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Positive-P phase-space-method simulation of superradiant emission from a cascade
atomic ensemble
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The superradiant emission properties from an atomic ensemble with cascade level configuration is numerically
simulated. The correlated spontaneous emissions (signal then idler fields) are purely stochastic processes which
are initiated by quantum fluctuations. We utilize the positive-P phase-space method to investigate the dynamics
of the atoms and counterpropagating emissions. The light field intensities are calculated, and the signal-idler
correlation function is studied for different optical depths of the atomic ensemble. A shorter correlation time
scale for a denser atomic ensemble implies a broader spectral window needed to store or retrieve the idler pulse.
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I. INTRODUCTION

A quantum communication network based on the distri-
bution and sharing of entangled states is potentially secure to
eavesdropping and is therefore of great practical interest [1–3].
A protocol for the realization of such a long-distance system,
known as the quantum repeater, was proposed by Briegel
et al. [4,5]. A quantum repeater based on the use of atomic
ensembles as memory elements, distributed over the network,
was subsequently suggested by Duan et al. [6]. The storage
of information in the atomic ensembles involves the Raman
scattering of an incident light beam from ground-state atoms
with the emission of a signal photon. The photon is correlated
with the creation of a phased, ground-state, coherent excitation
of the atomic ensemble. The information may be retrieved by
a reverse Raman scattering process, sending the excitation
back to the initial atomic ground state and generating an
idler photon directionally correlated with the signal photon
[7–15]. In the alkali-metal gases, the signal and the idler
field wavelengths are in the near-infrared spectral region.
This presents a wavelength mismatch with telecommunication
wavelength optical fiber, which has a transmission window
at longer wavelengths (1.1–1.6 μm). It is this mismatch that
motivates the search for alternative processes that can generate
telecom wavelength photons correlated with atomic spin
waves [16].

This motivates the research presented in this article where
we study multilevel atomic schemes in which the transition be-
tween the excited states is resonant with a telecom wavelength
light field [16]. The basic problem is to harness the absorption
and the emission of telecom photons while preserving quantum
correlations between the atoms, which store information and
the photons that carry along the optical fiber channel of the
network.

It is not common to have a telecom ground-state transition
in atomic gases except for rare-earth elements [17,18] or in
an erbium-doped crystal [19]. However, a telecom wavelength
(signal) can be generated from transitions between excited
levels in the alkali metals [16,20].

The ladder configuration of atomic levels provides a source
for telecom photons (signal) from the upper atomic transition.
For rubidium and cesium atoms, the signal field has the
range around 1.3–1.5 μm that can be coupled to an optical
fiber and transmitted to a remote location. Cascade emission

may result in pairs of photons, the signal entangled with
the subsequently emitted infrared photon (idler) from the
lower atomic transition. Entangled signal and idler photons
were generated from a phase-matched four-wave mixing
configuration in a cold, optically thick 85Rb ensemble [16].
This correlated two-photon source is potentially useful as the
signal field has telecom wavelength.

The temporal emission characteristics of the idler field,
generated on the lower arm of the cascade transition, were
observed in measurements of the joint signal-idler correlation
function. The idler decay time was shorter than the natural
atomic decay time and dependent on optical thickness in a
way reminiscent of superradiance [21–25].

The spontaneous emission from an optically dense atomic
ensemble is a many-body problem due to the radiative
coupling between atoms. This coupling is responsible for the
phenomenon of superradiance first discussed by Dicke [24] in
1954.

Since then, this collective emission has been extensively
studied in two-atom systems indicating a dipole-dipole inter-
action [21,22], in the totally inverted N -atom systems [26,27],
and in the extended atomic ensemble [23]. The emission
intensity has been investigated using the master equation
approach [28–30] and with Maxwell-Bloch equations [31,32].
A useful summary and review of superradiance can be found in
the Refs. [33,34]. Recent approaches to superradiance include
the quantum trajectory method [35,36] and the quantum
correction method [37].

In the limit of single atomic excitation, superradiant emis-
sion characteristics have been discussed in Refs. [38,39]. For
a singly excited system, the basis set reduces to N rather than
2N states. Radiative phenomena have been investigated using
dynamical methods [40–42] and by the numerical solution
of an eigenvalue problem [43–46]. A collective frequency
shift [47,48] can be significant at a high atomic density [49]
and has been observed recently in an experiment where atoms
are resonant with a planar cavity [50].

To account for multiple atomic excitations in the
signal-idler emission from a cascade atomic ensemble, the
Schrödinger’s equation approach becomes cumbersome. An
alternative theory of c-number Langevin equations is suitable
for solution by stochastic simulations.

Langevin equations were initially derived to describe
Brownian motion [51]. A fluctuating force is used to represent
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the random impacts of the environment on the Brownian
particle. A given realization of the Langevin equation involves
a trajectory perturbed by the random force. Ensemble aver-
aging such trajectories provides a natural and direct way to
investigate the dynamics of the stochastic variables.

An essential element in the stochastic simulations is a
proper characterization of the Langevin noises. These rep-
resent the quantum fluctuations responsible for the initiation
of the spontaneous emission from the inverted [32,52–54] or
pumped atomic system [55,56], as in our case.

The positive-P phase-space method [57–63] is employed
to derive the Fokker-Planck equations that lead directly to the
c-number Langevin equations. The classical noise correlation
functions, equivalently diffusion coefficients, are alternatively
confirmed by use of the Einstein relations [64–66]. The c-
number Langevin equations correspond to Ito-type stochastic
differential equations that may be simulated numerically. The
noise correlations can be represented either by using a square
[67] or a nonsquare “square root” diffusion matrix [61]. The
approach enables us to calculate normally ordered quantities,
signal-idler field intensities, and the second-order correlation
function. The numerical approach involves a semi-implicit
difference algorithm and shooting method [68] to integrate
the stochastic “Maxwell-Bloch” equations.

Recently, a new positive-P phase-space method involving
a stochastic gauge function [69] has been developed. This
approach has an improved treatment of sampling errors and
boundary errors in the treatment of quantum anharmonic
oscillators [70,71]. It has also been applied to a many-body
system of bosons [72] and fermions [73]. In this paper, we
follow the traditional positive-P representation method [74].

