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Effect of the third level on time evolution of the spontaneous upper level decay
due to counter-rotating terms
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The third level has great influence on the time evolution of the spontaneous decay from the excited state,
when the counter-rotating terms are taken into account. The influence in the cascade-type and V-type three-level
systems is investigated for two initial states, excited from the ground states of the whole system (atom plus vacuum
modes) and from the bare atom. The third level results in the additional virtual photon processes, emitting a
photon from one level and reabsorbing the same photon to another level and vice versa. The main influence of
the third level is to accelerate the decay, which leads to or enhances the anti-Zeno effect, especially for the initial
state excited from the ground state of the whole system. Therefore, the third level cannot be neglected, if the
counter-rotating terms are taken into account.
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I. INTRODUCTION

The time evolution of an atomic spontaneous decay in a
vacuum reservoir has attracted a lot of attention in recent years,
where the Zeno and anti-Zeno effects can be realized [1–19].
For the time evolution, the rotating wave approximation
(RWA) cannot be applied, because the counter-rotating terms
(CRTs) have great influence. It was found that the initial time
evolution is quite different for different initial states [20].
It was also found that in the very short time period, the
effective decay rate of the initial state is much slower than the
exponential decay of the long time limit, which is the so-called
quantum Zeno effect (QZE) [1–9]. Further study finds that the
effective decay can be larger than the exponential decay after
the QZE period, which is the so-called quantum anti-Zeno
effect (QAZE) [10–16]. The QAZE was first discussed in a
two-level system under the RWA. It was found that there is no
QAZE if the CRTs are included for the initial state [15–17]
excited from the ground state of the whole system (the atom
plus vacuum reservoir) [15,20], while there is QAZE in a
two-level atom if the initial state is the excited state of the bare
atom (atom alone) [21]. These studies tell us that the QZE and
QAZE heavily depend on the initial states and the CRTs. It is
well known that the two-level atom is not a good model for
the spontaneous decay when the CRTs are included, because
the difference of the energy between other levels and the upper
level and the energy of a photon, ωi1 − ωk (ωi1 ≡ ωi − ω1),
could be larger than sum of the transition energy and the energy
of a photon, ω12 + ωk . It is nature to ask what influence of
additional levels on the time evolution of the spontaneous
decay from upper level to the lower level is, and how the
influence depends on the initial states.

In this paper, we investigate the influence of the third
level on the time evolution of the spontaneous decay from
the upper level in a cascade-type and a V-type three-level
atom for two different initial states without the RWA. The two
initial states are the excited states from the ground state of
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the bare atom and from the ground state of the whole system,
respectively. The state excited from the whole system ground
state is more realistic, as the atom is always in the reservoir.
Our study shows that both the initial states and the additional
third level have great influence on the time evolution of the
atom in the initial period. The third level usually results in the
acceleration of the decay, that is to say, the enhancement of the
QAZE.

This paper is prepared as follows: In Sec. II, we give
the unitary transformation of the Hamiltonian of the system
composed of a multilevel atom and vacuum reservoir. We
obtain the effective Hamiltonian with considering the counter-
rotating terms. In Sec. III, we introduce two kinds of ground
and initial excited states in two pictures. In Sec. IV, we discuss
the survival probabilities and decay rates in a cascade-type and
a V-type three-level atom for the two initial states without the
RWA, and Sec. V is a summary. The general formulas of the
dynamic evolution can be found in the Appendix.

II. EFFECTIVE HAMILTONIAN WITHOUT RWA

The interaction between a multilevel atom and the vac-
uum reservoir can be described by the Hamiltonian setting
(h̄ = 1) [22],

H = H0 + H1 =
∑

i

ωi |i〉〈i| +
∑

k

ωkb
†
kbk

+
∑

i,j �=i,k

gk,ij (b†k + bk)|i〉〈j |, (1)

where ωi is the energy of the |i〉 state, b
†
k(bk) is the creation

(annihilation) operator of the kth mode vacuum field with
frequency ωk , and gk,ij is the coupling constant between the
atomic transition (|i〉 ↔ |j 〉) and the kth mode vacuum field.
The interaction, H1, contains the rotating and the counter-
rotating terms. Using the unitary transform [15,16] eiS with
S = ∑

i,j �=i,k
−igk,ij

|ωij |+ωk
(b†k − bk)|i〉〈j |, and neglecting the terms

higher than the second order of gk,ij (this approximation is used
throughout the paper), we obtain the transformed Hamiltonian
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HS = H0 + HS
1 + HS

2 with

HS
1 =

∑
i,j>i,k

Vk,j i(b
†
k|i〉〈j | + bk|j 〉〈i|), (2)

HS
2 = −

i �=q,q �=j∑
i,q,j,k

gk,iqgk,qj

× 2|ωqj | − ωqj + 2|ωiq | − ωqi + 2ωk

2(|ωiq | + ωk)(|ωqj | + ωk)
|i〉〈j |, (3)

where Vk,j i = 2gk,j iωji

ωji+ωk
. Note that HS

2 in Eq. (3) includes the
nondiagonal terms with (i �= j ), which represents the indirect
transition (virtual photon processes), emitting a photon from
|i〉 (or |j 〉) and reabsorbing the photon to |j 〉 (or |i〉) and
were neglected in [15,16]. The self-energy of the free electron
[22,23] is due to its exchange of virtual photons with the
vacuum, and has the following form [18–23]:

Ese = − 1

4πε0

2e2

3πm2c3

∫ ωc

0
p2dω

= − 1

4πε0

2e2

3πm2c3

∫ ωc

0

∑
i,j

〈i|p2|j 〉|i〉〈j |dω

= −
q �=i,q �=j∑
i,q,j,k

gk,iqgk,jq

ωk

|i〉〈j |, (4)

with ωc being the cutoff frequency. The self-energy should be
subtracted from the Hamiltonian, as it cannot be observed.
With subtracting the self-energy, the Hamiltonian can be
written as

H̃S =
∑

i

ω′
i |i〉〈i| +

∑
k

ωkb
†
kbk +

i<j∑
i,j,k

Vk,j i(b
†
k|i〉〈j |

+ bk|j 〉〈i|) +
i �=j∑
i,j

η|i〉〈j |, (5)

where ω′
i = ωi + �E

(i)
nd with �E

(i)
nd = ∑

i,q �=i,k
g2

k,iq

ωk

ωqi (ωqi+ωk)
(ωk+|ωiq |)2

denoting the nondynamic shift [15–19] inde-
pendent of the atomic decay process and η =∑

q �=i,j,k
gk,iq gk,qj

ωk

2|ωiqωqj |+ωqj ωk+ωqiωk

2(|ωiq |+ωk)(|ωqj |+ωk) |i〉〈j | is a parameter
arising from the virtual photon processes |i〉 ↔ |q〉 ↔ |j 〉.

III. GROUND AND INITIAL EXCITED STATES

When we make the unitary transform, not only the operators
(e.g., the Hamiltonian H) but also the states (e.g., the initial
state) are transformed. In the two pictures (before and after
the unitary transformation), which are called H picture and
S picture, respectively, they are related:

|ϕ(t)〉S = eiS |ϕ(t)〉H , |ϕ(t)〉H = e−iS |ϕ(t)〉S, (6)

AS = eiSAHe−iS, AH = e−iSASeiS, (7)

where the superscript H represents the picture before the
transformation, and the superscript S represents the picture
after the transformation. Here, we use the direct product of
the atomic eigenstates (|i〉) and the modes of the reservoir
(|{nk}〉) as the basis of the whole system. Let us consider the

expressions of the ground states and the excited states in the
two pictures.

A. The ground state of the free Hamiltonian (H0)

The ground state of the free Hamiltonian (H0) in H picture
is

|gH 〉 = |g,{0k}〉. (8)

By the unitary transformation, the expression of the above state
in the S picture, |gS〉, is

|gS〉 = eiS |gH 〉 = eiS |g,{0k}〉

≈
[

1 − 1

2

∑
i �=g,k

g2
k,ig

(ωig + ωk)2

]
|g,{0k}〉

+
∑
i �=g,k

gk,ig

ωig + ωk

|i,1k〉. (9)

Note that the energy of this state is much higher than that of
the ground state of the whole system.

B. The ground state of the whole system (H).

The ground state of the whole system (H) in the S picture,
|GS〉, is [15]

|GS〉 = |g,{0k}〉. (10)

By the inverse unitary transformation, one can obtain the
expression of the above state in the H picture [20], |GH 〉:

|GH 〉 = e−iS |GS〉 = e−iS |g,{0k}〉

≈
[

1 − 1

2

∑
i �=g,k

g2
k,ig

(ωig + ωk)2

]
|g,{0k}〉

−
∑
i �=g,k

gk,ig

ωig + ωk

|i,1k〉. (11)

C. Excited states from the ground states of H0 and H
Two excited states are used for the initial states in our

calculations, which are generated by the Hermitian operator
(|g〉〈e| + |e〉〈g| + ∑

j �=e,g |j 〉〈j |) acting on the ground states
of H0 and H, respectively. We use |eH 〉 and |eS〉 (note lower
case letter) as the initial state excited from the ground state of
H0 in H picture (superscript H ) and S picture (superscript S),
respectively. We use |EH 〉 and |ES〉 (note capital letter) as the
initial state excited from the ground state of H in H picture
and S picture, respectively. Please note in the whole paper, we
use lower case (e) for the state excited from the ground state of
the bare atom (H0) and capital letter (E) for that of the whole
system (H), while the superscripts, H and S, are for H and
S pictures.

In the H picture, the excited state (using lower case e) from
the ground state of H0 is

|eH 〉 =
(

|g〉〈e| + |e〉〈g| +
∑
j �=e,g

|j 〉〈j |
)

|gH 〉

= (|g〉〈e| + |e〉〈g|)|g,{0k}〉 = |e,{0k}〉, (12)
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and the excited state (using capital letter E) from that of H is

|EH 〉 = (|g〉〈e| + |e〉〈g| +
∑
j �=e,g

|j 〉〈j |)|GH 〉

≈
[

1−1

2

∑
k

g2
k,eg

(ωeg+ωk)2
−1

2

∑
j �=e,g,k

g2
k,jg

(ωjg+ωk)2

]
|e,{0k}〉

−
∑

k

gk,eg

ωeg + ωk

|g,1k〉 −
∑

j �=e,g,k

gk,jg

ωjg + ωk

|j,1k〉.

