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Lattice solitons in PT -symmetric mixed linear-nonlinear optical lattices
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We report the existence and stability of lattice solitons in parity-time (PT )-symmetric mixed linear-nonlinear
optical lattices in Kerr media. We focus on studying the characteristic effects on soliton propagation in
the semi-infinite gap if we consider different amplitudes of real and imaginary parts of both the linear refractive
index modulation profile and of periodic nonlinearity-modulation spatial distribution. It was found that the
combination of PT -symmetric linear and nonlinear lattices can stabilize lattice solitons and can provide unique
soliton properties. It is revealed that the parameters of the linear lattice periodic potential play a significant
role in controlling the extent of the stability domains and that the lattice solitons can stably propagate only in the
low-power regime.
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I. INTRODUCTION

Since 1998, after the publication of the seminal work of
Bender and Boettcher [1], who introduced the concept of
parity-time (PT )-symmetric complex-valued potentials, there
has been a lot activity in this area due to emerging applications
in various physical settings, especially in the field of optics
and photonics. It their pioneering work, Bender and Boettcher
found that non-Hermitian Hamiltonians can still have entirely
real eigenvalue spectra provided that these Hamiltonians
respect PT symmetry. Moreover, it was demonstrated that
such types of Hamiltonians can also undergo a phase transition
above a critical threshold, i.e., a spontaneous PT symmetry
breaking; above such transition point the eigenvalue spectrum
ceases being entirely real and becomes partially complex
[2–5]. Thus, for a general Hamiltonian Ĥ = p̂2/2 + V (x̂),
where p̂ and x̂ are the momentum and position operators,
respectively, one can deduce that a necessary condition (but
not a sufficient one) for the Hamiltonian to be PT symmetric
is that the potential function V (x) should fulfill the condition
V (x) = V ∗(−x) [1,6–8]. In other words, the real part of
the PT complex potential must be an even function of the
position x, whereas the imaginary part should be an odd
function of the variable x. The PT -symmetric potentials
can be realized through using the complex refractive index
distribution n(x) = n0 + nR(x) + inI (x), where n0 represents
the background refractive index and x is the normalized
transverse coordinate [6,7]. To satisfy the PT symmetry
condition, nR(x) must be an even function of the transverse
spatial coordinate x, while the gain or loss component nI (x)
should be an odd one.

Passive PT symmetry breaking within the realm of optics
was demonstrated experimentally by Guo et al. [9]. This
first observation of such PT symmetry breaking in complex-
valued optical potentials means that the corresponding phase
transition leads to a loss-induced optical transparency in spe-
cially designed pseudo-Hermitian guiding optical potentials.
Later, Rüter et al. [10] reported the observation of both
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spontaneous PT symmetry breaking and power oscillations
violating left-right symmetry. In the theoretical arena, the early
incentive work of Musslimani et al. [6] studied the effect
of Kerr nonlinearity on the unique beam dynamics in PT -
symmetric complex-valued periodic optical potentials, i.e.,
the formation of nonlinear self-trapped modes, alias optical
solitons in both one-dimensional (1D) and two-dimensional
(2D) PT -symmetric synthetic linear optical lattices (OLs).
The study of PT -symmetric linear OLs [7,8,11], has also
attracted much attention during the past few years. Beam
dynamics in PT -symmetric complex-valued periodic lattices
can exhibit unique characteristics, such as double refraction,
power oscillations, nonreciprocal diffraction patterns, etc. [7].
Defect modes in PT -symmetric periodic complex-valued
potentials have also been studied [12,13]. Recently, we studied
gap solitons in parity-time complex-valued periodic OLs with
the real part of the linear lattice potential having the shape of a
double-periodic function (a superlattice potential) [14]. Stable
1D and 2D bright spatial solitons in defocusing Kerr media
with PT -symmetric potentials have also been found [15].
Bragg gap solitons in PT -symmetric lattices with competing
optical nonlinearities of the cubic-quintic type have been also
investigated in a recent study [16].

