms is such that their dipole-
dipole interaction via mutual exchange of photons is compa-
rable to the magnitude of the driving strength.

Our investigation of the resonance fluorescence spectrum,
under the assumption that single atoms in an atomic ensemble
can be addressed by a laser beam, is motivated by recent
experiments with optical lattices [8,9] in a Hubbard regime that
traps neutral atoms in the lattice sites. High-resolution imaging
systems with an optical resolution of about 600–700 nm
allow resolving the fluorescent light emitted from the atoms
in individual lattice sites of a two-dimensional (2D) lattice.
Hence, a laser beam traveling on the same path just like the
fluorescence light going through the imaging system, but in
the reverse direction, can be focused onto a single site or
single atom with a full width at half maximum (FWHM)
of, again, 600–700 nm [10]. Such single-site addressing
allows investigating local properties of quantum many-particle
systems [11,12].
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The origin of the effects we find for the fluorescence
spectra of neutral atoms in optical lattices lies in the typical
interatomic separation. On one hand, the atoms are far enough
from each other to open up the possibility of single-atom
addressing by focused laser beams. On the other hand, the
separation is small enough so that an interatomic coupling
mediated by the mutual exchange of scattered photons still
influences the collective behavior. Otherwise, the fluorescence
spectrum would not differ from the well-known Mollow
spectrum [3].

The remainder of the paper is organized as follows. In
Sec. II, we set up a master equation that describes the coupling
of N two-level atoms to the quantized electromagnetic field.
Due to small interatomic separations, we have to account for an
effective atom-atom coupling mediated by the quantized field.
The effective atom-atom coupling, namely, the dipole-dipole
interaction and the collective damping rate, will be discussed
in detail. We also define our notion of single-site addressing
motivated by the experiment [10]. As our investigations focus
on the fluorescence spectrum of the atomic ensemble, the
power spectrum is introduced in Sec. III. We then present
our numerical results in Sec. IV for a number of up to five
two-level atoms representing single-site addressability in a
one-dimensional (1D) or 2D optical lattice. In all cases, we find
a broken symmetry in the fluorescence spectra if only one atom
is addressed by the laser field. We demonstrate that this effect
only occurs if the dipole-dipole interaction is finite. In Sec. V,
we make some general remarks and provide conclusions
about symmetric power spectra. In Sec. VI, we state possible
experimental applications to test single-site addressability with
resonance fluorescence measurements. Finally, we give our
conclusions in Sec. VII.

II. HAMILTONIAN AND MASTER EQUATION

In our model, we consider N identical two-level atoms at
fixed positions rμ and define the distances Rμν = rμ − rν .
We demand, however, that all atoms lie inside a 2D plane,
which we refer to as the atomic plane. The ground state of
atom μ is denoted by |gμ〉, and the excited state is denoted by
|eμ〉, where μ = 1,2, . . . ,N labels the atoms. Apart from the
laser that illuminates them, the atoms couple to all modes of
the quantized electromagnetic vacuum. The time evolution of
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the atomic system, therefore, can be described by the master
equation [13],

∂tρ(t)

= L(ρ(t)) = − i

h̄
[H,ρ(t)] + γ

2

N∑
μ=1

[2σ−
μ ρ(t)σ+

μ

− σ+
μ σ−

μ ρ(t) − ρ(t)σ+
μ σ−

μ ] +
N∑

μ,ν = 1
μ �= ν

�μν[2σ−
ν ρ(t)σ+

μ

− σ+
μ σ−

ν ρ(t) − ρ(t)σ+
μ σ−

ν ], (1)

with Liouvillian L(·), where the operators σ+
μ = |eμ〉〈gμ|

(σ−
μ = |gμ〉〈eμ|) create (destroy) an excitation in the μth atom.

The decay rate γ accounts for the spontaneous emission from a
single atom, whereas, the collective damping rates �μν = �νμ

account for the decay of the collective atomic states. Since
the spatial separation of the atoms in our setup is about 1/2
of the wavelength corresponding to the atomic transition, the
often-used assumption of independent quantum environments
[14,15] for the individual atoms is not justified in our paper.
Consequently, the collective decay processes associated with
�μν are indeed important [16]. This also is confirmed by our
results.