(13)

In the S picture, the corresponding states of Eqs. (12) and
(13) are

|eS〉 = eiS |eH 〉=eiS |e,{0k}〉=
[

1 + iS+1

2
(iS)2+ · · ·

]
|e,{0k}〉

≈
[

1−1

2

∑
k

g2
k,eg

(ωeg+ωk)2
−1

2

∑
j �=e,g,k

g2
k,ej

(|ωej |+ωk)2

]
|e,{0k}〉

+
∑

k

gk,eg

ωeg + ωk

|g,1k〉 +
∑

j �=e,g,k

gk,ej

|ωej | + ωk

|j,1k〉,

(14)

and

|ES〉 = eiS |EH 〉

≈
[

1 − 1

2

∑
j �=e,g,k

(
gk,ej

|ωej | + ωk

− gk,jg

ωjg + ωk

)2]
|e,{0k}〉

+
∑

j �=e,g,k

(
gk,ej

|ωej | + ωk

− gk,jg

ωjg + ωk

)
|j,1k〉. (15)

Because the atom is always in the vacuum, the initial state
excited from the ground state of the whole system, |EH,S〉 is
easy to obtain. The initial state excited from the ground state
of the bare atom, |eH,S〉 is difficult to be generated, because
we do not know how to have the ground state of the bare atom
when it is always in the cavity or we need a difficult method
of injecting the excited atoms into the cavity. Note the energy
of |eH,S〉 is much higher than the energy of |EH,S〉.

IV. TIME EVOLUTION OF SURVIVAL PROBABILITY AND
TIME-DEPENDENT DECAY RATE

Next we investigate the dynamic evolution of the multilevel
atom. We consider the survival probabilities P (E)(t) and
P (e)(t), and the corresponding time-dependent effective decay
rates γ (E)(t) and γ (e)(t) for the two initial states. Here the
superscripts (E) and (e) indicate the initial states |ES〉 and
|eS〉 in the S picture, respectively. Note the probabilities and
effective decay rates are the same in S and H pictures for the
same initial state. The wave function at time t is determined
by the Schrödinger equation, which is

|ϕ(t)〉S = α(t)e−iω′
eg t |e,{0k}〉 + β(t)|g,{0k}〉

+
∑
j �=e,g

Cj (t)e−iω′
jg t |j,{0k}〉

+
∑

k

αk(t)e−i(ω′
eg+ωk)t |e,1k〉

+
∑

k

βk(t)e−iωkt |g,1k〉

+
∑

j �=e,g,k

Cj,k(t)e−i(ω′
jg+ωk )t |j,1k〉. (16)

The detailed derivation is shown in the Appendix.
The survival probability of the initial state |EH 〉 (|ES〉) is

P (E)(t) = |〈ϕH (0) |ϕH (t)〉 |2 = |〈ϕS(0) |ϕS(t)〉 |2

= exp[−γ (E)(t)t] ≈ 1

A
{|α(0)|2|α(t)|2

+
∑

j �=e,g,k

2Re[α(0)α∗(t)C∗
j,k(0)Cj,k(t)ei(ω′

ej −ωk)t ]},

(17)

where A is the normalization factor (note the superscript E

for the whole system). Note the second term in the last line of
Eq. (17) originates from the correlation between |e,{0k}〉 and
|j,1k〉 and the superscript e for the bare atom. The survival
probability of the initial state |eH 〉(|eS〉) is

P (e)(t) = exp[−γ (e)(t)t] ≈ 1

A
{|α(0)|2|α(t)|2

+
∑

j �=e,g,k

2Re[α(0)α∗(t)C∗
j,k(0)Cj,k(t)ei(ω′

ej −ωk)t ]

+
∑

k

2Re[α(0)α∗(t)β∗
k(0)βk(t)ei(ω′

eg−ωk)t ]}. (18)

In above, the j summation is over all levels except e and g.
In the following, we consider the influence of the additional
levels, for simplicity, with two configurations.

A. Cascade-type configuration (Eg < Ee < E j )

In this case, the two electric-dipole-allowed transitions are
e ↔ g and e ↔ j , while the transition between j and g is
forbidden (gk,jg = 0); see Fig. 1.

1. The evolution and effective decay rate for
the excited state |ES〉 (|E H〉)

In the cascade type, the initial state can be written, from
Eq. (15), as

|ES〉 =
[

1 − 1

2

∑
k

g2
k,je

(ωje + ωk)2

]
|e,{0k}〉

+
∑

k

gk,je

ωje + ωk

|j,1k〉. (19)

j

g

e

FIG. 1. Cascade configuration.
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The coefficients of the state evolution in Eq. (16) can be
obtained as

α(t) = α(0) exp
[−γ S

e (t)t/2 − i�E
S(e)
dyn (t)t

]
, (20)

and Cj,k(t) = Cj,k(0) with the initial values

α(0) = 1 − 1

2

∑
k

g2
k,je

(ωje + ωk)2
, (21a)

Cj,k(0) = gk,je

ωje + ωk

. (21b)

In Eq. (20) γ S
e (t) and �E

S(e)
dyn (t) are the time-dependent

decay rate from the state |e〉 to the state |g〉 and the time-
dependent shift of the state |e〉 without the third level [19,20],
respectively,

γ S
e (t) = 2π

∑
k

4ω2
egg

2
k,eg

(ωeg + ωk)2

2 sin2
(ωeg−ωk

2 t
)

π (ωeg − ωk)2t
, (22a)

�E
S(e)
dyn (t) =

∑
k

4ω2
egg

2
k,eg

(ωeg + ωk)2

{
1

ωeg − ωk

− sin[(ωeg − ωk)t]

(ωeg − ωk)2t

}
.

