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Non-Dicke decay in a small spherical sample with radially varying density
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It is a familiar fact that, in an isolated sphere or ellipsoid of uniform polarization density, the electrostatic field
also is uniform. Because of this, the state of uniform polarization in a spherical sample of uniformly distributed
two-level atoms is an eigenmode of the coherent decay process in the limit of a small radius compared to the
resonant wavelength of a single atom. Consequently, in this special geometry, the Dicke picture of uniform
exponential decay should hold. In nonspheroidal geometries or in spherical geometries with nonuniform atomic
density, the decay should be more complicated. Here, we find the characteristic equations that determine the
eigenmodes of the Lienard-Wiechert interaction for a partly hollowed sphere of identical two-level atoms in two
different radial configurations. We show that the Dicke picture for emission from a coherently prepared sample
does not correctly describe the system’s dynamics even when we take the radius of the sphere to be much smaller
than the radiation wavelength.
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I. INTRODUCTION

We consider the coherent radiative emission [1–6] from a
cloud of N identical two-level atoms. The Dicke picture for
a small cloud (dimension � resonant wavelength) envisions
that, if the state is initially symmetric in all the atoms, it will
remain so throughout the decay. Here, we mainly consider
the case that the initial state is one of weak excitation. This
problem is linear in the amplitude of the excited state, and in
the Dicke picture, the decay is purely exponential, with a rate
N times that of the isolated atom.

This picture was called into question [7] on the ground that
the interaction energy,

Wa b = exp(ikrab)

[ �pa ◦ �p∗
b − 3 �pa ◦ r̂abp

∗
b ◦ r̂ab

r3
ab

(1−ikrab)

− k2

rab
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]
, (1.1)

between two dipoles �pa , �pb at separation �rab = rabr̂ab oscillat-
ing synchronously at frequency ω = kc becomes, at a short
distance (krab � 1) ,

Wab = �pa ◦ �p∗
b − 3 �pa ◦ r̂ab �p∗

b ◦ r̂ab

r3
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3
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b,

(1.2)

whose real part O(1/r3
12) induces frequency shifts much larger

than the radiation rate O(k3) given by the imaginary part.
Since, even in the small sample, the frequency shift induced
in a particular atom, in general, would depend strongly on the
position of the atom within the sample, it was argued that the
parts of the sample would dephase quickly before the radiation
had time to occur significantly.
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But in a uniformly dense sphere with initially uniform polar-
ization [8], the resulting field also is uniform in the limit kR →
0, and the sample does not dephase. (See also Ref. [9], Sec. II;
Ref. [10], Sec. VIII. R is the radius of the sphere, and 2π/k is
the resonant wavelength.) Thus, Dicke decay should take place
in the uniform small sphere but not in one of variable density.

In this paper, we will consider a small spherical sample with
either a uniformly filled shell and a central hollow or a shell
and a central core both uniformly filled with the same density
and separated by a gap. (The shell-plus-core case, with the
initial excitation uniform, must not be confused with that of
Ref. [9], Sec. VII in which the atomic density is uniform but the
initial excitation is not.) We will treat these two configurations
by means of the full Maxwell equations for the field and find
numerical results for a small but finite sphere (kR = 0.05).
These calculations involve the inversion of a matrix containing
spherical Bessel functions of both j1 and n1 types, whose ratio
is O[(kR)−3]. The numerical results become unreliable when
this ratio exceeds ≈105. Hence, one cannot go with desired
accuracy below kR ≈ 10−2 using the present algorithm. In
the appendix, we will illustrate how one can obtain, through a
double-series expansion of the eigenmode characteristic deter-
minant, analytic results for the cooperative frequency shift and
the cooperative decay rate that are exact in the limit kR → 0.

In Sec. II, we recall the fundamental equations governing
the dynamics of the system and present the formulas for
the fields �E and �B within a region of uniform density in a
general eigenmode of a spherically symmetric sample of any
size. In Sec. III, we specialize for dipole (l = 1) symmetry
and find the boundary conditions that determine eigenvalues
and eigenfunctions in the shell-plus-hollow configuration. In
Secs. IV and V, we do the same for the shell-plus-core
configuration. In each configuration, we find that a small
number of modes (two and three, respectively) dominate
the short-time dynamics when kR � 1. These modes have
wavelength �2π/k. Other modes have short wavelength
(<R) and do not enter appreciably for kR = 0.05. Non-Dicke
behavior is found for this value of kR. We conclude in Sec. VI.
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II. FUNDAMENTAL EQUATIONS