The unitary part of the time evolution of the reduced density
matrix ρ(t) is governed by the Hamiltonian,

H = H0 + HL + Hdd, (2)

consisting of three parts: the bare atomic part H0, the laser-
atom coupling HL, and the dipole-dipole interaction potential
Hdd . In a frame that rotates with the frequency ωL of the
driving laser, the bare Hamiltonian,

H0 = h̄	

2

N∑
μ=1

σ z
μ = h̄	

2

N∑
μ=1

(|eμ〉〈eμ| − |gμ〉〈gμ|) (3)

is determined by the detuning 	 = ω0 − ωL, where ω0 is the
frequency of the atomic transition. The laser-atom coupling,
in turn, depends on the Rabi frequency,

HL = h̄

N∑
μ=1


μ(σ+
μ + σ−

μ ). (4)

The atoms are driven by a laser traveling perpendicular to
the atomic plane. Hence, the laser field at each atom has the
same phase. Without loss of generality, we, thus, choose 
μ

to be real and positive for all atoms. We consider a Gaussian
beam profile focused onto the atomic plane and model the
field amplitude at the position of the μth atom by the Rabi
frequency,


μ ≡ 
(rμ) = 
0e
−4(ln 2)(r2

μ/η2), (5)

where 
0 ∈ R represents the intensity at the center of the
beam, which defines the point of origin with a FWHM of η;
see Fig. 1. This definition is consistent with our notion of
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FIG. 1. (Color online) Notion of single-site addressing in an
optical lattice. The atoms are fixed in the lattice sites while a laser
beam traveling perpendicular to the interatomic axis is focused onto
one site. The beam profile is given by a Gaussian envelope with a
FWHM η as given in Eq. (5). The parameters al and η match the
experimental parameters of Ref. [9].

single-site addressing, pictured in Fig. 1, which is motivated
by the optical-lattice experiments [8–10] with single-atom
occupation on one lattice site and where the central atom is
addressed by a focused Gaussian laser beam. In our model,
we assume the atoms to be stationary during the illumination
process, i.e., we consider a lattice in the Mott-insulator regime.

The coupling to the electromagnetic vacuum induces a
dipole-dipole interaction between the atoms due to a mutual
exchange of photons. This dipole-dipole interaction arises in
the derivation process of the master equation. Similar to the
collective damping rate, it is a consequence of the fact that all
atoms couple to the same quantum environment.

The dipole-dipole interaction Jμν , which should not be
confused with the interaction between two static dipoles, is
the coherent counterpart to the incoherent collective damping
rate �μν . The operator form of the dipole-dipole Hamiltonian
can be taken to read

Hdd = h̄

N∑
μ,ν = 1
μ �= ν

J μν

2
(σ+

μ σ−
ν + σ+

ν σ−
μ ), (6)

with interaction strength Jμν = J νμ, which depends on only
two parameters. Namely, the distance |Rμν | between the
atoms and the angle αμν = �(Rμν, �d0) between the interatomic
separation vector and the dipole moment �d0 of the atoms. By
introducing the dimensionless quantity xμν := |Rμν |

λ0
, where λ0

is the wavelength corresponding to the energy splitting ω0, we
find the following form for the dipole-dipole interaction:

Jμν(αμν,xμν)

= 3

4
γ

{
[cos2(αμν) − 1]

cos(2πxμν)

2πxμν
+ [1 − 3 cos2(αμν)]

×
[

sin(2πxμν)

(2πxμν)2
+ cos(2πxμν)

(2πxμν)3

]}
, (7)
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FIG. 2. (Color online) The dipole-dipole interaction Jμν (solid
red line) and the collective damping rate �μν (blue dashed line)
in units of γ as a function of the interatomic separation xμν with
αμν = π

2 .

and for the collective damping rate,

�μν(αμν,xμν)

= 3

4
γ

{
[1 − cos2(αμν)]

sin(2πxμν)

2πxμν
+ [1 − 3 cos2(αμν)]

×
[

cos(2πxμν)

(2πxμν)2
− sin(2πxμν)

(2πxμν)3

]}
(8)

given in units of the spontaneous emission rate γ = ω3
0 | �d0|2

3πε0h̄c3 .

Both quantities decay asymptotically as ∼ 1
xμν ; see Fig. 2,

which indicates that the spectral properties of many atoms
separated by a large distance do not differ from the spectral
properties of a single atom. In order to find collective dynam-
ics, the interatomic distances, at least, should be on the order
of the atomic wavelength, i.e., xμν � 1. On these small length
scales, addressing a single atom becomes challenging. We
show that the collective quantities affect the spectral response
of the atoms and reveal whether single-atom addressing takes
place or not.