The remainder of this paper is organized as follows. In
Sec. II, we show the formalism of positive-P representation
and demonstrate the stochastic differential equations of cas-
cade emission (signal and idler) from an atomic ensemble. In
Sec. III we solve numerically for the dynamics of the atoms
and counterpropagating signal and idler fields in a positive-
P representation. We present results of signal and idler
field intensities and the signal-idler second-order correlation
function for different optical depths of the atomic ensemble.
Section IV presents our discussions and conclusions. In the
Appendix, we show the details in the derivations of c-number
Langevin equations that are the foundation for numerical
approaches of the cascade emission. In Appendix A, we
formulate the Hamiltonian and derive the Fokker-Planck
equations by characteristic functions [75] in positive-P repre-
sentation. Then corresponding c-number Langevin equations
are derived, and the noise correlations are found from the
diffusion coefficients in Fokker-Planck equations as shown in
Appendix B.

II. THEORY OF CASCADE EMISSION

The phase-space methods [58] that mainly include P ,
Q, and Wigner (W ) representations are techniques of us-
ing classical analogs to study quantum systems, especially
harmonic oscillators. The eigenstate of harmonic oscillator
is a coherent state that provides the basis expansion to
construct various representations. P and Q representations
are associated, respectively, with evaluations of normal and

antinormal order correlations of creation and destruction
operators. W representation is invented for the purpose of
describing symmetrically ordered creation and destruction
operators. Since P representation describes normally ordered
quantities that are relevant in experiments, we are interested in
investigating one class of generalized P representations, the
positive-P representation that has semidefinite property in the
diffusion process, which is important in describing quantum
noise systems.

Positive-P representation [74,76] is an extension to
Glauber-Sudarshan P representation that uses coherent state
(|α〉) as a basis expansion of density operator ρ. In terms of
diagonal coherent states with a quasiprobability distribution,
P (α,α∗), a density operator in P representation is

ρ =
∫

D

|α〉〈α|P (α,α∗)d2α, (1)

where D represents the integration domain. The normalization
condition of ρ, which is Tr{ρ} = 1, indicates the normaliza-
tion for P as well,

∫
D

P (α,α∗)d2α = 1.
Positive-P representation uses a nondiagonal coherent-

state expansion and the density operator can be expressed
as

ρ =
∫

D

�(α,β)P (α,β)dμ(α,β), (2)

where

dμ(α,β) = d2αd2β and �(α,β) = |α〉〈β∗|
〈β∗|α〉 , (3)

and 〈β∗|α〉 in nondiagonal projection operators, �(α,β),
makes sure of the normalization condition in the distribution
function, P (α,β).

Any normally ordered observable can be deduced from the
distribution function P (α,β) that

〈(a†)man〉 =
∫

D

βmαnP (α,β)dμ(α,β). (4)

A characteristic function χp(λα,λβ) (Fourier-transformed
distribution function in Glauber-Sudarshan P representation
but now is extended into a larger dimension) can help formulate
a distribution function, which is

χp(λα,λβ) =
∫

D

eiλαα+iλββP (α,β)dμ(α,β). (5)

It is calculated from a normally ordered exponential operator
E(λ),

χp(λα,λβ) = Tr{ρE(λ)}, E(λ) = eiλβa†
eiλαa. (6)

Then a Fokker-Planck equation can be derived from the
time derivative of characteristic function,

∂χp

∂t
= ∂

∂t
Tr{ρE(λ)} = Tr

{
∂ρ

∂t
E(λ)

}
, (7)

by Liouville equations,

∂ρ

∂t
= 1

ih̄
[H,ρ]. (8)

In laser theory [75], a P representation method is extended
to describe atomic and atom-field interaction systems. When a
large number of atoms is considered, which is indeed the case
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of the actual laser, a macroscopic variable can be defined. Then
a generalized Fokker-Planck equation can be derived from
characteristic functions by neglecting higher-order terms that
are proportional to the inverse of number of atoms. It is similar
to our case when we solve light-matter interactions in an atomic
ensemble that the large number cuts off the higher-order terms
in characteristic functions.

We consider N cold atoms that are initially prepared in
the ground state interacting with four independent electro-
magnetic fields. As shown in Fig. 1, two driving lasers (of
Rabi frequencies 	a and 	b) excite a ladder configuration
|0〉 → |1〉 → |2〉. Two quantum fields, signal âs and idler âi ,

are generated spontaneously. We note that the spontaneous
emission from the cascade driving scheme is a stochastic
process due to the quantum fluctuations, unlike the diamond
configuration where quantum noise can be neglected [77,78].

The complete derivation of the c-number Langevin equa-
tions for cascade emission from the four-level atomic ensemble
is described in Appendixes A and B. After setting up the
Hamiltonian, we follow the standard procedure to construct
the characteristic functions [75] in Appendix A using the
positive-P representation [58]. In Appendix B 1, the Fokker-
Planck equation is found by directly Fourier transforming the
characteristic functions and making a 1/Nz expansion.

Finally the Ito stochastic differential equations are written
from inspection of the first-order derivative (drift term) and
second-order derivative (diffusion term) in the Fokker-Planck
equation. The equations are then written in dimensionless form
by introducing the Arecchi-Courtens cooperation units [79] in
Appendix B 2. From Eq. (B10) and the field equations that
follow, these c-number Langevin equations in a comoving
frame are,

∂

∂τ
π01 =

(
i�1 − γ01

2

)
π01 + i	a(π00 − π11) + i	∗

bπ02 − iπ
†
13E

+
i + F01 (I),

∂

∂τ
π12 = i

(
�2 − �1 + i

γ01 + γ2

2

)
π12 − i	∗

aπ02 + i	b(π11 − π22) + iπ13E
+
s e−i�kz + F12,

∂

∂τ
π02 =

(
i�2 − γ2

2

)
π02 − i	aπ12 + i	bπ01 + iπ03E

+
s e−i�kz − iπ32E

+
i + F02,

∂

∂τ
π11 = −γ01π11 + γ12π22 + i	aπ

†
01 − i	∗

aπ01 − i	bπ
†
12 + i	∗

bπ12 + F11,

∂

∂τ
π22 = −γ2π22 + i	bπ

†
12 − i	∗

bπ12 + iπ
†
32E

+
s e−i�kz − iπ32E

−
s ei�kz + F22,

(9)
∂

∂τ
π33 = −γ03π33 + γ32π22 − iπ

†
32E

+
s e−i�kz + iπ32E

−
s ei�kz + iπ

†
03E

+
i − iπ03E

−
i + F33,

∂

∂τ
π13 = −

(
i�1 + γ01 + γ03

2

)
π13 − i	∗

aπ03 − i	bπ
†
32 + iπ12E

−
s ei�kz + iπ

†
01E

+
i + F13,

∂

∂τ
π03 = −γ03

2
π03 − i	aπ13 + iπ02E

−
s ei�kz + i(π00 − π33)E+

i + F03,

∂

∂τ
π32 = i�2 − γ03 + γ2

2
π32 + i	bπ

†
13 − i(π22 − π33)E+

s e−i�kz − iπ02E
−
i + F32,

∂

∂z
E+

s = −iπ32e
i�kz |gs |2

|gi |2 − Fs ,
∂

∂z
E+

i = iπ03 + Fi ,

where (I) stands for Ito-type stochastic differential equation
(SDE). πij is the stochastic variable that corresponds to the
atomic populations of state |i〉 when i = j and to atomic
coherence when i �= j , and Fij are c-number Langevin
noises. The remaining equations of motion, which close the
set, can be found by replacing the above classical vari-
ables, π∗

jk → π
†
jk, (π †

jk)∗ → πjk,(E
+
s,i)