One may consider the complex energy given by Eq. (1.1) as inducing a time development in accordance with quantum mechanics.
This leads eventually to two equations [see Eqs. (2.4) and (2.5) of Ref. [10], note, however, that here we are using cgs units, i.e.,
ε0 → 1/(4π )],

�P (�r) = − n℘2

h̄ (ω − ω0)
�EL (�r) = n℘2

h̄ (ω − ω0 + ωL)
�E (�r) , (2.1)

�EL (�r) = �E (�r) + 4

3
π �P (�r) = −

∫
d3�r ′exp (ik
)

[(
1


3
− i

k


2

)
[�P(�r ′) − 3
̂
̂ ◦ �P(�r ′)] − k2


 [�P(�r ′) − 
̂
̂ ◦ �P(�r ′)]
]

,

(2.2)

where �EL is the local electric field, �
 = 
,
̂ = �r − r ′, ℘ is the electric dipole matrix element, and ωLis the Lorentz shift
= 1

3
4πn℘2

h̄
arising from the term 4

3π �P in Eq. (2.2).

In Eqs. (2.1) and (2.2), it has been assumed that the polarization density �P(�r) and the Maxwell and local electric fields have
a common time dependence exp(−iωt) and that sums over atoms may be replaced by integrals over space. Equation (2.1)
holds only in the occupied regions where the number density is n. In the empty regions, �P = 0. Equation (2.2) holds in
all space, although the integral over �r ′ can be regarded as limited to the occupied region since �P(�r ′) vanishes elsewhere.

Equations (2.1)–(2.2) describe an eigenmode of the linearized Maxwell-Bloch system pertaining to a sample of atoms weakly
excited. We will take the frequency ω to be

ω = ω0 − ωL − iλ, (2.3)

so that Re(λ) represents decay of magnitude and Im(λ) represents a frequency shift that varies from mode to mode. Note
that, in Ref. [10], we defined λ by ω = ω0 − iλ so that λ in that paper corresponds to λ − iωL in the present notation.
Strictly, the quantity k = ω/c on the right-hand side of Eq. (2.2) should vary slightly from mode to mode in accordance
with Eq. (2.3), but we neglect this variation and replace k by k0 = ω0/c for all modes. Thus, Eqs. (2.1) and (2.2)
become

�P (�r) = −n℘2

h̄λ
�E (occupied region), (2.4)

and

�E (�r) + 4

3
π �P (�r) = −

∫
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3
− i

k0


2

)
[�P(�r ′) − 3
̂
̂ ◦ �P(�r ′)] − k2

0


 [�P(�r ′) − 
̂
̂ ◦ �P(�r ′)]
]

. (2.5)

Suitable treatment of Eq. (2.5) shows that the Maxwell
fields �E and �B satisfy

(∇2 + k2
0

) �E = 0,
(∇2 + k2

0

) �B = 0, (2.6)

in the empty region, but

(∇2 + k′2)�E = 0, (∇2 + k′2)�B = 0, (2.7)

in the occupied region, where

k′ 2 �E = k2
0(�E + 4π �P), (2.8a)

or, equivalently,

k′ 2

k2
0

= 1 + 4πn℘2

i h̄ λ
. (2.8b)

The fields �E and �B also are related by

�∇ × �E = i k0 �B, (2.9a)

�∇ × �B = −i k0(�E + 4π �P) = −i
k′ 2

k0

�E, (2.9b)

so that the tangential components of �E and �B are continuous
across boundaries. (See Ref. [10] for more details.)

From Eq. (2.8), we find that λ for any mode is given by

λ = i
C k2

0

k2
0 − k′ 2

, (2.10)

where C = 4π℘2n/h̄. (Note that k′ is complex and different
for each mode.)

In a spherical geometry, the possible solutions of Eq. (2.7)
are designated by angular indices l,m, and a radial index s

as well as a binary choice (E,M) [10,11]. Since our initial
condition is one of uniform polarization, we need consider
only electric dipole modes (E) with l = 1 and m = 0 and,
henceforth, suppress the angular indices. Then, the solution
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for an eigenmode (s), in region L, has the form

�B (x,θ,φ) = [a1j1 (vsx) + a2n1 (vsx)] P 1
l [cos (θ )] êφ,

(2.11)

�E(x,θ,φ) = − iu

v2
s x

(
2[a1j1(vsx) + a2n1(vsx)]P1[cos(θ )]êr

+{a1[(vsx)j0(vsx) − j1(vsx)] + a2[(vsx)n0(vsx)

− n1(vsx)]}P 1
1 [cos(θ )]êθ

)
, (2.12)

in an occupied region and a similar expression with vs → u in
an empty region. The dimensionless quantities x, vs , and u are
defined as x = r/R,vs = ksR, and u = k0R. j1,n1, and h

(1)
1 =

j1 + in1 are the spherical Bessel functions of order 1; j0,n0,h0

those of order 0; and P1,P
1
1 are Legendre polynomials.