III. SPECTRUM OF RESONANCE FLUORESCENCE

In the following, we focus on the spectral distribution of
the fluorescence light emitted by the atoms in the steady-state
limit. First, we concentrate on the total steady-state intensity,
which is given by the normally ordered one-time correlation
function of the emitted electric field [17],

Iss(r) = lim
t→∞〈Ê(−)(r,t) · Ê(+)(r,t)〉. (9)

Here, Ê(+) (Ê(−)) denotes the positive (negative) frequency part
of the field operator, which is related to the atomic transition
operator σ−

μ by [18]

Ê(+)(r,t̂) = −ω2
0 r̂ × (r̂ × �d0)

4πε0c2r

N∑
μ=1

σ−
μ (t̂)e−ik0 r̂·rμ, (10)

with the retarded time t̂ = t − r
c

at a point r = r r̂ in the
far-field zone. The physical picture here is that every photon
that is annihilated in the detection process had to be emitted

by an atom at an earlier time t̂ . Turning back to the spectral
properties of the atoms, we introduce the so-called power
spectrum. It displays the emitted fluorescence intensity per
energy interval and is given by the Fourier transform of the
two-time correlation function of the electric field,

Sss(r,ω) = lim
t→∞

∫ ∞

−∞

dτ

2π
e−iωτ 〈Ê(−)(r,t + τ ) · Ê(+)(r,t)〉.

(11)

By making use of Eq. (10), the power spectrum can be
expressed in terms of atomic two-time correlation functions,

Sss(r,ω) = S0(r) lim
t→∞

N∑
μ,ν=1

Re

{∫ ∞

0
dτ e−i(ω−ωL)τ

×〈σ+
μ (t + τ )σ−

ν (t)〉eik0 r̂·(rμ−rν )

}
, (12)

where Re{·} denotes the real part and S0(r) = I0(r)
π

=
1
π
|ω2

0 r̂×(r̂×�d0)
4πε0c2r

|2 denotes a normalization factor that contains

the radiation properties of a dipole. The factor eiωLτ arises
from the fact that we work in a rotating frame with respect to
the operator h̄ωL

2

∑N
μ=1 σ z

μ. All the atomic one- and two-time
correlation functions are accessible via the master Eq. (1) and
by usage of the quantum-regression theorem [19].

To analyze the power spectrum Sss as given in Eq. (12), it is
helpful to split the expression into a coherent and an incoherent
part. For two operators Â and B̂, the expectation value of the
product ÂB̂ always can be separated into a coherent and an
incoherent part [3,17],

〈ÂB̂〉 = 〈Â〉〈B̂〉 + 〈(Â − 〈Â〉)(B̂ − 〈B̂〉)〉, (13)

respectively. Therefore, it is clear that the coherent part of the
power spectrum is always proportional to a δ function since

Sco
ss (r,ω) ∝ lim

t→∞

∫ ∞

−∞
dτ e−i(ω−ωL)τ 〈σ+

μ (t + τ )〉〈σ−
ν (t)〉

= 〈σ+
μ 〉ss〈σ−

ν 〉ss
∫ ∞

−∞
dτ e−i(ω−ωL)τ

∝ δ(ω − ωL). (14)

Another feature of the power spectrum for N � 2 atoms
is the geometry dependence arising from the exponential
eik0 r̂·(rμ−rν ). For atoms where the collective parameters �μν

and Jμν are negligible, this interference effect, however, does
not contribute to the interesting part of the spectrum, namely,
the incoherent part. In this case, the expectation values of
〈σ+

μ σ−
ν 〉 always factorize for μ �= ν, and the interference terms

only enter the coherent part of the spectrum. This results
in an incoherent part of the spectrum that is the sum of
single-atom Mollow spectra. In cases where �μν and Jμν are
not negligible, the interference terms enter the incoherent part
of the spectrum and can make it asymmetric. This effect can
serve as a signature of single-site addressing and lies at the
center of our investigations.
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FIG. 3. (Color online) (a) Incoherent part of the power spectrum for two atoms with R21 = al �ex = 0.82λ0�ex, α12 = π/2, J 12 ≈
−0.09γ, �12 ≈ −0.11γ, 	 = γ, σ = 600 nm, and 
1 = 0.1γ . The detector is positioned in the xy plane with θ = �(r̂,R21) ≈ 0.92. The
solid red and dashed blue lines display the spectrum under single-atom addressing, i.e., 
2 ≈ 0.004
1 ≈ 0, whereas, the dot-dashed green
and dotted orange lines consider a broad laser beam with 0.1γ = 
1 ≈ 
2. The dashed blue and the dotted orange lines, however, display the
case where the collective parameters J μν and �μν artificially have been set to zero. (b) The degree of asymmetry as defined in Eq. (15) plotted
as a function of the ratio 
2/
1 for parameters as in (a) except for 
1 = 0.1γ ≈ |J 12| ≈ |�12| (solid red line), 
1 = 0.5γ ≈ 5|J 12| ≈ 5|�12|
(dashed blue line), and 
1 = 1γ ≈ 10|J 12| ≈ 10|�12| (dotted black line).