∗ → E−
s,i , (E−

s,i)
∗ →

E+
s,i , and F∗

jk → F†
jk . Note that the atomic populations satisfy

π∗
jj = πjj . The superscripts, dagger (†) for atomic variables

and (−) for field variables, denote the independent variables,
which is a feature of the positive-P representation: There are
double dimension spaces for each variable. These variables
are complex conjugate to each other when ensemble averages
are taken, for example, 〈πjk〉 = 〈π †

jk〉∗ and 〈E+
s,i〉 = 〈E−

s,i〉∗.

The doubled spaces allow the variables to explore trajectories
outside the classical phase space.

Before going further to discuss the numerical solution of
the SDE, we point out that the diffusion matrix elements have
been computed using Fokker-Planck equations and by the
Einstein relations discussed in Appendix B 2. This provides
the important check on the lengthy derivations of the diffusion
matrix elements we need for the simulations.

The next step is to find expressions for the Langevin noises
in terms of a nonsquare matrix B [61,76]. The matrix B

is used to construct the symmetric diffusion matrix D(α) =
B(α)BT (α) for a Ito SDE,

dxi
t = Ai(t,

−→
xt )dt +

∑
j

Bij (t,−→xt )dW
j
t (t) (I), (10)

013835-3



H. H. JEN PHYSICAL REVIEW A 85, 013835 (2012)

FIG. 1. Four-level atomic ensemble interacting with two driving
lasers (solid lines) with Rabi frequencies 	a and 	b. Signal and idler
fields are labeled by âs and âi , respectively, and �1 and �2 are one-
and two-photon laser detunings, respectively.

where ξidt = dWi
t (t) (Wiener process) and 〈ξi(t)ξj (t ′)〉 =

δij δ(t − t ′). Note that B → BS, where S is an orthogonal
matrix (SST = I ), leaves D unchanged, so B is not unique.
We could also construct a square matrix representation B

[51,58,67]. This involves a procedure of matrix decomposition
into a product of lower and upper triangular matrix factors.
A Cholesky decomposition can be used to determine the B

matrix elements successively row by row. The downside of this
procedure is that the B matrix elements must be differentiated
in converting the Ito SDE to its equivalent Stratonovich form
for numerical solution.

The Stratonovich SDE is necessary for the stability and the
convergence of semi-implicit methods. Because of the analytic
difficulties in transforming to the Stratonovich form, we use
instead the nonsquare form of B [61].

In this case a typical B matrix element is a sum of terms,
each one of which is a product of the square root of a diffusion
matrix element with a unit strength real (if the diffusion
matrix element is diagonal) or complex (if the diffusion
matrix element is off-diagonal) Gaussian unit white noise.
It is straightforward to check that a B matrix constructed in
this way reproduces the required diffusion matrix D = BBT .

As pointed out in Ref. [63], the transverse dipole-dipole
interaction can be neglected and nonparaxial spontaneous
decay rate can be accounted for by a single atom decay
rate if the atomic density is not too high. We are interested
here in conditions where the ensemble length L is significant
and propagation effects are non-negligible, and the average
distance between atoms d = 3

√
V/N is larger than the transi-

tion wavelength λ. The length scales satisfy λ � d 	 L, and
we consider a pencil-like cylindrical atomic ensemble. The
paraxial or one-dimensional assumption for field propagation
is then valid, and the transverse dipole-dipole interaction is not
important for the atomic density we focus here.

The theory of cascade emission presented here provides
the solid ground for simulations of fluctuations that initiate
the radiation process in the atomic ensemble. A proper way of
treating fluctuations or noise correlations and formulating SDE
requires an Ito form that is derived from the Fokker-Planck
equation. An alternative but more straightforward approach by
making quantum to classical correspondence in the quantum
Langevin equation does not guarantee an Ito type SDE. That
is the reason we take the route of Fokker-Planck equation, and
the coupled equations of Eq. (9) are the main results in this
section.

III. RESULTS FOR SIGNAL, IDLER INTENSITIES, AND
THE SECOND-ORDER CORRELATION FUNCTION

There are several possible ways to integrate the differential
equation numerically. Three main categories of algorithm
used are forward (explicit), backward (implicit), and mid-
point (semi-implicit) methods [68]. The forward difference
method, which Euler or Runge-Kutta methods utilizes, is not
guaranteed to converge in stochastic integrations [80]. There
it is shown that the semi-implicit method [81] is more robust
in Stratonovich type SDE simulations [82]. More extensive
studies of the stability and convergence of SDE can be found
in Ref. [83]. The Stratonovich type SDE equivalent to the
Ito-type equation (10) is

dxi
t =

⎡⎣Ai(t,
−→
xt ) − 1

2

∑
j

∑
k

Bjk(t,−→xt )
∂

∂xj
Bik(t,−→xt )

⎤⎦ dt

+
∑

j

Bij (t,−→xt )dW
j
t (Stratonovich), (11)

which has the same diffusion terms Bij , but with modified
drift terms. This “correction” term arises from the different
definitions of stochastic integral in the Ito and Stratonovich
calculus.

At the end of Appendix C 3, we derive the correction terms
noted above. We then have 19 classical variables including
atomic populations, coherences, and two counterpropagating
cascade fields. With 64 diffusion matrix elements and an
associated 117 random numbers required to represent the
instantaneous Langevin noises, we are ready to solve the
equations numerically using the robust midpoint difference
method.

The problem we encounter here involves counterpropa-
gating field equations in the space dimension and initial-
value-type atomic equations in the time dimension. The
counterpropagating field equations have a boundary condition
specified at each end of the medium. This is a two-point
boundary value problem, and a numerical approach to its
solution, the shooting method [68], is used here.