The normalized eigenvalues 	s = λs/C for the different
modes then are given by

	s = i
u2

u2 − v2
s

. (2.13)

An additional term −i/3 would be added to Eq. (2.10) if we
were to define λ as in Ref. [10] including the effect of the
local-field correction.

III. EXACT EIGENVECTORS AND EIGENVALUES FOR
THE SHELL-PLUS-HOLLOW CONFIGURATION

The density of the resonant atoms in this configuration is
given by

n = 0, 0 � r � βR,

n �= 0, βR < r � R,

n = 0, r > R.

The magnetic flux density in the different regions is given
by

Bφ = C1j1 (ux) , 0 � r � βR,

Bφ = B1j1 (vsx) + B2n1 (vsx) , βR < r � R, (3.1)

Bφ = A2h
(1)
1 (ux) , r > R.

The continuity of Bφ at x = β and x = 1 (we assume the atoms
have no internal magnetization) gives the equations,

C1j1 (uβ) = B1j1 (vsβ) + B2n1 (vsβ) , (3.2)

B1j1 (vs) + B2n1 (vs) = A2h
(1)
1 (u) . (3.3)

The continuity of Eθ at x = β and x = 1 gives the equations,

C1v
2
s [uβj0 (βu) − j1 (βu)] = B1u

2 [vsβj0 (βvs) − j1 (βvs)] + B2u
2 [vsβn0 (βvs) − n1 (βvs)] , (3.4)

B1u
2 [vsj0 (vs) − j1 (vs)] + B2u

2 [vsn0 (vs) − n1 (vs)] = A2v
2
s

[
uh

(1)
0 (u) − h

(1)
1 (u)

]
. (3.5)

(See Refs. [10,11] for details.)
The characteristic equation for vs is obtained by imposing the condition that the linear system [Eqs. (3.2)–(3.5)] has solutions,

i.e.,det(M) = 0, where M is given by

⎛
⎜⎜⎝

j1 (uβ) −j1 (vsβ) −n1 (vsβ) 0
v2

s [uβj0 (βu) − j1 (βu)] −u2 [vsβj0 (βvs) − j1 (βvs)] −u2 [vsβn0 (βvs) − n1 (βvs)] 0
0 j1 (vs) n1 (vs) −h

(1)
1 (u)

0 u2 [vsj0 (vs) − j1 (vs)] u2 [vsn0 (vs) − n1 (vs)] −v2
s

[
uh

(1)
0 (u) − h

(1)
1 (u)

]

⎞
⎟⎟⎠ . (3.6)

In our numerical search for the roots of Eq. (3.6), we select
the two roots with Im(vs) < 0 and Re(vs) > 0 closest to 0.

In Fig. 1, we plot the real and imaginary parts of the
dominant vs’s for a sphere with a small radius (u = 0.05)
as a function of β and, in Fig. 2, the corresponding values of
the normalized eigenvalues 	s = λs/C. We note that:

(1) For β � 1 and s = 2, Fig. 1 gives Re(v2) → 0 and Fig. 2
gives λ2 → λD + 1

3 iC as in the completely filled small sphere.
In this limit, the nonzero value of Im(v2) is due to the fact that
our numerical value of k0R differs from zero.

(2) The sum λ1 + λ2 is equal numerically to λD + iC for
all β. [The Dicke decay rate λD is defined by λD = Nγ1/2 =

nV ( 2
3℘2k3

0/h̄), where V is the active volume 4
3πR3(1 − β3).