IV. BREAKDOWN OF SPECTRAL SYMMETRY

A. Two atoms

To explain the basic physical mechanisms behind our
results, it is convenient to concentrate on the spectrum of
two atoms first. The position of atom 1 defines the point
of origin, i.e., r1 = {0,0,0}. Atom 2 is just positioned in
the next lattice site at r2 = {al,0,0}. For the lattice constant
and the FWHM of the laser beam, we choose al = 640 and
σ = 600 nm, such as in Ref. [9]. The dipole moments are
oriented along the z axis �d0 ∝ �ez, which leads to α12 = π/2.
For the D2 transition of 87Rb (transition wavelength λ0 =
780 nm), the collective parameters result in �12 ≈ −0.11γ and
J 12 ≈ −0.09γ .

Figure 3(a) compares the case of a broad laser beam,
i.e., 
1 = 
2 = 0.1γ , to the case of a laser beam with a
FWHM of σ = 600 nm focused onto atom 1, which results in

1 = 0.1γ ≈ 25
2. We refer to the latter case as single-site
addressing. It is seen that the spectral symmetry breaks down
in the case of single-site addressing under the effect of the
dipole-dipole interaction. For two atoms that are illuminated
with equal intensity, we find a spectrum of symmetric Mollow
shape as shown in Fig. 3(a), see dot-dashed green line. Under
single-site addressing, however, the peak on the right-hand side
of the spectrum is suppressed, which leads to an asymmetry,
see the solid red line. To illustrate that this effect can be
attributed to the presence of the dipole-dipole interaction J 12

and the collective damping rate �12, we compare our results to
the physically rather impossible situation where the collective
parameters �12 and J 12 are turned off artificially. As expected,
we find the symmetric Mollow spectrum, dashed blue curve
for one atom being illuminated and dotted orange curve for
two atoms. The latter only shows little deviations in the
peak heights and positions from the cases of 
1 = 
2 and
J 12 �= 0, �12 �= 0.

Note that only two peaks out of the triplet (at ±	) can be
seen because of the weak driving strength 
0 = 0.1γ with 
0

as defined in Eq. (5). We choose such a weak Rabi frequency
because the effect of symmetry breaking in the spectrum is
more evident if the Rabi frequency is on the order of the dipole-
dipole interaction. In the case where 
0 � Jμν , the dipole-
dipole interaction is just a small perturbation to the driving of
a single two-level atom, hence, the symmetric Mollow shape
dominates the spectrum.

Figure 3(b) displays the degree of asymmetry in the spectra
for different ratios of 
2


1
, which is equivalent to different

FWHMs of the laser beam. We consider here a degree of
asymmetry, which is defined as

D = 1

Smax
[max{|S(ω̃) − S(−ω̃)|: ω̃ = ω − ωL > 0}], (15)

normalized to the highest intensity Smax in the spectrum,

Smax = max{S(ω̃): ω̃ = ω − ωL ∈ R}. (16)

For parameters as in Fig. 3(a), the definition of the degree of
asymmetry corresponds to the visibility of the difference in
the peak heights. One can see that the degree of asymmetry
decreases monotonically with increasing ratios of 
2


1
and goes

exactly to zero as 
2 → 
1. Furthermore, the degree of
asymmetry is highest if the Rabi frequency is comparable to
the dipole-dipole interaction J 12 between the atoms.

In conclusion, the degree of asymmetry in the spectrum is
a signature for the degree of single-site addressing, provided
that the collective parameters Jμν and �μν are on the order of
the driving strength. Therefore, we emphasize that single-atom
addressing in the regime of large interatomic separations cer-
tainly is not challenging, but for small interatomic separations,
the collective atomic properties reveal whether single-site
addressing occurs in the system.

Our results also give direct evidence that the dipole-
dipole interaction Jμν is induced by the mutual exchange of
photons between the atoms. Indeed, as already mentioned, the
incoherent part of the spectrum only contains the interference
of light emitted from separate atoms if the dipole-dipole
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FIG. 4. (Color online) Incoherent part of the power spectrum (a) and (b) with the corresponding atomic configurations in the lattice below
(c) and (d), respectively. (a) Incoherent part of the power spectrum with parameters as in Fig. 3(a). The solid red curve shows the spectrum for two
atoms under single-atom addressing just as the solid red line in Fig. 3(a). The dashed blue curve displays the spectrum of three atoms where the
third atom is placed at r3 = −al �ex . This represents single-site addressing in a 1D optical lattice where the contributions of the nearest neighbors
of the addressed atom are taken into account. For the 2D lattice, we place two more atoms at r4 = al�ey and r5 = −al �ey and find very similar
features (dot-dashed green curve). The Mollow spectrum of a single atom also is given for comparison (dotted black curve). (b) Incoherent
part of the power spectrum for two atoms (solid red curve), three atoms (dashed blue curve), and five atoms (dot-dashed green curve) with the
parameters 	 = γ and 
0 = 0.5γ . The positions of the atoms are r1 = {0,0,0}, r2 = al{