Any normally ordered quantity 〈Q〉 can be derived by
ensemble averages that 〈Q〉 = ∑R

i=1 Qi/R, where Qi is the
result for each realization.

In this section, we present the second-order correlation
function of signal-idler fields, and their intensity profiles. We
define the intensities of signal and idler fields by

Is(t) = 〈E−
s (t)E+

s (t)〉, Ii(t) = 〈E−
i (t)E+

i (t)〉, (12)

respectively, and the second-order signal-idler correlation
function

Gs,i(t,τ ) = 〈E−
s (t)E−

i (t + τ )E+
i (t + τ )E+

s (t)〉, (13)

where τ is the delay time of the idler field with respect
a reference time t of the signal field. Since the correlation
function is not stationary [84], we choose t as the time when
Gs,i is at its maximum.

We consider a cigar-shaped 85Rb ensemble of radius
0.25 mm and L = 3 mm. The operating conditions of the
pump lasers are (	a,	b, �1, �2) = (0.4, 1, 1, 0 )γ03, where
	a is the peak value of a 50-ns square pulse, and 	b is
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FIG. 2. (Color online) Time-varying pump fields and time evo-
lution of atomic populations. (Left) The first pump field 	a (dotted
red line) is a square pulse of duration 50 ns and 	b is continuous
wave (solid blue line). (Right) The time evolution of the real part
of populations for three atomic levels—σ11 = 〈α̃13〉 (dash-dotted red
line), σ22 = 〈α̃12〉 (dotted blue line), σ33 = 〈α̃11〉 (solid green line)—at
z = 0,L, and almost vanishing imaginary parts for all three of them
indicate convergence of the ensemble averages. Note that these atomic
populations are uniform as a function of z.

the Rabi frequency of a continuous wave laser. A four-wave
mixing condition (�k = 0) is assumed. The four atomic levels
are chosen as (|0〉,|1〉,|2〉,|3〉) = (|5S1/2,F = 3〉,|5P3/2,F =
4〉,|4D5/2,F = 5〉,|5P3/2,F = 4〉). The natural decay rate for
atomic transition |1〉 → |0〉 or |3〉 → |0〉 is γ01 = γ03 =
1/26 ns and they have a wavelength of 780 nm. For atomic
transition |2〉 → |1〉 or |2〉 → |3〉 is γ12 = γ32 = 0.156γ03

[85], with a telecom wavelength of 1.53 μm. The scale factor
of the coupling constants for signal and idler transitions is
gs/gi = 0.775.

We have investigated six different atomic densities from
a dilute ensemble with an optical density (opd) of 0.01 to
a opd = 8.71. In Figs. 2–4, we take the atomic density
ρ = 1010 cm−3 (opd = 2.18), for example, and the grid sizes
for dimensionless time �t = 4 and space �z = 0.0007 are
chosen. The convergence of the grid spacings is fixed in
practice by convergence to the signal intensity profile with
an estimated relative error less than 0.5%.

The temporal profiles of the exciting lasers are shown in
the left panel of Fig. 2. The atomic density is chosen as ρ =
1010 cm−3, and the cooperation time Tc is 0.35 ns. The right
panel shows time evolution of atomic populations for levels
|1〉, |2〉, and |3〉 at z = 0,L, that are spatially uniform. The
populations are found by ensemble averaging the complex
stochastic population variables. The imaginary parts of the
ensemble averages tend to zero as the ensemble size is
increased, and this is a useful indicator of convergence. In
this example, the ensemble size was 8 × 105. The small rise
after the pump pulse 	a is turned off is due to the modulation
caused by the pump pulse 	b, which has a generalized Rabi
frequency

√
�2

2 + 4	2
b. This influences also the intensity profiles

and the correlation functions.
In Fig. 3 we show counterpropagating signal (−ẑ) and

idler (+ẑ) field intensities at the respective ends of the atomic
ensemble and their spatial-temporal profiles, respectively. The
plots show the real and imaginary parts of the observables,
and both are normalized to the peak value of signal intensity.
Note that the characteristic field strength in terms of natural
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FIG. 3. (Color online) Spatial-temporal intensity profiles of coun-
terpropagating signal and idler fields. (a) At z = 0, real (dashed blue
line) and imaginary (solid red line) parts of signal intensity. (b) At
z = L, real (dash-dotted blue line) and imaginary (solid red line)
parts of idler intensity. Panels (c) and (d) are spatial-temporal profiles
for signal and idler intensities, respectively. Both intensities are
normalized by the peak value of signal intensity that is 7.56 × 10−12

E2
c . Note that the idler fluctuations and its nonvanishing imaginary

part indicate a relatively slower convergence compared with the signal
intensity. The ensemble size was 8 × 105, and the atomic density
ρ = 1010 cm−3.

decay rate of the idler transition (γ03) and dipole moment (di)
is (di/h̄)Ec ≈ 36.3γ03. The fluctuation in the real idler field
intensity at z = L and nonvanishing imaginary part indicates
a slower convergence compared to the signal field that has an
almost vanishing imaginary part. The slow convergence is a
practical limitation of the method.

In Fig. 4(a), we show a contour plot of the second-order
correlation function Gs,i(ts ,ti) where ti � ts . In Fig. 4(b), a
section is shown through ts ≈ 75 ns, where Gs,i is at its
maximum. The approximately exponential decay of Gs,i is
clearly superradiant qualitatively consistent with Ref. [16].
The nonvanishing imaginary part of Gs,i calculated by ensem-
ble averaging is also shown in (b) and indicates a reasonable
convergence after 8 × 105 realizations.

In Table I, we display numerical parameters of our
simulations for six different atomic densities. The number
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FIG. 4. (Color online) Second-order correlation function
Gs,i(ts ,ti). The two-dimensional contour plot of the real part of Gs,i

with a causal cutoff at ts = ti is shown in (a). Plot (b) gives a cross
section at ts = tm ≈ 75 ns, which is normalized to the maximum of
the real part (dashed blue line) of Gs,i . The imaginary part (solid red
line) of Gs,i is nearly vanishing, and the number of realizations is
8 × 105 for ρ = 1010 cm−3.
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TABLE I. Numerical simulation parameters for different atomic
densities ρ. Corresponding optical depth (opd), time, and space grids
(Mt × Mz) with grid sizes (�t,�z) in terms of cooperation time (Tc)
and length (Lc), and the fitted characteristic time Tf for Gs,i (see
text).