Since the normalized quantity shown in Fig. 2(a) is 	D =
λD/C, where C = (4πn℘2/h̄), 	D is proportional to (1 − β3)
as shown.] The sum rule

∑
s Re(λs) = λD is exact for any

atomic distribution on account of a trace argument. In the
limit k0R → 0, this sum rule would include only the two
modes shown. For our sample (k0R = 0.05), the contribution
of other (short-wavelength) modes turns out to be less than
1/1000 of the total. We find numerically that the small
quantity λD − Re(λ1) − Re(λ2) is positive as required. The
numerical finding that Im(	1) + Im(	2) = 1 also is exact
for k0R = 0.
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(3) The quantities B1/C1,B2/C1, and A2/C1 are obtained by solving

⎛
⎝ j1 (vsβ) n1 (vsβ) 0

j1 (vs) n1 (vs) −h
(1)
1 (u)

u2 [vsj0 (vs) − j1 (v)] u2 [vsn0 (vs) − n1 (vs)] −v2
s

[
uh

(1)
0 (u) − h

(1)
1 (u)

]
⎞
⎠

⎛
⎝B1/C1

B2/C1

A2/C1

⎞
⎠ =

⎛
⎝ j1 (uβ)

0
0

⎞
⎠ , (3.7)

and the electric-field components in the resonant medium are
given by

E(s)
r = − 2iu

v2
s x

[(
B1

C1
j1 (vsx) + B2

C1
n1 (vsx)

)]
, (3.8)

E(s)
θ = − iu

v2
s x

(
B1

C1
[(vsx) j0 (vsx) − j1 (vsx)]

+ B2

C1
[(vsx) n0 (vsx) − n1 (vsx)]

)
. (3.9)

In Fig. 3, we plot the components of the electric field in each
mode as a function of space for the same value of k0R as in
Figs. 1 and 2 and for β = 0.5. We note that the value of the
field is not constant as it would be for the completely filled
sphere.

IV. EXACT EIGENFREQUENCIES FOR THE
SHELL-PLUS-CORE CONFIGURATION

In this configuration, the resonant atoms have a single
constant density throughout two filled regions.

(II) βR � r � R shell,
(IV) r < γR core,

where 1 > β > γ > 0. The two regions
(I) r > R,

(III) βR > r > γ gap

contain vacuums.
The atomic density, thus, is

ρ =
{

n, in II and IV,

0, in I and III. (4.1)
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FIG. 1. (Color online) For the shell-plus-hollow configuration,
the real and imaginary parts of the eigenmode wave vectors as a
function of β. u = 0.05. (a) and (b) s = 1; (c) and (d) s = 2.

And so, we have (∇2 + k2
0)�B = 0 in regions I and III and

(∇2 + k2
s )�B = 0 in regions II and IV.

For the electric modes with l = 1 and m = 0, we have �B =
BφP 1

1 (cos θ ) êφ = Bφ(− sin θ )êφ [10], where

Bφ =

⎧⎪⎪⎨
⎪⎪⎩

A2 h
(1)
1 (ux) I

B1j1 (vsx) + B2n1 (vsx) II
C1j1 (ux) + C2n1 (ux) III
D1j1 (vsx) IV

⎫⎪⎪⎬
⎪⎪⎭

(4.2)

Note that vs has the same value in regions II and IV since
the density is the same.

Continuity of Bφ at the interfaces I-II, II-III, and III-IV
gives the relations [11],

B1j1 (vs) + B2n1 (vs) = A2h
(1)
1 (u) , (4.3)

C1j1 (uβ) + C2n1 (uβ) = B1j1 (vsβ) + B2n1 (vsβ) , (4.4)

D1j1 (vsγ ) = C1j1 (uγ ) + C2n1 (uγ ) . (4.5)

The continuity of the tangential component of the electric
field at each of the interfaces gives the relations,

B1u
2 [vsj0 (vs) − j1 (vs)] + B2u

2 [vsn0 (vs) − n1 (vs)]

= A2v
2
s

[
uh

(1)
1 (u) − h

(1)
0 (u)

]
, (4.6)

C1v
2
s [uβj0(βu) − j1(βu)] + C2v

2
s [uβn0(βu) − n1(βu)]

= B1u
2[vsβj0(βvs)−j1(βvs)]+B2u

2[vsn0(βvs)−n1(βvs)],

(4.7)

D1u
2[vsγj0(γ vs) − j1(γ vs)]

= C1v
2
s [uγj0(γ u)−j1(γ u)]+C2v

2
s [uγn0(γ u)−n1(γ u)].