√
2,0,0}, r3 = al{−

√
2,0,0}, r4 = al{0,

√
2,0},

and r5 = al{0,−√
2,0} as illustrated in the picture below with al = 532 and σ = 700 nm as in Refs. [8,10]. The detector is positioned in the

far-field zone at r̂ = r̂{0,1,0}. All the lines consider single-site addressing, which is compared to the Mollow line (dotted black curve). In (c)
and (d), small black dots indicate lattice sites, colored dots indicate the atoms considered for plots of the corresponding color in (a) and (b),
respectively, and the faint orange circle indicates the FWHM of the probe laser.

interaction Jμν is finite. Yet the interference effect is still
present even if atom 2 is not illuminated by the laser at all, i.e.,

2 = 0. This indicates that processes where atom 1 absorbs a
photon from the laser field that emits a photon that travels to
atom 2 where it is absorbed and is emitted again must exist.
Since we look at the spectrum in the steady-state limit and the
Rabi frequency 
0 is comparable to J 12, these processes occur
at a rate large enough to generate the observed interference
in the spectral light of the atomic ensemble. Note that this
interference is not due to coherent classical light, but it is
rather of quantum-mechanical nature.

B. Larger numbers of atoms

If one considers the investigation of single-site addressing
in a 1D or 2D optical lattice, more than one neighboring

atom should be taken into account. Since the dipole-dipole
interaction and the collective damping rates decay as 1

xμν with
increasing separation xμν , one, however, can obtain estimates
for larger lattices by just considering a limited number of lattice
sites or rather atoms contributing to the spectrum. We study the
effects of single-site addressing in a 1D and 2D optical lattice
up to a level where the atoms with the highest contribution to
the spectrum are taken into account. These atoms are the ones
where the dipole-dipole interaction potential J 1μ between the
μth atom and the addressed atom is largest in magnitude.

Figure 4 displays the impact of single-site addressing in
a 1D optical lattice (dashed blue curve) and a 2D optical
lattice (dot-dashed green curve) configuration within the
approximation described above and compares it to the case
of two atoms (solid red curve) and to the Mollow spectrum
of a single atom (black dotted curve). In part (a) of Fig. 4,
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we have chosen parameters for the lattice constant and the
FWHM of the laser beam, such as in Ref. [9], i.e., al = 640
and σ = 600 nm. For this lattice constant, the magnitude of
the dipole-dipole interaction is largest between the addressed
atom positioned at r1 = {0,0,0} and the nearest neighbors
in the lattice, hence, the atoms positioned at r = {±al,0,0}
and r = {0, ± al,0}. The parameters 	 = γ and 
1 = 0.1γ

coincide with the parameters chosen in Fig. 3. Again, the
detector is positioned in the xy plane with θ = �(r̂,R21) ≈
0.92. Therefore, the solid red line in Fig. 4(a) is the same
as the solid red line in Fig. 3(a). It shows the incoherent
part of the output spectrum for the addressed atom at r1 =
{0,0,0} in the presence of another atom at r = {al,0,0}.
The dashed blue line displays the same situation but with a
third atom placed at r = {−al,0,0}. The dot-dashed green
line shows the spectrum if a fourth and a fifth atom are
placed at r = {0, ± al,0}. In all cases, we find a broken
spectral symmetry under single-site addressing. The peak on
the right-hand side is suppressed for all atomic configurations
as compared to the single-atom Mollow spectrum. We also
note that spacial symmetry of the atomic setup does not lead
to spectral symmetry of the emitted light.

Figure 4(b) displays the same situation as Fig. 4(a) but with
lattice parameters as in the experiments of Refs. [8,10]. The
lattice constant in the experiment is equal to 532 nm. This
leads to a dipole-dipole interaction of Jμν ≈ 0.03γ between
atoms positioned in two adjacent lattice sites, whereas,
atoms separated by

√
2al have a dipole-dipole interaction

of Jμν ≈ −0.12γ . Hence, in our numerical calculations, we
concentrate on the contributions from these atoms and neglect
the contributions from the nearest neighbors of the addressed
atom. Although the breaking of spectral symmetry is displayed
in Fig. 4(b) as well, we notice that the overall intensity of the
case with a finite dipole-dipole interaction is a bit larger than
for a single atom. Figure 4(a) exhibits the opposite behavior.
This effect mainly is due to the different positionings of the
detector in Figs. 4(a) and 4(b).