(22b)

The detailed derivation of Eqs. (20)–(22) can be found in the
Appendix; see Eqs. (A9)–(A12). Substituting Eqs. (20)–(22)
into Eq. (17), for a very short time we have exp[−γ (t)t] ≈
1 − γ (t)t , and the survival probability of the initial state,

P (E)(t)

= exp[−γ (E)(t)t] ≈ 1

A
|α(0)|4

× exp

{
−γ S

e (t)t +
∑

k

2|Cj,k(0)|2
|α(0)|2 cos[(ωk + ω′

je)t]

}
,

(23)

where A = |α(0)|4 exp[
∑

k
2|Cj,k(0)|2

|α(0)|2 ]. Accordingly, the effec-

tive decay rate of the initial state |EH 〉 (|ES〉) in the cascade
configuration is

γ (E)(t) = γ S
e (t) +

∑
k

2|Cj,k(0)|2
|α(0)|2

1 − cos[(ωk + ωje)t]

t

≈ γ S
e (t) + 2π

∑
k

g2
k,je

2 sin2
(ωk+ωje

2 t
)

π (ωje + ωk)2t

≈ 2π

∫ ∞

0
G′

eg(ω)F (ω − ωeg,t)dω

+ 2π

∫ ∞

0
Gje(ω)F (ω + ωje,t)dω. (24)

Here the approximation of ω′
eg(je) ≈ ωeg(je) (always in the

paper) has been used as the difference between them is
proportional to the square of the coupling constant, and

F (ω,t) = 2 sin2(ωt/2)

πω2t
, (25)

Gje(ω) =
∑

k

g2
k,jeδ(ω − ωk), (26)

G′
eg(ω) =

∑
k

4ω2
eg

(ωeg + ωk)2
g2

k,egδ(ω − ωk). (27)
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0
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FIG. 2. (Color online) The normalized decay rates vs time τ =
ωegt for different initial states in the cascade configuration with
γje = 8 × 10−7ωeg , γeg = 6.4 × 10−7ωeg , γjg = 0, ωje = 0.3ωeg . Here
γ0 is the long time decay rate in the free vacuum for a two-level atom.
Note ωeg = 1.55 × 1016 rads/s and γ0 = 6.26 × 108 rads/s for the
2p-1s transition of the hydrogen atom.

In Fig. 2, we plot γ (E)(t) in the red dashed curve, where we
see both the QZE and QAZE. The first term in Eq. (24), γ S

e (t),
is just the effective decay rate without the third level, which
results in only the QZE [20]. Therefore, the QAZE comes
from the second term in Eq. (24) due to the third level, which
is dependent on the initial condition |Cj,k(0)|2/|α(0)|2 and the
frequencies ωk and ωje. In order to identify the effect of level
|j 〉, we plot the decay rates for different coupling strengths of
γje in Fig. 3 (see the solid curves), which shows that the larger
γje is stronger as the influence of level |j 〉 is stronger. It is
clear that level |j 〉 leads to quite different dynamic evolution.
The great influence of the third level cannot be neglected for
the dynamic evolution of the atom in the short time region.

0.0 0.1 0.2 0.3
0.01

0.1

1

10

γ(E
) (τ

)/γ
0

τ

 8X10-7ω
eg

 

 8X10-8ω
eg

 

 8X10-9ω
eg

 

 8X10-10ω
eg

 

FIG. 3. (Color online) The normalized decay rates γ (E)(τ )/γ0 vs
time τ with γeg = 6.4 × 10−7ωeg in the cascade type (solid lines)
with ωje = 0.3ωeg for different coupling strength γje = 8 × (10−10–
10−7)ωeg , and in the V type (dashed curves) with ωjg = 0.7ωeg ,
ωej = 0.3ωeg for different coupling strength γjg = 8 × (10−10–10−7)
ωeg .
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2. The initial state |eS〉 (|eH〉) (excited from the ground
state of the bare atom)

In this case, the initial state, Eq. (14), becomes

|eS〉 =
[

1 − 1

2

∑
k

g2
k,eg

(ωeg + ωk)2
− 1

2

∑
k

g2
k,je

(ωje + ωk)2

]
|e,{0k}〉

+
∑

k

gk,eg

ωeg + ωk

|g,1k〉 +
∑

k

gk,je

ωje + ωk

|j,1k〉. (28)

The survival probability of this initial state is determined by
Eq. (18). Although α(t) in Eq. (18) has the same form as
in Eq. (20), α(t) = α(0) exp[−γ S

e (t)t/2 − i�E
S(e)
dyn (t)t] [see

Eq. (A12)], its initial value α(0) is different:

α(0) = 1 − 1

2

∑
k

g2
k,eg

(ωeg + ωk)2
− 1

2

∑
k

g2
k,je

(ωje + ωk)2
, (29)

and γ S
e (t) and �E

S(e)
dyn (t) are

γ S
e (t) ≈ 2π

∑
k

2ωegg
2
k,eg

ωeg + ωk

2 sin2
(ωeg−ωk

2 t
)

π (ωeg − ωk)2t
, (30a)

�E
S(e)
dyn (t) =

∑
k

4ω2
egg

2
k,eg

(ωeg + ωk)2

{
1

ωeg − ωk

−
(

1 − ωeg − ωk

2ωeg

)
sin[(ωeg − ωk)t]

(ω′
eg − ωk)2t

}
.