(4.8)

Equations (4.3)–(4.8) form a system of six homogeneous
linear equations for the unknowns {A2,B1,B2,C1,C2,D1}. The
existence of a solution requires that the determinant of the
matrix describing the above system be zero. The characteristic

(a)
(Dicke)

(1)

(2)
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(b)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
Im

Re

β

FIG. 2. (Color online) For the shell-plus-hollow configuration, (a)
comparison of the value of the Dicke single-mode value for Re(	)
with the corresponding values for the different leading modes as a
function of β. (b) Comparison of the values of Im(	) for the different
leading modes. u = 0.05.
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1
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FIG. 3. (Color online) For the shell-plus-hollow configuration
at fixed β = 0.5 and for u = 0.05, the radial component and the
tangential component of the electrical field are plotted as a function
of the normalized radial variable for each of the two leading modes.
(a) and (b) s = 1; (c) and (d) s = 2.

complex wave vectors for this system are the roots of this
equation. In our numerical search for the roots of the secular
determinant, we select the three roots with Im(v) < 0 and
Re(v) > 0 that are closest to zero. (We verify later that these
eigenmodes form a complete basis for small values of u.)

In Fig. 4, we plot, as a function of β for fixed γ , the values
of the leading wave vectors for a small value of u (=0.05). We
note that the mode with s = 2 is the branch that in the limit
β → γ goes to the s = 1 mode of the uniform sphere. [The
indices here are assigned on the basis of the increasing value
of |Im(v)| as shown in Figs. 4(b), 4(d), and 4(f).]

We define the dominant mode in coherent emission as that
with the largest value of Re(	). To identify the dominant mode,
in Fig. 5(a), we show the values of Re(	s) for all three leading
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FIG. 4. (Color online) For shell-plus-core configuration, the real
and imaginary parts of the eigenmode wave vectors as a function of
β, the outer radius of the gap. γ = 0.2. u = 0.05. (a) and (b) s = 1;
(c) and (d) s = 2; (e) and (f) s = 3.
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FIG. 5. (Color online) For shell-plus-core configuration,
(a) comparison of the value of the Dicke single-mode value for Re(	)
with the corresponding values for the different leading modes in the
present model as a function of β. (b) Comparison of the values of
Im(	) for the different leading modes. u = 0.05. γ = 0.2.

modes and compare them to that of the single mode of the
Dicke model.

We note that, depending on the value of β, the dominant
mode can be either the mode with s = 2 or the mode with
s = 3. For u = 0.05, the crossing occurs, for γ = 0.2, at about
β = 0.48; but it is not a true crossing in that the values of Im(	)
do not cross there.

In Fig. 5(b), we compare the value of Im(	) for the different
modes as a function of β. We note that Im(	(2)) = 1/3 for all
β, whereas, everywhere, Im(	(1) + 	(3)) = 1.

V. THE ELECTRIC-FIELD EIGENMODES FOR THE
SHELL-PLUS-CORE CONFIGURATION

We now examine the spatial variation in the electric field
in each of the three leading modes. Having determined
the values of the complex wave vectors, one obtains the
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FIG. 6. (Color online) For shell-plus-core configuration at fixed
γ = 0.4, β = 0.7, and for u = 0.05, the ratios of the radial component
and of the tangential component of the electrical field in the outer shell
to the corresponding components in the core are plotted against the
normalized radial variable in the outer shell for each of the three
leading modes. (a) and (b) s = 1; (c) and (d) s = 2; (e) and (f) s = 3.
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ratios (C1/D1,C2/D1,B1/D1,B2/D1,A2/D1) by solving the
inhomogeneous system of equations,

M

⎡
⎢⎢⎢⎣

C1/D1

C2/D1

B1/D1

B2/D1

A2/D1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

j1 (vsα)
0
0
0
0

⎤
⎥⎥⎥⎦ , (5.1)

where

M13 = M14 = M15 = M25 = M35 = M41

= M42 = M51 = M52 = 0,

M11 = j1 (γ u) ,M12 = n1 (γ u) ,

M21 = j1 (βu) , M22 = n1 (βu) , M23 = −j1 (βvs) ,

M24 = −n1 (βvs) ,

M31 = v2
s [uβj0 (βu) − j1 (βu)] ,

M32 = v2
s [uβn0 (βu) − n1 (βu)] ,

M33 = −u2[vsβj0(βvs) − j1(βv)],

M34 = −u2[vsβn0(βvs) − n1(βvs)],

M43 = j1 (vs) , M44 = n1 (vs) , M45 = −h
(1)
1 (u) ,

M53 = u2[vsj0(vs) − j1(vs)], M54 = u2[vsn0(vs) − n1(vs)],

M55 = −v2
s

[
uh

(1)
0 (u) − h

(1)
1 (u)

]
.