If the atoms in the configurations of Figs. 4(c) and 4(d) all
are driven by the same driving strength, we find symmetric
power spectra in all cases. In the case of two atoms, the
degree of asymmetry is exactly zero. In the cases of three or
five atoms, we find a degree of asymmetry, which is negligible
but is not exactly zero. For two equally driven atoms, the
master equation is fully symmetric under the exchange of
these two atoms. This is no longer true in the case of three
or five equally driven atoms as, for example, J 12 �= J 23

because of the geometry dependence of the dipole-dipole
interaction. However, if we choose Jμν ≡ J and �μν ≡ � for
all μ,ν ∈ {1, . . . ,N} artificially and drive all atoms with the
same Rabi frequency, we find a spectrum for two, three, four,
or five atoms with a degree of asymmetry that is exactly zero.
In the next section, we discuss this observation further.

V. SOME CONCLUSIONS AND REMARKS ABOUT THE
SYMMETRY OF THE SPECTRA

Our results lead us to a remarkable first conclusion,
regarding our particular system:

(1) In the case where the master equation and, therefore, the
density matrix are fully symmetric under the exchange of each

possible pair of two-level atoms μ and ν (i.e., under atomic
permutation), the total spectrum of emission of the system is
symmetric around the laser frequency.

Moreover, putting together these results with many other
examples, one could think of [20], we further envision a
second conclusion regarding any open quantum system (QS)
in general:

(2) Provided that a single QS (such as a few-level system or
harmonic oscillator under coherent or incoherent continuous
excitation) exhibits a symmetric steady-state power spectrum,
then a number N of such QSs coupled to each other, in a way
that the density matrix is fully symmetric under all possible
permutations of these QSs, also exhibits a symmetric total
steady-state power spectrum. Consequently, all possible auto-
and cross-correlation functions between pairs of QSs will be
real and, therefore, experimentally observable.

The second conclusion is a generalization of the first
one. These statements are difficult to prove starting from the
properties of the Liouvillian of an ensemble of coupled QSs.
Here, we only explore some directions that such a proof may
take.

The power spectrum for N QSs with associated operator
σμ consists of a sum of N2 contributions Sμν(ω̃), each given
by

Sμν(ω̃) ∝ Re

{∫ ∞

0
dτ e−iω̃τ 〈σ+

μ (τ )σ−
ν 〉ss

}
, (17)

with 〈σ+
μ (τ )σ−

ν 〉ss = limt→∞〈σ+
μ (t + τ )σ−

ν (t)〉 and ω̃ = ω −
ωL. Each of these terms can be decomposed into a symmetric
and an asymmetric part simply by separating the corresponding
correlator into its real and imaginary parts,

Sμν(ω̃) = Ssy
μν(ω̃) + Sasy

μν (ω̃)

=
∫ ∞

0
dτ Re{〈σ+

μ (τ )σ−
ν 〉ss} cos(ω̃τ )

−
∫ ∞

0
dτ Im{〈σ+

μ (τ )σ−
ν 〉ss} sin(ω̃τ ). (18)

In the case where the master equation and, therefore, the
density matrix are fully symmetric under QS permutation,
we have Sμν(ω̃) = Sνμ(ω̃). Consequently, the total spectrum
can be computed in terms of two different correlators only, for
example,

S(ω̃) = NS11(ω̃) + N (N − 1)S12(ω̃). (19)

In this case, the spectrum is symmetric if and only if every
correlator 〈σ+

μ (τ )σ−
ν 〉ss is real. Then, the two-time operator

σ+
μ (τ )σ−

ν with μ �= ν becomes an observable in the steady
state as we stated in our second conclusion.

However, the fact that the correlators become real when
the spectrum is symmetric does not provide new information
about the system; it is only a mathematical implication. The
general question when an open quantum system should have
a symmetric spectrum around some relevant frequency (the
laser in the case of coherent excitation) is not a trivial one.
First, this depends crucially on the nature of the excitation
that is being detected, that is, the operators appearing in the
two-time correlator. In our case generalized for N atoms,
we refer to the collective Dicke operator σ±

S = ∑N
μ=1 σ±

μ ,
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but it could be any deexcitation operator in the system that
corresponds to some physical entity. Each peak that appears in
the spectrum is related to the probability amplitude to transit
between two eigenstates of the system by emitting one of
these quasiparticles. This means that both the dynamics of
the dressed states and their quasiparticle components play a
role. In order to make this link clearer, let us decompose the
incoherent part of a spectrum into a sum of d2 peaks [20],

S(ω̃) = 1

π

d2∑
p=1

[
Lpγp/2 − Kp(ω̃ − ωp)

(γp/2)2 + (ω̃ − ωp)2

]
, (20)

with ωp and γp (peak position and linewidth), Lp and Kp

(Lorentzian and dispersive weights) as all real parameters, and
d as the dimension of the Hilbert space. Then, −(iωp + γp/2)
are the eigenvalues of the Liouvillian in matrix form L, which
are either real (giving rise to a single Lorentzian peak at the
center) or pairs of complex conjugates (giving rise to a pair
of sister peaks symmetrically placed around the center, with
equal broadening) [21].