(30b)

which are different from that in Eqs. (22a) and (22b) because of
the different initial state |ES〉 in Eq. (19). The βk(t) in Eq. (18)
is [see Eq. (A13)]

βk(t) ≈ βk(0) − α(0)Vk,eg

1 − e−i(ωeg−ωk )t

(ω′
eg − ωk)

, (31)

with the initial value βk(0) = gk,eg

ωeg+ωk
. The survival probability

of the initial state |eH 〉 (|eS〉) is

P (e)(t) = exp[−γ (e)(t)] ≈ |α(0)|4
A

exp

{
− γ S

e (t)t

+
∑

k

2|Cj,k(0)|2
|α(0)|2 cos[(ωk + ωje)t]

+
∑

k

2|βk(0)|2
|α(0)|2 −

∑
k

2
β∗

k(0)

α∗(0)

[
βk(0)

α(0)

− Vk,eg

ω′
eg − ωk

]
{1 − cos[(ωeg − ωk)t]}

}
, (32)

where A = |α(0)|4 exp[
∑

k
2|βk(0)|2
|α(0)|2 + ∑

k
2|Cj,k(0)|2

|α(0)|2 ]. The cor-
responding time-dependent decay rate is

γ (e)(t) = γ S
e (t) +

∑
k

2|Cj,k(0)|2
|α(0)|2

1 − cos[(ωk + ωje)t]

t

+
∑

k

2
β∗

k(0)

α∗(0)

[
βk(0)

α(0)
− Vk,eg

ω′
eg − ωk

]

× 1 − cos[(ωeg − ωk)t]

t

≈ 2π
∑

k

g2
k,eg

2 sin2
(ωeg−ωk

2 t
)

π (ωeg − ωk)2t

+ 2π
∑

k

g2
k,je

2 sin2
(ωje+ωk

2 t
)

π (ωje + ωk)2t

= 2π

∫ ∞

0
Geg(ω)F (ω − ωeg,t)dω

+ 2π

∫ ∞

0
Gje(ω)F (ω + ωje,t)dω, (33)

where F (ω,t) and Gje(ω) are defined by Eq. (25) and Eq. (26),
and

Geg(ω) =
∑

k

g2
k,egδ(ω − ωk). (34)

In Fig. 2, γ (e)(t) is plotted in the black solid curve. The
first term in the last equality of Eq. (33) is the decay rate of
a two-level atom with RWA [20,23–25], which results in the
QAZE. The second term in Eq. (33) is the same as the second
term in Eq. (24), which enhances the QAZE as shown in the
black curve. We would like to mention that for the lambda
configuration (|j 〉 below |e〉), its dynamic evolution is similar
to the cascade one discussed above.

B. V-type configuration (Eg < E j ,Ee)

In this case, the two allowed electric-dipole transitions
are e ↔ g and j ↔ g, and the transition between e and j

is forbidden (gk,ej = 0); see Fig. 4.

1. The initial state |ES〉 (|E H〉) (excited from the ground
state of the whole system)

In this V type, the initial state van be written from Eq. (15)
as

|ES〉 =
[

1 − 1

2

∑
k

g2
k,jg

(ωjg + ωk)2

]
|e,{0k}〉

−
∑

k

gk,jg

ωjg + ωk

|j,1k〉. (35)

e

g

j

FIG. 4. V configuration.
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The survival probability of the initial state is determined by
Eq. (17), where α(t) has the same form as Eq. (20), α(t) =
α(0) exp[−γ S

e (t)t/2 − i�E
S(e)
dyn (t)t] with γ S

e (t) and �E
S(e)
dyn (t)

determined by Eqs. (22a) and (22b), and α(0)

α(0) = 1 − 1

2

∑
k

g2
k,jg

(ωjg + ωk)2
, (36)

and Cj,k(t) = Cj,k(0) = − gk,jg

ωjg+ωk
. See Eqs. (A21)–(A28) in

the Appendix for details. The survival probability of the initial
state |EH 〉(|ES〉) is

P (E)(t) = exp[−γ (E)(t)t] ≈ |α(0)|4
A

exp

{
− γ S

e (t)t

+
∑

k

2|Cj,k(0)|2
|α(0)|2 cos[(ωej − ωk)t]

}
, (37)

where A = |α(0)|4 exp[
∑

k
2|Cj,k(0)|2

|α(0)|2 ]. Accordingly, the effec-

tive time-dependent decay rate of the initial state |EH 〉(|ES〉)
is

γ (E)(t) = γ S
e (t) +

∑
k

2|Cj,k(0)|2
|α(0)|2

1 − cos[(ωej − ωk)t]

t

≈ 2π
∑

k

4ω2
egg

2
k,eg

(ωeg + ωk)2

2 sin2
(ωeg−ωk

2 t
)

π (ωeg − ωk)2t

+ 2π
∑

k

(ωej − ωk)2

(ωjg + ωk)2
g2

k,jg

2 sin2
(ωej −ωk

2 t
)

π (ωej − ωk)2t

≈ 2π

∫ ∞

0
G′

eg(ω)F (ω − ωeg,t)dω

+ 2π

∫ ∞

0
G′

jg(ω)F (ω − ωej ,t)dω, (38)

where F (ω,t) and G′
eg(ω) are the same as Eqs. (25) and

Eq. (27), and

G′
jg(ω) =

∑
k

(ωej − ωk)2

(ωjg + ωk)2
g2

k,jgδ(ω − ωk). (39)

In Fig. 5, γ (E)(t) is plotted in the red dashed curve, where
we have QAZE. The first term in Eq. (38), γ S

e (t), results in
the QZE. Therefore, the QAZE arises from the second term in
Eq. (38), that is to say from level |j 〉.