�t(Tc), Tc( ns)
ρ(cm−3) opd Mt × Mz �z(Lc) Lc(m) Fitted Tf (ns)

5 × 107 0.01 111 × 42 0.3, 5 × 10−5 4.89, 1.47 25.9
5 × 108 0.11 101 × 44 0.9, 1.5 × 10−4 1.55, 0.46 24.6
5 × 109 1.09 101 × 42 2.8, 4.5 × 10−4 0.49, 0.15 14.8
1 × 1010 2.18 101 × 42 4.0, 7 × 10−4 0.35, 0.10 9.4
2 × 1010 4.35 101 × 42 5.5, 1 × 10−3 0.24, 0.07 5.0
4 × 1010 8.71 101 × 42 8.0, 1.4 × 10−3 0.17, 0.06 3.1

of dimensions in space and time is Mt × Mz with grid sizes
(�t,�z) in terms of cooperation time (Tc) and length (Lc).
The superradiant time scale (Tf ) is found by fitting Gs,i to an
exponential function (e−t/Tf ), with 95% confidence range.

In Fig. 5, the characteristic time scale is plotted as a function
of atomic density and the factor Nμ and shows faster decay
for optically denser atomic ensembles. We also plot the time
scale T1 = γ −1

03 /(Nμ + 1) (ns), where μ is the geometrical
constant for a cylindrical ensemble [23]. The natural decay
time γ −1

03 = 26 ns corresponds to the D2 line of 85Rb. The error
bar indicates the deviation due to the fitting range from the peak
of Gs,i to approximately 25% and 5% of the peak value. The
results of simulations are in good qualitative agreement with
the time scale of T1 that can be regarded as a superradiant time
constant of lower transition in a two-photon cascade [65,84].
Tf approaches independent atom behavior at lower densities,
which indicates that no collective behavior as expected. We
note here that our simulations involve multiple excitations
within the pumping condition similar to the experimental
parameters [16]. The small deviation of Tf and T1 might be
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FIG. 5. (Color online) Characteristic time scales, Tf and T1,
vs atomic density ρ and the superradiant enhancement factor Nμ.
Tf (dotted blue line) is the fitted characteristic time scale for
Gs,i(ts = tm,ti = tm + τ ), where tm is chosen at its maximum, as
in Fig. 4. The error bars indicate the fitting uncertainties. As a
comparison, T1 = γ −1

03 /(Nμ + 1) (dashed black line) is plotted where
γ −1

03 = 26 ns is the natural decay time of the D2 line of 85Rb atom,
and μ is the geometrical constant for a cylindrical atomic ensemble.
The number of realizations is 4 × 105 for ρ = 5 × 107, 5 × 108,
5 × 109 cm−3, 8 × 105 for ρ = 1010, 2 × 1010 cm−3, and 16 × 105

for ρ = 4 × 1010 cm−3.

due to the multiple emissions considered in our simulations
other than a two-photon source. On the other hand, the close
asymptotic dependence of atomic density or optical depth in
Tf and T1 indicates a strong correlation between signal and
idler fields due to the four-wave mixing condition as required
and crucial in experiment [16].

For larger opd atomic ensembles, larger statistical ensem-
bles are necessary for numerical simulations to converge.
The integration of 8 × 105 realizations used in the case of
ρ = 1010 cm−3 consumes about 14 days with MATLAB’s
parallel computing toolbox (function “parfor”) with a Dell
precision workstation T7400 (64-bit Quad-Core Intel Xeon
processors).

IV. DISCUSSION AND CONCLUSION

The cascade atomic system studied here provides a source
of telecommunication photons that are crucial for long-
distance quantum communication. We may take advantage
of such low loss transmission bandwidth in the Duan-Lukin-
Cirac-Zoller protocol for a quantum repeater. The performance
of the protocol relies on the efficiency of generating the
cascade emission pair, which is better for a larger optical depth
of the prepared atomic ensemble. For other applications in
quantum information science such as quantum swapping and
quantum teleportation, the frequency space correlations also
influence their success rates [86]. To utilize and implement the
cascade emission in quantum communication, we characterize
the emission properties, especially the signal-idler correlation
function and its dependence on optical depths. Its superradiant
time scale indicates a broader spectral distribution which
saturates the storage efficiency of idler pulse in an auxiliary
atomic ensemble [16] by means of EIT (electromagnetic-
induced transparency). Therefore, our calculation provides the
minimal spectral window (1/Tf ) of EIT to efficiently store and
retrieve the idler pulse.

In summary, we have derived c-number Langevin equations
in the positive-P representation for the cascade signal-idler
emission process in an atomic ensemble. The equations are
solved numerically by a stable and convergent semi-implicit
difference method, while the counterpropagating spatial evo-
lution is solved by implementing the shooting method. We
investigate six different atomic densities readily obtainable
in a magneto-optical trap experiment. Signal and idler field
intensities and their correlation function are calculated by
ensemble averages. Vanishing of the unphysical imaginary
parts within some tolerance is used as a guide to convergence.
We find an enhanced characteristic time scale for idler emission
in the second-order correlation functions from a dense atomic
ensemble, qualitatively consistent with the superradiance time
scales used in a cylindrical dense atomic ensemble [16,23].
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APPENDIX A: HAMILTONIAN AND CHARACTERISTIC
FUNCTIONS IN POSITIVE-P REPRESENTATION

METHOD

The Hamiltonian H is in the Schrödinger picture, and we
separate it into two parts where H0 is the free Hamiltonian of
the atomic ensemble and one-dimensional counterpropagating
signal and idler fields, and HI is the interaction Hamiltonian
of atoms interacting with two classical fields and two quantum
fields (signal and idler) as shown in Fig. 1. Dipole approx-
imation of −�d · �E and rotating wave approximation (RWA)
have been made to these interactions. Using the standard
quantization of electromagnetic field [57], we have

H0 =
3∑

i=1

M∑
l=−M

h̄ωiσ̃
l
ii + h̄ωs

M∑
l=−M

â
†
s,l âs,l + h̄

∑
l,l′

ωl′l â
†
s,l âs,l′

+h̄ωi

M∑
l=−M

â
†
i,l âi,l + h̄

∑
l,l′

ωll′ â
†
i,l âi,l′ , (A1)

HI = −h̄

M∑
l=−M

[
	a(t)σ̃ l†

01e
ikazl−iωat

+	b(t)σ̃ l†
12e

−ikbzl−iωbt + H.c.
]