A given pair of sister peaks (with iωα + γα/2 = −iωβ +
γβ/2) is symmetric if the complex weights are also conjugates,

Lα + iKα = Lβ − iKβ. (21)

These are computed from the eigenvectors of L including
the steady-state density matrix. They correspond exactly to
the transition-probability amplitude as mentioned above. The
balance between two amplitudes gives rise to a pair of
symmetric twin peaks. If this is the case for all sister peaks,
the total spectrum, of course, is symmetric.

In order to grasp all the physical senses of this balance
condition, one would need to identify (or rather to reconstruct)
the eigenstates of the system under study. This is not an
easy task, especially in the presence of both dissipation and
excitation [22,23]. In some limiting cases, however, such as
one strongly driven two-level system, it is possible [24,25].
The eigenvectors of the full Liouvillian correspond in good
approximation to the so-called dressed states |±〉 obtained
from diagonalizing the Hamiltonian part only. As in this
regime, the three peaks that form the Mollow structure are well
separated, the interference part of the spectrum is negligible
(Kp ≈ 0), and the condition for symmetry of the two side
peaks Lα = Lβ is equivalent completely to the so-called
detailed balance between the dressed states: ρ++P(+→−) =
ρ−−P(−→+), where ρ±± are the dressed-state steady-state
populations and P(±→∓) are the transition rates between them.
On the other hand, if the excitation is weak and there is an
overlap between the peaks of the spectrum, dressed states
are not the eigenstates of the full Liouvillian anymore, and
their detailed balance is no longer a necessary condition for
symmetry (in fact, it breaks down out of resonance where the
spectrum is still symmetric).

A symmetric spectrum, thus, implies that the probability
amplitudes of transitions between eigenstates are balanced.
However, the challenging task of reconstructing such eigen-
states makes it difficult to foresee and to demonstrate when
a system exhibits a symmetric spectrum. specially in a
configuration where coupling strength, decay, and excitation
rates are on the same order of magnitude as in this paper.
Setting Eq. (21) in terms of the eigenvectors of the Liouvillian

gives the mathematical condition that they must fulfill so
that the spectrum is symmetric. But this does not bring any
further insight into the matter if one cannot identify which
properties of the system cause the weights Kα and Lα of the
corresponding Liouvillian L to fulfill this equation.

On the other hand, our conclusions 1 and 2 are somehow
intuitive and are expected if one reasons on physical grounds,
so let us end this section with a plausible explanation for the
symmetry of the spectrum and its breakdown in our particular
case.

In our configuration, the QS is simply a two-level atom
driven by a laser, whose Mollow spectrum is indeed always
symmetric (in the absence of incoherent pumping, pure de-
phasing or other decoherence effects). When assembling N of
such identical and identically driven QSs, new collective states
are expected to appear. In this case, the driving is restricted
to the set of states |0〉 ↔ σ+

S |0〉 ↔ · · · ↔ (σ+
S )N |0〉 that form

an (N + 1)-level system. The remaining nonsymmetric states
are not driven at all but provide an effective decay channel
for the (N + 1)-level system. From dressed-state arguments,
it is known that the total spectrum of a coherently driven
(N + 1)-level system is symmetric. Additional effective decay
through the remaining nonsymmetric states does not break
the symmetry of the total spectrum as we calculated in
previous sections. Now, if the atoms are not driven equally,
the laser does not drive the (N + 1)-level system solely
but also the transitions between nonsymmetric states. This
disrupts the dynamics of the (N + 1)-level system and induces
decoherence in the form of pure dephasing and an effective
incoherent pump. Both elements are well known to break the
symmetry in the spectra of coherently driven systems [5,26].
Letting other atomic parameters be different, such as decay
rates or detunings, has a similar decoherent impact on the
dynamics and the symmetry of the spectrum. We have checked
that this is the case for systems consisting of up to five two-level
atoms.