The electric fields in the atomic medium (regions II and IV)
associated with each of the eigenmodes are given by [10]

�E(s) = E(s)
r P1 [cos (θ )] êr + E(s)

θ P 1
1 [cos (θ )] êθ

= E(s)
r cos (θ ) êr − E(s)

θ sin (θ ) êθ , (5.2)

where

E(s)
r =

⎧⎨
⎩

− 2iu
v2

s x
j1 (vsx) IV; 0 � x � γ

− 2iu
v2

s x

[(
B1
D2

j1 (vsx) + B2
D2

n1 (vsx)
)]

II; β � x � 1

⎫⎬
⎭ , (5.3)

E(s)
θ =

⎧⎨
⎩

− iu
v2

s x
[(vsx)j0 (vsx) − j1 (vsx)] IV; 0 � x � γ

− iu
v2

s x

[(
B1
D2

[(vsx) j0 (vsx) − j1 (vsx)] + B2
D2

[(vsx) n0 (vsx) − n1 (vsx)]
)]

II; β � x � 1

⎫⎬
⎭ . (5.4)

As a check on our numerical algorithm, for γ = 0.4, β = 0.7, and u = 0.05, for each eigenmode s = {1,2,3}, we have verified
that the magnetic flux density Bφ obtained numerically is everywhere continuous.

In the Dicke model, the leading eigenmode should have �E constant throughout the atomic region. In our configuration, �E
is necessarily nearly constant throughout the core (region IV) in each eigenmode but not necessarily throughout the outer
shell (region II). In Fig. 6 we show, for each s = {1,2,3}, the variation with x = r/R, throughout the shell, of Er and Eθ ,
normalized to their values in the core. We see indeed that �E nearly is constant throughout the shell in the s = 2 mode (but
not in the others); its value in the shell, however, is only approximately 1/5 of its value in the core. In Fig. 7, for the
s = 2 mode, for γ = 0.2, we plot the ratio of the magnitude of the field on the inner edge of the shell to its magnitude
in the core as a function of β. Again, we establish that �E is, in general, far from uniform throughout the whole atomic
region.

But how far is far? Let us take each �Es to be normalized by ∫II+IV |Es |2 d3�r = 1 [9] and the uniform initial �Eunif similarly
normalized; then, if �Eunif is expressed as �Eunif = ∑

s I (s) �Es , the quantities |I (s)|2 can be regarded as probabilities that the system
excited uniformly will behave according to the various eigenmodes. The coefficients I (s) are given by

I (s) =
∫

II+IV

�Es ◦ �Eunif d3�r =
∫

II+IV
�Es ◦ �Eunif d3�r

√∫
II+IV |Es |2d3�r

√∫
II+IV |Eunif |2d3�r

. (5.5)

In terms of the un-normalized components (5.3) and (5.4),

|I (s)| =
∣∣∫γ

0

(
2
3 E(s)

r + 4
3 E(s)

θ

)
x2dx + ∫1

β

(
2
3 E(s)

r + 4
3 E(s)

θ

)
x2dx

∣∣
{[∫γ

0

(
2
3

∣∣E(s)
r

∣∣2 + 4
3

∣∣E(s)
θ

∣∣2)x2dx + ∫1
β

(
2
3

∣∣E(s)
r

∣∣2 + 4
3

∣∣E(s)
θ

∣∣2)x2dx
]

2
3

(
1 + γ 3 − β3

)}1/2 . (5.6)

In Table I, we give the values of {|I (s)|} for some selected
values of {β,γ }. In the last column, for each configuration of
βand γ , we give the value of

∑3
s=1 |I (s)|2. We note that this

sum is equal to 1 with an accuracy of better than 1/10 000,
indicating that, for all practical purposes, these three modes

form a complete basis for describing the quantum dynamics
of emission for a hollowed sphere with this configuration
for a small value of u. A similar check (not shown) has
been performed for the two modes of the shell-plus-hollow
configuration.
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FIG. 7. (Color online) For shell-plus-core configuration at fixed
γ = 0.2 and for u = 0.05, the ratio of the magnitude of the s = 2
mode electric-field radial component on the inner edge of the shell to
its magnitude in the core is plotted as a function of β.

Furthermore, we note that, in general, no one mode has
|I (s)|2 close to 1. Thus, the radiation during a time O(λ−1

Dicke)
will have significant contributions from all three modes, all
with relative frequency shifts � λDicke.