−h̄

M∑
l=−M

[
gs

√
2M + 1σ̃

l†
32âs,le

−ikszl

+gi

√
2M + 1σ̃

l†
03âi,le

iki zl + H.c.
]
, (A2)

where σ̃ l
mn ≡ ∑Nz

μ σ̂
μ,l
mn = ∑Nz

μ |m〉μ〈n||rμ=zl
,	a(t) ≡

fa(t)d10E(ka)/(2h̄), and fa is slow varying temporal profile
without spatial dependence (ensemble scale much less
than pulse length). gs ≡ d23E(ks)/h̄,E(k) = √

h̄ω/2ε0V ,
zm = mL

2M+1 ,m = −M, . . . ,M, and L is the length of
propagation that is equally split into 2M + 1 elements.
Commutation relations of field operators are [âl ,â

†
l′ ] = δll′ ,

and the matrix ωll′ ≡ ∑
n

knc

2M+1eikn(zl−zl′ ) accounts for field
propagation by coupling the local mode operators where
kn = 2πn/L. Note that the Rabi frequency is half of the
standard definition.

The normally ordered exponential operator is chosen as

E(λ) =
∏

l

El(λ),

El(λ) = eiλl
19σ̃

l†
01eiλl

18σ̃
l†
12eiλl

17σ̃
l†
02eiλl

16σ̃
l†
13eiλl

15σ̃
l†
03eiλl

14σ̃
l†
32

×eiλl
13σ̃

l
11eiλl

12σ̃
l
22eiλl

11σ̃
l
33eiλl

10σ̃
l
32eiλl

9σ̃
l
03eiλl

8σ̃
l
13

×eiλl
7σ̃

l
02eiλl

6σ̃
l
12eiλl

5σ̃
l
01eiλl

4â
†
s,l eiλl

3âs,l eiλl
2â

†
i,l eiλl

1âi,l . (A3)

Aside from the atom-field interaction ∂ρ

∂t
= 1

ih̄
[H,ρ], when

dissipation from vacuum is considered (single atomic decay),
we can express them in terms of a Lindblad form where we
have for the four-level atomic system,(

∂ρ

∂t

)
sp

=
M∑

l=−M

Nz∑
μ

{
γ01

2

[
2σ̂

μ,l

01 ρσ̂
μ,l†
01 − σ̂

μ,l†
01 σ̂

μ,l

01 ρ − ρσ̂
μ,l†
01 σ̂

μ,l

01

]

+ γ12

2

[
2σ̂

μ,l

12 ρσ̂
μ,l†
12 − σ̂

μ,l†
12 σ̂

μ,l

12 ρ − ρσ̂
μ,l†
12 σ̂

μ,l

12

]
+ γ32

2

[
2σ̂ μ,l

32
ρσ̂μ,l†

32
− σ̂ μ,l†

32
σ̂ μ,l

32
ρ − ρσ̂μ,l†

32
σ̂ μ,l

32

]
+ γ03

2

[
2σ̂

μ,l

03 ρσ̂
μ,l†
03 − σ̂

μ,l†
03 σ̂

μ,l

03 ρ − ρσ̂
μ,l†
03 σ̂

μ,l

03

]}
.

(A4)

The characteristic functions can be calculated as

χ = Tr{E(λ)ρ}, (A5)

∂χ

∂t
= Tr

{
E(λ)

∂ρ

∂t

}
=

(
∂χ

∂t

)
A

+
(

∂χ

∂t

)
L

+
(

∂χ

∂t

)
A−L

+
(

∂χ

∂t

)
sp

,

(A6)(
∂χ

∂t

)
A

= Tr

{
E(λ)

1

ih̄
[HA,ρ]

}
,(

∂χ

∂t

)
L

= Tr

{
E(λ)

1

ih̄
[HL,ρ]

}
,

(A7)(
∂χ

∂t

)
A−L

= Tr

{
E(λ)

1

ih̄
[HA−L,ρ]

}
,(

∂χ

∂t

)
sp

= Tr

{
E(λ)

(
∂ρ

∂t

)
sp

}
,

where H0 = HA + HL, HA is the atomic free evolution
Hamiltonian, HL is the Hamiltonian for laser fields, and
HA−L = HI . The detail of derivations in various characteristic
functions can be found in laser theory [75] or the theory of
light-atom interactions in atomic ensembles [78].

APPENDIX B: STOCHASTIC DIFFERENTIAL EQUATION

A distribution function can be found by Fourier transform-
ing the characteristic functions,

f (�α) = 1

(2π )n

∫
· · ·

∫
e−i �α·�λχ (�λ)dλ1 . . . dλn, (B1)

then

∂f

∂t
= 1

(2π )n

∫
· · ·

∫
e−i �α·�λ ∂χ

∂t
dλ1 . . . dλn. (B2)

If ∂χ

∂t
= iλβ

∂χ

∂(iλγ ) and we use integration by parts and

neglect the boundary terms, we have ∂f

∂t
= − ∂

∂(αβ )αγ f , where

a minus sign is from iλβ . Correspondingly, if ∂χ

∂t
= eiλβ , we

have ∂f

∂t
= e

− ∂
∂(αβ ) .

1. Fokker-Planck equation

Let

∂f

∂t
= Lf

=
∑
l,l′

[LAδll′ + LL + L(a)
A−Lδll′ + L(b)

A−Lδll′ + Lspδll′ ]f,

(B3)
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and neglect higher-order derivatives (third order and higher)
in various L’s. The validity of truncation to second order is
due to the expansion in the small parameter 1/Nz.

If the Fokker-Planck equation is

∂f

∂t
= − ∂

∂α
Aαf − ∂

∂β
Aβf + 1

2

(
∂2

∂α∂β
+ ∂2

∂β∂α

)
Dαβf,

(B4)

where A and D are drift and diffusion terms, respectively, then
we have a corresponding classical Langevin equation,

∂α

∂t
= Aα + �α ,

∂β

∂t
= Aβ + �β, (B5)

with a correlation function 〈�α�β〉 = δ(t − t ′)Dαβ . So now we
can derive the equations of motion according to various L’s,
but we postpone them and derivations of diffusion coefficients
after the scaling is made for a dimensionless form in the next
section. The demonstration of variousL’s can be found in laser
theory [75] or the theory of light-atom interactions in atomic
ensembles [78].