2. The initial state |eS〉 (|eH〉) excited from the bare atom
ground state

In this case, the initial state, Eq. (14), becomes

|eS〉 =
[

1 − 1

2

∑
k

g2
k,eg

(ωeg + ωk)2

]
|e,{0k}〉

+
∑

k

gk,eg

ωeg + ωk

|g,1k〉. (40)

The survival probability of the initial state is determined by
Eq. (18), with γ S

e (t) and �E
S(e)
dyn (t) determined by Eqs. (30a)

and (30b), βk(t) is the same as Eq. (31) [see Eq. (A31)],

α(0) = 1 − 1

2

∑
k

g2
k,eg

(ωeg + ωk)2
, (41)

and Cj,k(t) = Cj,k(0) = 0. Therefore, the survival probability
of the initial state |eH 〉(|eS〉) is

P (e)(t) = exp[−γ (e)(t)t] ≈ |α(0)|4
A

× exp

(
− γ S

e (t)t +
∑

k

2
|βk(0)|2
|α(0)|2

−
∑

k

2
β∗

k(0)

α∗(0)

[
βk(0)

α(0)
− Vk,eg

ω′
eg − ωk

]

× {
1 − cos[(ω′

eg − ωk)t]
})

, (42)

where A = |α(0)|4 exp[
∑

k 2 |βk(0)|2
|α(0)|2 ]. The corresponding time-

dependent decay rate is

γ (e)(t) = γ S
e (t) +

∑
k

2
β∗

k(0)

α∗(0)

[
βk(0)

α(0)
− Vk,eg

ω′
eg − ωk

]

× 1 − cos[(ω′
eg − ωk)t]

t

≈ 2π
∑

k

g2
k,eg

2 sin2
(ωeg−ωk

2 t
)

π (ωeg − ωk)2t

= 2π

∫ ∞

0
Geg(ω)F (ω − ωeg,t)dω, (43)

where F (ω,t) and Geg(ω) are defined by Eqs. (25) and (34).
In Fig. 5, γ (e)(t) is plotted in the black curve. It is seen from

Eq. (43) that γ (e)(t) is independent of |j 〉 and is the same as

0.0 0.1 0.2 0.3
0

10

20

30

40

N
or

m
al

iz
ed

 d
ec

ay
 r

at
es

 γ(e)(τ)/γ
0

 γ(E)(τ)/γ
0

τ

FIG. 5. (Color online) The normalized decay rates vs time τ for
different initial states in V configuration with γeg = 6.4 × 10−7ωeg ,
γjg = 8 × 10−7ωeg , ωej = 0.3ωeg , ωjg = 0.7ωeg .
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that in a two-level system under the RWA, which is known to
lead to the QAZE. [20,23–25]. The influence of the third level
on the dynamic evolution is plotted in Fig. 3 with the dashed
curves. It is clear that influence of the third level is great in
the initial short period. For a long time period all the curves in
Fig. 3 will approach 1.

V. CONCLUSION

We have studied the important influence of the third level on
the time evolution of the spontaneous decay in the cascade-type
or V -type atom with two different initial states, when the
counter-rotating terms and the self-energy are taken into
account in the Hamiltonian. The third level results in the
acceleration of the effective decay in the short time regime,
which leads to or enhances the anti-Zeno effect, because of the
reabsorption of the photon by one level emitted from another
level (virtual photon processes). This influence is sensitive to
the third level, but not sensitive to the initial states discussed.
The third level could not be neglected, if the counter-rotating
terms are taken into account.
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APPENDIX: DYNAMIC EVOLUTION
AND THE SOLUTIONS

In the interaction picture, the interaction Hamiltonian in
Eq. (5) reads as

H̃S
I =

i<j∑
i,j,k

Vk,j ie
i(ω′

ji−ωk)t bk|j 〉〈i|

+
i<j∑
i,j,k

Vk,j ie
−i(ω′

ji−ωk)t b
†
k|i〉〈j | +

i �=j∑
i,j

ηeiω′
ij t |i〉〈j |,

(A1)

where η = ∑
q �=i,j,k

gk,iqgk,qj

ωk

2|ωiqωqj |+ωqj ωk+ωqiωk

2(|ωiq |+ωk)(|ωqj |+ωk) |i〉〈j |. The
time evolution of the wave function

|ϕ(t)〉SI = α(t)|e,{0k}〉 + β(t)|g,{0k}〉 +
∑
j �=e,g

Cj (t)|j,{0k}〉

+
∑

k

αk(t)|e,1k〉 +
∑

k

βk(t)|g,1k〉

+
∑

j �=e,g,k

Cj,k(t)|j,1k〉 (A2)

is governed by the Hamiltonian H̃S
I . Note that the relation

between the Schrödinger picture and the interaction picture is
|ϕ(t)〉S = exp(−iHS

0 t)|ϕ(t)〉SI .

1. Cascade configuration (Eg < Ee < E j )

The equations of motion are

α̇(t) = −i
∑

k

βk(t)Vk,ege
i(ω′

eg−ωk)t , (A3)

β̇(t) = −i
∑
j>e

Cj (t)ηe−iω′
jg t , (A4)

Ċj (t) = −i
∑

k

αk(t)Vk,jee
i(ω′

je−ωk )t − iβ(t)ηeiω′
jg t , (A5)

α̇k(t) = −i
∑
j>e

Cj (t)Vk,jee
−i(ω′

je−ωk)t , (A6)

β̇k(t) = −iα(t)Vk,ege
−i(ω′

eg−ωk)t , (A7)

Ċj,k(t) = 0. (A8)

From Eq. (A8) we can get

Cj,k(t) = Cj,k(0). (A9)