VI. CONCLUSION

We have carried out a study of coherent emission from a
hollowed sphere in two configurations, using a full Maxwell
treatment yielding equations and boundary conditions valid
for any size sphere. For numerical work, we have specialized,
for a very small sphere, k0R = 0.05. Our results verify the
prediction [8] that, although the simple Dicke model [1] holds
well for a small sphere of uniform density, it should not be
valid, even when the sample is small for general shapes or (even
with spherical symmetry) for general density distributions. In
such a sample, the position dependence of large frequency
shifts [7] distorts the Dicke picture in a time much shorter than
the decay time.

We have found that the dynamics of the system is domi-
nated, at times not much longer than the Dicke decay time,
by only two modes in the hollow-shell configuration, or by
three in the core-plus-shell configuration. These modes have
wavelength much larger than that of the resonant light. All
other modes have wavelength smaller than the sample size and
are found to contribute negligibly to the initial state of uniform
polarization. The beats among the few dominant modes are
sufficient to produce the distortion of Dicke decay, which can

TABLE I. For the shell-plus-core-filled configuration: Magnitude
of the projection of the electric field of eigenmode (s) over the uniform
state in the direction êz.

γ = 0.2

β |I (1)| |I (2)| |I (3)| ∑3
s=1 |I (s)|

0.4 0.219 983 0.855 170 0.469 353 0.999 999
0.5 0.328 814 0.632 564 0.701 245 0.999 999
0.6 0.411 556 0.436 746 0.799 921 0.999 999
0.7 0.470 782 0.312 841 0.824 922 1.000 000
0.8 0.512 680 0.246 233 0.822 514 1.000 000
0.9 0.540 765 0.231 825 0.808 598 1.000 000

alternatively be understood [7] as due to position-dependent
frequency shifts.

The calculations in this paper also apply, with slight
modifications, to super-radiance from a nearly inverted state
in which the initial fraction of atoms in the ground state is
small, but their number is sufficient to support a coherent
polarization density. The eigenfunctions and eigenvalues are
the same as calculated here, but the time development of each
mode follows exp(λt) instead of exp(−λt). (The Lorentz shift
is also reversed [12,13].)

The long-time behavior of the inverted system differs
significantly from that of the weakly excited system. In
the latter system, the dominant modes studied here die out
exponentially at different rates, and the weakest of these modes
[having the smallest Re(λ)] will persist the longest, giving rise
to a period of genuine exponential decay but with a decay rate
considerably less than λD . Eventually, this decay will progress
so far that the nondominant (short-wavelength) modes ignored
in our calculation will be all that will be left; they will
produce a residual incoherent radiation of much longer
duration.

In the inverted system, the incoherent radiation produced
by the nondominant modes would characterize the preinitial
period of spontaneous radiation and quantum fluctuations
studied in Ref. [14]. In describing our nearly inverted initial
state, we assume that any such period already has passed
before time t = 0. The dominant modes then grow differ-
entially so that the strongest mode [largest Re(λ)] presently
prevails and the growth becomes exponential but still is
slower than the Dicke rate. Finally, nonlinearity sets in
when the fraction of ground-state atoms is no longer small,
and the present analysis no longer holds. This situation
also has been described for a large sphere of uniform
density [15].

An interesting situation arises in the nearly inverted case
when the two strongest modes have nearly the same Re (λ);
then, the beats between them [16], observable on the fast time
scale O (1/C), continue for a time much longer than λD . A
similar phenomenon occurs in the weakly excited case, when
the two weakest dominant modes nearly are degenerate in
Re (λ). [Note that a crossing in Re (λ) is not accompanied by
one in Im (λ).]

APPENDIX

In this Appendix, we give the analytic expressions for both
the shift and the width for the shell plus hollow configuration
as a function of the parameter β for k0R → 0, and compare
these expressions with the numerically obtained results.

We write the solvability condition for this configuration,
i.e., Eq. (3.6), as a power series in v and in u, i.e., all
terms in this expansion are of the form vmun. We include
all terms such that max (m) = 4 and max (m + n) = 7. This
truncated series reduces to the following quadratic equation
in v2:

c + bv2 + av4 = 0, (A1)
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where

c = 2(−1 + β3)u4 + 1
5 (−5 + β2 + 5β3 − β5)u6 + i 2

3 (−1 + β3)u7, (A2)

b = (−5 − 4β3)u2 + 1
10 (−11 + 19β2 − 10β3 + 2β5)u4 + i 2

3 (−1 + β3)u5, (A3)

a = 2(−1 + β3) + 1
10 (19 − 11β2 − 10β3 + 2β5)u2 − i 4

3 (−1 + β3)u3. (A4)