2. Slowly varying envelopes and scaled equations of motion

Here we introduce the slowly varying envelopes and define
our cross-grained collective atomic and field observables, then
finally transform the equations in a dimensionless form for
later numerical simulations. Define slow varying observables
that

α̃5(z,t) ≡ 1

Nz

αl
5e

−ikazl+iωat , α̃6(z,t) ≡ αl
6

Nz

eikbzl+iωbt ,

α̃7(z,t) ≡ 1

Nz

αl
7e

−ikazl+ikbzl+iωbt+iωat ,

α̃8(z,t) ≡ 1

Nz

αl
8e

−iωa t+iω3t+ikazl−iki zl ,

α̃9(z,t) ≡ 1

Nz

αl
9e

−iki zl+iω3t , α̃11(z,t) ≡ 1

Nz

αl
11,

α̃12(z,t) ≡ 1

Nz

αl
12, α̃13(z,t) ≡ 1

Nz

αl
13,

α̃14(z,t) ≡ 1

Nz

αl
14e

−i(ω23+�2)t eikazl−ikbzl−iki zl , (B6)

where ei�kz = eikazl−ikbzl−iki zl+ikszl . We note that

i
∑

l′
ωll′α

l′
4 = c

d

dzl

αl
4, − i

∑
l′

ωll′α
l′
1 = −c

∂

∂zl

αl
1, (B7)

and αl
0 = Nz − αl

13 − αl
12 − αl

11, which will be used in later
coupled equations. Also for the field variables,

E−
s (z,t) ≡ g∗

s

di/h̄

√
2M + 1αl

4e
−iωs t ,

(B8)
E+

i (z,t) ≡ gi

di/h̄

√
2M + 1αl

1e
iωi t ,

where we use the idler dipole moment in signal field scaling
for the purpose of scale-free atomic equation of motions, so
we need to keep in mind that in calculating signal intensity
or correlation function, an extra factor of (di/ds)2 needs to be
taken care of.

We choose the central frequency of signal and idler as ωs =
ω23 + �2,ωi = ω3, where �1 = ωa − ω1 and �2 = ωa +
ωb − ω2. With a scaling of Arecchi-Courtens cooperation
length [79], we set up the units of time, length, and field
strength in the following:

Lc = cTc,
1

Tc

=
√

d2
i nωi

2h̄ε0
, Ec = 1

Tc

1

di/h̄
. (B9)

Now the slowly varying and dimensionless equations of
motion with Langevin noises in Ito’s form are

∂

∂t
α̃5 =

(
i�1 − γ01

2

)
α̃5 + i	a (̃α0 − α̃13) + i	∗

bα̃7 − iα̃16E
+
i + F5,

∂

∂t
α̃6 = i

(
�2 − �1 + i

γ01 + γ2

2

)
α̃6 − i	∗

aα̃7 + i	b (̃α13 − α̃12) + iα̃8E
+
s e−i�kz + F6,

∂

∂t
α̃7 =

(
i�2 − γ2

2

)
α̃7 − i	aα̃6 + i	bα̃5 + iα̃9E

+
s e−i�kz − iα̃10E

+
i + F7,

∂

∂t
α̃13 = −γ01α̃13 + γ12α̃12 + i	aα̃19 − i	∗

aα̃5 − i	bα̃18 + i	∗
bα̃6 + F13,

∂

∂t
α̃12 = −γ2α̃12 + i	bα̃18 − i	∗

bα̃6 + iα̃14E
+
s e−i�kz − iα̃10E

−
s ei�kz + F12,

∂

∂t
α̃11 = −γ03α̃11 + γ32α̃12 − iα̃14E

+
s e−i�kz + iα̃10E

−
s ei�kz + iα̃15E

+
i − iα̃9E

−
i + F11,

∂

∂t
α̃8 = −

(
i�1 + γ01 + γ03

2

)
α̃8 − i	∗

aα̃9 − i	bα̃14 + iα̃6E
−
s ei�kz + iα̃19E

+
i + F8,

∂

∂t
α̃9 = −γ03

2
α̃9 − i	aα̃8 + iα̃7E

−
s ei�kz + i (̃α0 − α̃11)E+

i + F9,

∂

∂t
α̃14 = −

(
i�2 + γ03 + γ2

2

)
α̃14 − i	∗

bα̃8 + i (̃α12 − α̃11)E−
s ei�kz + iα̃17E

+
i + F14, (B10)
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where γ2 = γ12 + γ32, and field propagation equations are(
∂

∂t
− ∂

∂z

)
E−

s = −iα̃14e
−i�kz |gs |2

|gi |2 + F4,(
∂

∂t
+ ∂

∂z

)
E+

i = iα̃9 + F1, (B11)

where |gs |2
|gi |2 is a unit transformation factor from the signal field

strength to the idler one. For a recognizable format of the above
equations used in the main context, we change the labels in
the following:

α̃5 ↔ π01, α̃6 ↔ π12, α̃7 ↔ π02, α̃8 ↔ π13,

α̃9 ↔ π03, α̃10 ↔ π32, α̃11 ↔ π33, α̃12 ↔ π22,

α̃13 ↔ π11, α̃14 ↔ π
†
32, α̃15 ↔ π

†
03, α̃16 ↔ π

†
13,

α̃17 ↔ π
†
02, α̃18 ↔ π

†
12, α̃19 ↔ π

†
01, (B12)

where πij is the stochastic variable that corresponds to the
atomic populations of state |i〉 when i = j and to atomic
coherence when i �= j . Note that the associated c-number
Langevin noises are changed accordingly.

The Langevin noises are defined as

F5(z,t) = �l
5

Nz

e−ikazl+iωa t , F6(z,t) = �l
6

Nz

eikbzl+iωbt ,

F7(z,t) = �l
7

Nz

e−ikazl+ikbzl+iωbt+iωat , F13(z,t) = �l
13

Nz

,

F11(z,t) = �l
11

Nz

, F8(z,t) = 1

Nz

�l
8e

−iωa t+iω3t+ikazl−iki zl ,

F14(z,t) = 1

Nz

�l
14e

−i(ω23+�2)t eikazl−ikbzl−iki zl ,

F9(z,t) = �l
9

Nz

e−iki zl+iω3t , F12(z,t) = �l
12

Nz

,

F4(z,t) = g∗
s

di/h̄

√
2M + 1e−iωs t�l

4,

F1(z,t) = gi

di/h̄

√
2M + 1eiωi t�l

1, (B13)

where other Langevin noises can be found by using the
correspondence, for example, F∗

5 ↔ F19.
Before we proceed to formulate the diffusion coefficients,

we need to be careful about the scaling factor for the transfor-
mation to continuous variables when numerical simulation is
applied. Take 〈F6F5〉 for example,