Integrating Eq. (A7),

βk(t) = βk(0) − i

∫ t

0
α(t ′)Vk,ege

−i(ω′
eg−ωk )t ′dt ′, (A10)

and then inserting into Eq. (A3), we get

α̇(t) = −i
∑

k

βk(0)Vk,ege
i(ω′

eg−ωk)t

−
∑

k

∫ t

0
dt ′α(t ′)V 2

k,ege
i(ω′

eg−ωk)(t−t ′). (A11)

For a sufficiently short time t , we can replace α(t ′) by α(0)
[11,21] and

α(t) ≈ α(0) − α(0)
∫ t

0
dt ′

∫ t ′

0
dt ′′

∑
k

V 2
k,ege

i(ω′
eg−ωk )(t ′−t ′′) − i

∫ t

0
dt ′

∑
k

βk(0)Vk,ege
i(ω′

eg−ωk)t ′

= α(0) − α(0)
∫ t

0
dt ′(t − t ′)

∑
k

V 2
k,ege

i(ω′
eg−ωk)t ′ − i

∫ t

0
dt ′

∑
k

βk(0)Vk,ege
i(ω′

eg−ωk )t ′

≈ α(0) exp

[
−t

(
−1

t

∑
k

V 2
k,eg

{[
1 − βk(0)

α(0)
V −1

k,eg(ω′
eg − ωk)

]
ei(ω′

eg−ωk)t − 1

(ω′
eg − ωk)2

− it

ω′
eg − ωk

})]
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= α(0) exp

{
−t

[∑
k

V 2
k,eg

[
1 − βk(0)

α(0)
V −1

k,eg(ω′
eg − ωk)

]
2 sin2

(ω′
eg−ωk

2 t
)

(ω′
eg − ωk)2t

+ i

(∑
k

V 2
k,eg

{
1

ω′
eg − ωk

−
[

1 − βk(0)

α(0)
V −1

k,eg(ω′
eg − ωk)

]
sin[(ω′

eg − ωk)t]

(ω′
eg − ωk)2t

})]}

= α(0) exp
{−t

[
γ S

e (t)/2 + i�E
S(e)
dyn (t)

]}
. (A12)

The solutions of βk(t) is obtained by replacing α(t ′) with α(0) in Eq. (A10) [21]:

βk(t) ≈ βk(0) − α(0)Vk,eg

1 − e−i(ω′
eg−ωk)t

(ω′
eg − ωk)

. (A13)

Integrating Eqs. (A4) and (A6), we have

β(t) = −i

∫ t

0
dt ′

∑
j>e

Cj (t ′)ηe−iω′
jg t

′
, (A14)

αk(t) = −i

∫ t

0
dt ′

∑
j>e

Cj (t ′)Vk,jee
−i(ω′

je−ωk)t ′ , (A15)

where β(0) ≈ 0, αk(0) ≈ 0 have been used. By substituting Eqs. (A14) and (A15) into Eq. (A5), one can easily prove with
neglecting the higher-order terms

β(t) = αk(t) = Cj (t) ≈ 0. (A16)

2. V configuration (Eg < E j ,Ee)

α̇(t) = −i
∑

k

βk(t)Vk,ege
i(ω′

eg−ωk)t − i
∑
j �=e,g

Cj (t)ηeiω′
ej t , (A17)

Ċj (t) = −i
∑

k

βk(t)Vk,jge
i(ω′

jg−ωk)t − iα(t)ηeiω′
jet , (A18)

β̇k(t) = −iα(t)Vk,ege
−i(ω′

eg−ωk)t − i
∑
j �=e,g

Cj (t)Vk,jge
−i(ω′

jg−ωk)t , (A19)

β̇(t) = 0, α̇k(t) = 0, and Ċj,k(t) = 0. (A20)

From Eq. (A20), we can get

β(t) = αk(t) = 0, and Cj,k(t) = Cj,k(0) = − gk,jg

ωjg + ωk

(A21)

Integrating Eq. (A20),

βk(t) = βk(0) − i

∫ t

0
dt ′α(t ′)Vk,ege

−i(ω′
eg−ωk )t ′ − i

∑
j �=e,g

∫ t

0
dt ′Cj (t ′)Vk,jge

−i(ω′
jg−ωk)t ′ , (A22)

then substituting into Eqs. (A17) and (A18), one has

α̇(t) = −i
∑

k

βk(0)Vk,ege
i(ω′

eg−ωk )t −
∑

k

∫ t

0
dt ′α(t ′)V 2

k,ege
i(ω′

eg−ωk)(t−t ′)

−
∑

j �=e,g,k

∫ t

0
dt ′Cj (t ′)Vk,egVk,jge

iω′
ej t ei(ω′

jg−ωk )(t−t ′) − i
∑
j �=e,g

Cj (t)ηeiω′
ej t , (A23)

Ċj (t) = −i
∑

k

βk(0)Vk,jge
i(ω′

jg−ωk )t −
∑

k

∫ t

0
dt ′α(t ′)Vk,egVk,jge

−iω′
ej t ei(ω′

eg−ωk)(t−t ′)

−
∑

k

∫ t

0
dt ′Cj (t ′)V 2

k,jge
i(ω′

jg−ωk)(t−t ′) − iα(t)ηe−iω′
ej t . (A24)
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Replacing α(t ′), Cj,k(t ′) by α(0), Cj,k(0) [11,21], we have

α̇(t) ≈ −i
∑

k

βk(0)Vk,ege
i(ω′

eg−ωk )t − α(0)
∑

k

∫ t

0
dt ′V 2

k,ege
i(ω′

eg−ωk)(t−t ′)