Writing the solutions of v2 to fifth order in u gives

v2
1 = (5 + 4β3 − 3

√
1 + 8β3)

4(−1 + β3)
u2 + 1

240

⎡
⎢⎣−3(−19 − 19β − 8β2 + 2β3 + 2β4)(5 + 4β3 − 3

√
1 + 8β2)

(−1 + β)(1 + β + β2)2

+
2
(

33 − 57β2 + 30β3 − 6β5 + −91+131β2−58β3+50β5−40β6+8β8√
1+8β3

)

(−1 + β3)

⎤
⎥⎦u4 + i

[
2 − 2√

1+8β3
+ β3

(
1 − 7

1+8β3

)]

2 − 2β3
u5 + O(u6),

(A5)

v2
2 = (5 + 4β3 + 3

√
1 + 8β3)

4(−1 + β3)
u2 + 1

240

⎛
⎜⎝−3(−19 − 19β − 8β2 + 2β4)(5 + 4β3 + 3

√
1 + 8β2)

(−1 + β)(1 + β + β2)2

+
2
(

33 − 57β2 + 30β3 − 6β5 + 91−131β2+58β3−50β5+40β6−8β8√
1+8β3

)

(−1 + β3)

⎞
⎟⎠u4 + i

[
2 + 2√

1+8β3
+ β3

(
1 + 7

1+8β3

)]

2 − 2β3
u5 + O(u6).

(A6)

Recalling that 	 = i u2

u2−v2 , these, for third order in u, are given by

	1 = i
4(−1 + β3)

3(−3 +
√

1 + 8β3)

− i
8(−1 + β3)2

9(−3 +
√

1 + 8β3)2

⎛
⎜⎝− (19 + 19β + 8β2 − 2β3 − 2β4)(378 000 + 302 400β3 − 226 800

√
1 + 8β3)

3024000(−1 + β)(1 + β + β2)2

−
83 160 − 143 640β2 + 75 600β3 − 15 120β5 + 2520(−91+131β2−58β3+50β5−40β6+8β8)√

1+8β3

−151 200 + 151 200β3

⎞
⎟⎠u2

− 8[(−1 + β3)(−2 − 7β3 + (2 + β3)
√

1 + 8β3)]

9[
√

1 + 8β3(−3 +
√

1 + 8β3)2]
u3, (A7)

	2 = −i
4(−1 + β3)

3(+3 +
√

1 + 8β3)

− i
8(−1 + β3)2

9(+3 +
√

1 + 8β3)2

⎛
⎜⎝− (19 + 19β + 8β2 − 2β3 − 2β4)(378 000 + 302 400β3 + 226 800

√
1 + 8β3)

3024 000(−1 + β)(1 + β + β2)2

−
83160 − 143640β2 + 75600β3 − 15120β5 − 2520(−91+131β2−58β3+50β5−40β6+8β8)√

1+8β3

−151200 + 151200β3

⎞
⎟⎠u2

− 8[(−1 + β3)(2 + 7β3 + (2 + β3)
√

1 + 8β3)]

9[
√

1 + 8β3(3 +
√

1 + 8β3)2]
u3. (A8)
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To the lowest order in u, the values of Im (	) for each mode are given by

lim
u→0

[Im (	1)] = 4(−1 + β3)

3(−3 +
√

1 + 8β3)
= 1

2
+ 1

6

√
1 + 8β3, (A9)

lim
u→0

[Im(	2)] = − 4(−1 + β3)

3(+3 +
√

1 + 8β3)
= 1

2
− 1

6

√
1 + 8β3, (A10)

while those of Re (	) are given by

lim
u→0

[Re(	1)] = −8{(−1 + β3)[−2 − 7β3 + (2 + β3)
√

1 + 8β3]}
9[
√

1 + 8β3(−3 +
√

1 + 8β3)2]
u3 = 1

9
(1 − β3)

(
1 − 1√

1 + 8β3

)
u3, (A11)

lim
u→0

[Re(	2)] = 8[(−1 + β3)(2 + 7β3 + (2 + β3)
√

1 + 8β3)]

9[
√

1 + 8β3(3 +
√

1 + 8β3)2]
u3 = 1

9
(1 − β3)

(
1 + 1√

1 + 8β3

)
u3. (A12)

These analytic expressions reproduce Figs. 2(a) and 2(b) so closely that the difference is invisible. [For comparison purposes,
recall that 	D = 2

9 (1 − β3)u3.]
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