〈F6(z,t)F5(z′,t ′)〉 = 1

N2
z

eikbzl+iωbt e−ikazl′+iωa t
′ 〈�l

6�
l′
5 〉

= 1

N2
z

eikbzl+iωbt e−ikazl+iωat
[
i	ae

ikazl−iωatαl
6

+igi

√
2M + 1eikizl αl

10α
l
1

]
δ(t − t ′)δll′

= 1

Nc

[i(	aTc )̃α6 + iα̃10(E+
i /Ec)]

× 1

T 2
c

δ(t − t ′)Tcδ(z − z′)Lc, (B14)

where we have used limM→∞ 2M+1
L

δll′ = δ(z − z′), 2M + 1 =
N
Nz

, and Nc = NLc

L
is the cooperation number. Then we have

the dimensionless form of diffusion coefficients,

T 2
c 〈F6(z̃,t̃)F5(z̃′,t̃ ′)〉 = D6,5

Nc

δ(t̃ − t̃ ′)δ(z̃ − z̃′) (B15)

D6,5 = [i	aα̃6 + iα̃10E
+
i ]. (B16)

The dimensionless diffusion coefficients Dij are

(i) D5,5 = −i2	aα̃5; D5,6 = i(	aα̃6 + α̃10E
+
i ); D5,7 = −i	aα̃7; D5,8 = i(	aα̃8 + (̃α11 − α̃13)E+

i );

D5,9 = −i(	aα̃9 + α̃5E
+
i ); D5,11 = −iα̃16E

+
i ; D5,13 = iα̃16E

+
i ; D5,14 = −iα̃18E

+
i ; D5,19 = γ12α̃12;

(ii) D6,6 = −i2	bα̃6; D6,8 = −i	bα̃8; D6,10 = −i	bα̃10; D6,13 = −i	∗
aα̃7 + γ01α̃6;

D6,16 = −iα̃7E
−
i + γ01α̃10; D6,18 = γ01α̃12;

(iii) D7,8 = −iα̃6E
+
i ; D7,9 = −iα̃7E

+
i ;

(iv) D8,9 = −iα̃8E
+
i ; D8,10 = i	b (̃α12 − α̃11); D8,11 = i	bα̃14; D8,12 = −i	bα̃14;

D8,13 = −i	∗
aα̃9 + iα̃19E

+
i + γ01α̃8; D8,16 = iα̃15E

+
i − iα̃9E

−
i + γ01α̃11 + γ32α̃12; D8,18 = iα̃17E

+
i + γ01α̃14;

(v) D9,9 = −i2α̃9E
+
i ; D9,10 = iα̃10E

+
i ; D9,15 = γ32α̃12;

(vi)D10,10 = −i2α̃10E
+
s e−i�kz; D10,11 = i(	bα̃16 − α̃7E

−
i ) + γ03α̃10; D10,13 = −i	bα̃16;

D10,14 = i	bα̃18 − i	∗
bα̃6 + γ03α̃12; D10,19 = iα̃6E

−
i ;

(vii) D11,11 = iα̃14E
+
s e−i�kz − iα̃10E

−
s ei�kz + iα̃15E

+
i − iα̃9E

−
i + γ32α̃12 + γ03α̃11;

D11,12 = iα̃10E
−
s ei�kz − iα̃14E

+
s e−i�kz − γ32α̃12;

(viii) D12,12 = i	bα̃18 − i	∗
bα̃6 − iα̃10E

−
s ei�kz + iα̃14E

+
s e−i�kz + γ2α̃12; D12,13 = −i	bα̃18 + i	∗

bα̃6 − γ12α̃12;

(ix) D13,13 = i	aα̃19 − i	∗
aα̃5 + i	bα̃18 − i	∗

bα̃6 + γ01α̃13 + γ12α̃12;

(x) D3,8 = |gs |2
|gi |2 iα̃6e

i�kz; D3,9 = |gs |2
|gi |2 iα̃7e

i�kz. (B17)

013835-9



H. H. JEN PHYSICAL REVIEW A 85, 013835 (2012)

Before going further to set up the stochastic differen-
tial equation in the next section, we remark on the al-
ternative method to derive the diffusion coefficients from
the Heisenberg-Langevin approach with Einstein relations
[64–66], and it provides the important check for Fokker-Planck
equations. We note here that a symmetric property of the diffu-
sion coefficients is within Fokker-Planck equation, whereas the
quantum diffusion coefficients in quantum Langevin equation
do not have symmetric property simply because the quantum
operators do not necessarily commute with each other.

3. Ito and Stratonovich stochastic differential equations

The c-number Langevin equations derived from Fokker-
Planck equations have a direct correspondence to Ito-type
stochastic differential equations [51,58]. In stochastic simu-
lations, it is important to find the expressions of Langevin
noises from diffusion coefficients.

For any symmetric diffusion matrix D(α), it can always be
factorized into

D(α) = B(α)BT (α), (B18)

where B → BS (an orthogonal matrix S that SST = I )
preserves the diffusion matrix so B is not unique. The matrix B

is in terms of the Langevin noises where ξidt = dWi
t (Wiener

process) and 〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′) and the ξi below is just
a random number in Gaussian distribution with zero mean and
unit variance.

In numerical simulation, we use the semi-implicit algorithm
that guarantees the stability and convergence in the integration
of stochastic differential equations. So a transformation from
Ito to Stratonovich-type stochastic differential equation is
necessary,

dxi
t = Ai(t,

−→
xt )dt +

∑
j

Bij (t,−→xt )dW
j
t (Ito), (B19)

dxi
t =

⎡⎣Ai(t,
−→
xt ) − 1

2

∑
j

∑
k

Bjk(t,−→xt )
∂

∂xj
Bik(t,−→xt )

⎤⎦ dt

+
∑

j

Bij (t,−→xt )dW
j
t (Stratonovich), (B20)

where a correction in the drift term appears due to the
transformation.

In the end we have the full equations with 19 vari-
ables in the positive-P representation, 64 diffusion ma-
trix elements, and 117 noise terms (random number gen-
erators). Nonvanishing corrections in drift terms are only
for α̃5, α̃6, α̃9, α̃10, α̃11, α̃12, α̃13, and they are i	a/2,
i	b, iE+

i , iE+
s /2, (−3γ03 + γ32)/4, −γ2/4, (−5γ01 + γ12)/4,

respectively.
The Langevin noises can be formulated as a nonsquare

form [61,76], and in numerical simulations, we have a factor
1√

Nc�t�z
for Langevin noises F and 1

Nc�t�z
for correction

terms.
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