VI. EXPERIMENTAL APPLICABILITY

In Sec. IV, our numerical results clearly show the signatures
of single-site addressing in resonance fluorescence spectra. To
summarize, it can be stated that the spectrum is symmetric
around the laser frequency if the atoms are illuminated by
a laser with equal strength. If, in contrast, only one atom
is addressed, the spectrum becomes asymmetric. Thus, it is
possible to measure a fluorescence spectrum and to deduce
information about the quality of an addressing scheme.

In optical lattices, a large number of ultracold atoms are
trapped. As soon as these atoms are illuminated by light, the
atoms heat up unavoidably. The detection methods presented
in the experiments [8–10] are all destructive measurements in
the sense that the atomic sample is too hot after detecting
the atoms. The single-site addressing scheme presented in
Ref. [10] is designed in a way that the test for the failure
or success of the addressing scheme requires a destructive
measurement. Hence, the test and the usage of the addressing
scheme have to be carried out in different atomic samples.

Yet, if one makes a resonance fluorescence measurement
as pictured in this paper, only a small fraction of atoms will
be heated. Atoms positioned at the edges of a 2D lattice, for
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example, are well suited to test the addressing laser. After the
test of the addressing scheme, the laser can be moved over
the lattice to the desired position. The test and the usage of
the addressing scheme could be carried out in only one atomic
sample.

VII. CONCLUSION

In this paper, we calculated and investigated the resonance
fluorescence spectra of two-level atoms under the influence
of local addressability. We implemented local addressing
by means of a laser beam focused on a single atom in an
atomic ensemble. A master equation in a Markovian regime
modeled the interaction between the atoms and the surrounding
electromagnetic vacuum. Due to small interatomic separations,
we had to account for a dipole-dipole interaction between
atoms that was induced by the mutual exchange of photons and
collective damping processes. With numerical calculations,
we demonstrated that the output power spectrum of an
atomic ensemble was asymmetric in the case of single-atom
addressing. We showed that this effect was generated by
the presence of the dipole-dipole interaction due to photon
exchange. Our results suggest that resonance fluorescence

measurements could provide sensitive tests for the addressing
of individual atoms in 1D or 2D optical lattices. They, thus, also
allow predicting emission spectra of 1D optical lattices on the
surface of optical nanofibers [27]. Our calculations are valid
for any set of two-level quantum systems. The applicability of
resonance fluorescence measurements as a test for single-site
addressability, therefore, is not restricted to neutral atoms in
optical lattices but also applies to quantum dots [28] and
color centers in diamonds [29]. Furthermore, we provided
some physical and intuitive explanations for the symmetry of
the spectrum and its breakdown under single-site addressing.
We finally generalized our findings as follows: Provided that
a single quantum system exhibits a symmetric steady-state
power spectrum, this property also holds for N identical and
identically coupled quantum systems.
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Nature (London) 462, 74 (2009).
[10] C. Weitenberg, M. Endres, M. Cheneau, P. Schauß, T. Fukuhara,

I. Bloch, and S. Kuhr, Nature (London) 471, 319 (2011).
[11] M. J. Hartmann, G. Mahler, and O. Hess, Phys. Rev. Lett. 93,

080402 (2004).
[12] M. J. Hartmann and M. B. Plenio, Phys. Rev. Lett. 100, 070602

(2008).
[13] M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, Prog. Opt.

55, 85 (2010).
[14] M. J. Hartmann, Phys. Rev. Lett. 104, 113601 (2010).

[15] M. J. Hartmann, J. Prior, S. R. Clark, and M. B. Plenio, Phys.
Rev. Lett. 102, 057202 (2009).

[16] H. Zoubi and H. Ritsch, Phys. Rev. A 83, 063831 (2011).
[17] R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[18] R. H. Lehmberg, Phys. Rev. A 2, 889 (1970).
[19] M. Lax, Phys. Rev. 172, 350 (1968).
[20] E. del Valle, Microcavity Quantum Electrodynamics (VDM

Verlag, Saarbrücken, Germany, 2009).
[21] Because the density matrix is Hermitian, in vectorial represen-

tation, �ρ∗ = T �ρ where T is some similarity transformation.
Therefore, L and L∗ = T LT have the same characteristic
polynomial with real coefficients.

[22] E. del Valle, F. P. Laussy, and C. Tejedor, Phys. Rev. B 79,
235326 (2009).

[23] E. del Valle, Phys. Rev. A 81, 053811 (2010).
[24] D. F. Walls, H. J. Carmichael, R. F. Gragg, and W. C. Schieve,

Phys. Rev. A 18, 1622 (1978).
[25] C. Cohen-Tannoudji and S. Reynaud, J. Phys. B 10, 345

(1977).
[26] G. S. Agarwal, Phys. Rev. Lett. 37, 1383 (1976).
[27] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and
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