−
∑

j �=e,g,k

Cj (0)
∫ t

0
dt ′Vk,egVk,jge

iω′
ej t ei(ω′

jg−ωk )(t−t ′) − i
∑
j �=e,g

Cj (t)ηeiω′
ej t , (A25)

Ċj (t) ≈ −i
∑

k

βk(0)Vk,jge
i(ω′

jg−ωk )t − α(0)
∑

k

∫ t

0
dt ′Vk,egVk,jge

−iω′
ej t ei(ω′

eg−ωk)(t−t ′)

−Cj (0)
∑

k

∫ t

0
dt ′V 2

k,jge
i(ω′

jg−ωk )(t−t ′) − iα(t)ηe−iω′
ej t . (A26)

Integrating Eq. (26) and substituting into Eq. (25) and replacing α(t ′) by α(0) [11,21], we have

α(t) = α(0) − iα(0)
∫ t

0
dt ′

∑
k

V 2
k,eg

1 − ei(ω′
eg−ωk)t ′

(ω′
eg − ωk)

− i

∫ t

0
dt ′

∑
k

βk(0)Vk,ege
i(ω′

eg−ωk)t ′

− i

∫ t

0
dt ′

∑
j �=e,g,k

Cj (0)Vk,egVk,jg

eiω′
ej t

′ − ei(ω′
eg−ωk )t ′

(ω′
jg − ωk)

− i

∫ t

0
dt ′

∑
j �=e,g

Cj (0)ηeiω′
ej t

′

= α(0)

{
1 −

∑
k

V 2
k,eg

[
1 − ei(ω′

eg−ωk )t

(ω′
eg − ωk)2

+ it

(ω′
eg − ωk)

]}
+

∑
k

βk(0)Vk,eg

1 − ei(ω′
eg−ωk)t

(ω′
eg − ωk)

+
∑

j �=e,g,k

Cj (0)
Vk,egVk,jg

ω′
jg − ωk

[
1 − eiω′

ej t

ω′
ej

− 1 − ei(ω′
eg−ωk)t

(ω′
eg − ωk)

]
+

∑
j �=e,g

Cj (0)η
1 − eiω′

ej t

ω′
ej

. (A27)

Because Cj (0) ≈ 0, Eq. (A27) becomes

α(t) ≈ α(0)

(
1 −

∑
k

V 2
k,eg

{[
1 − βk(0)

α(0)
V −1

k,eg(ω′
eg − ωk)

]
1 − ei(ω′

eg−ωk )t

(ω′
eg − ωk)2

+ it

ω′
eg − ωk

})

≈ α(0) exp

(
−

∑
k

V 2
k,eg

{[
1 − βk(0)

α(0)
V −1

k,eg(ω′
eg − ωk)

]
1 − ei(ω′

eg−ωk)t

(ω′
eg − ωk)2

+ it

ω′
eg − ωk

})

= α(0) exp

{
−t

[∑
k

V 2
k,eg

[
1 − βk(0)

α(0)
V −1

k,eg(ω′
eg − ωk)

]
2 sin2

(ω′
eg−ωk

2 t
)

(ω′
eg − ωk)2t

+ i

(∑
k

V 2
k,eg

{
1

ω′
eg − ωk

−
[

1 − βk(0)

α(0)
V −1

k,eg(ω′
eg − ωk)

]
sin[(ω′

eg − ωk)t]

(ω′
eg − ωk)2t

})]}

= α(0) exp
{−t[γ S

e (t)/2 + i�E
S(e)
dyn (t)]

}
. (A28)

Integrating Eq. (A25) and substituting into Eq. (A26) and replacing Cj,k(t ′) by Cj,k(0), we have

Cj (t) ≈ Cj (0) − iCj (0)
∫ t

0
dt ′

∑
k

V 2
k,jg

1 − ei(ω′
jg−ωk)t ′

(ω′
jg − ωk)

− i

∫ t

0
dt ′

∑
k

βk(0)Vk,jge
i(ω′

jg−ωk)t ′

− iα(0)
∫ t

0
dt ′

∑
k

Vk,egVk,jg

e−iω′
ej t

′ − ei(ω′
jg−ωk )t ′

(ω′
eg − ωk)

− iα(0)η
∫ t

0
dt ′e−iω′

ej t
′

= Cj (0)

{
1 −

∑
k

V 2
k,jg

[
1 − ei(ω′

jg−ωk)t

(ω′
jg − ωk)2

+ it

(ω′
jg − ωk)

]}
+

∑
k

βk(0)Vk,jg

1 − ei(ω′
jg−ωk )t

(ω′
jg − ωk)

−α(0)
∑

k

Vk,egVk,jg

ω′
eg − ωk

[
1 − e−iω′

ej t

ω′
ej

+ 1 − ei(ω′
jg−ωk )t

(ω′
jg − ωk)

]
− α(0)η

1 − e−iω′
ej t

ω′
ej

. (A29)
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With Cj (0) ≈ 0, we obtain

Cj (t) ≈
∑

k

βk(0)Vk,jg

1 − ei(ω′
jg−ωk)t

(ω′
jg − ωk)

− α(0)η
1 − e−iω′

ej t

ω′
ej

− α(0)
∑

k

Vk,egVk,jg

ω′
eg − ωk

[
1 − e−iω′

ej t

ω′
ej

+ 1 − ei(ω′
jg−ωk)t

(ω′
jg − ωk)

]
, (A30)

and from Eq. (A22) and replacing α(t ′) by α(0), we have [21]

βk(t) ≈ βk(0) − α(0)Vk,eg

1 − e−i(ω′
eg−ωk)t

(ω′
eg − ωk)

. (A31)
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