Of much interest from both a theoretical and experimental
point of view is the study of solitons in nonlinear optical
lattices; see a recent comprehensive review in this area [17].
Such nonlinear OLs represent a spatially periodic modulation
of the local strength and sign of the optical nonlinearity. It
should be mentioned that PT - symmetric nonlinear OLs can
also support stable discrete solitons [18]; for a comprehensive
review of discrete solitons in optics, see Ref. [19]. We also
bring readers’ attention to a series of recent incentive works
in the area of PT -symmetric nonlinear lattices in various
physical settings [20–22]. The existence of localized modes,
including multipole solitons, supported by PT -symmetric
nonlinear lattices was recently reported [20]. Such PT -
symmetric nonlinear OLs can be implemented by means of
proper periodic modulation of nonlinear gain and losses, in
specially realized nonlinear optical waveguides. It was found
in Ref. [20] that unlike other typical dissipative systems,
stable one-parameter families of localized solutions do exist
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even when the conservative part (i.e., the real part) of the
complex-valued nonlinear periodic potential is absent.

Solitons in periodic mixed lattices with linear and nonlinear
counterparts have also been investigated. To the best of our
knowledge, the issue of competition between the lattices of the
linear and nonlinear types was first investigated by Bludov and
Konotop [23] in the context of matter waves in Bose-Einstein
condensates (BECs); see also a subsequent work [24] on gap
solitons in BECs loaded in mixed linear-nonlinear optical
lattices. However, to the best of our knowledge, solitons in
PT -symmetric mixed linear-nonlinear optical lattices have
not been studied yet.

In this work, we perform a comprehensive study of the
existence and stability of lattice solitons in Kerr media,
which are confined by PT -symmetric complex-valued pe-
riodic potentials, representing the superposition of linear
and nonlinear optical lattices. Thus we consider a mixture
of a linear lattice (grating) and a nonlinear lattice (i.e., a
periodic transverse modulation of both cubic nonlinearity
and nonlinear gain). We vary the amplitudes of real and
imaginary parts of linear refractive index modulation profile
(i.e., the relevant parameters of the linear lattice profile) and
the corresponding amplitudes of the complex-valued periodic
nonlinearity-modulation profile (i.e., the relevant parameters
of the nonlinear lattice profile). It was found that the jointly
acting PT -symmetric linear and nonlinear periodic potentials
can stabilize lattice solitons and can provide unique soliton
properties. It is revealed that the parameters of the linear lattice
periodic potential play a significant role in controlling the
magnitude of the stability domain and that the lattice solitons
can stably propagate only for low powers; i.e, the solitons with
powers larger than some threshold values are linearly unstable.

II. THE GOVERNING MODEL

Beam propagation in the PT -symmetric mixed linear-
nonlinear OLs with focusing Kerr nonlinearity obeys the
following normalized 1D nonlinear Schrödinger equation [6]:

i
∂q

∂z
+ 1

2

∂2q

∂x2
+ [v(x) + iw(x)]q + |q|2q + [v1(x)

+ iw1(x)]|q|2q = 0, (1)

where q is the complex field amplitude and z is the normalized
longitudinal coordinate. We search for stationary solutions
of Eq. (1) in the form q = f (x) exp(iμz), where f (x) is
a complex-valued function, and μ is the corresponding real
propagation constant. In such case, the complex function f (x)
satisfies the following differential equation:

1

2

d2f

dx2
+ [v(x) + iw(x)]f + |f |2f + [v1(x)

+ iw1(x)]|f |2f = μf. (2)

By substituting f (x) = h(x) + ie(x) into Eq. (2), we obtain
the two coupled equations:

1
2hxx + vh − we + h3 + he2 + v1h

4 − 2w1h
3e − 2w1he3

− v1e
4 = μh, (3a)

1
2exx + ve + wh + h2e + e3 + w1h

4 + 2v1h
3e + 2v1he3

−w1e
4 = μe, (3b)

where h and e are real functions.
The linear version of Eq. (2) is

1

2

d2f

dx2
+ [v(x) + iw(x)]f = μf. (4)

The Bloch theorem tells us that the eigenfunctions of Eq. (4)
are of the form f = Fk exp(ikx), where k is the Bloch wave
number, and Fk is a periodic function of x with the same
period as the linear lattice profiles v(x) and w(x). Substituting
the Bloch solution into Eq. (4), we get the eigenvalue equation(

d2

dx2
+ 2ik

d

dx
− k2

)
Fk + [v(x) + iw(x)]Fk = μFk. (5)

III. NUMERICAL RESULTS AND ANALYSIS OF THE
GENERIC PROPAGATION OUTCOMES

A. The study of the general case when the PT -symmetric
linear lattice potential is different from the PT -symmetric

nonlinear lattice potential

In Eq. (1), we consider that thePT -symmetric linear lattice
profile is given by the periodic functions ν(x) = ε0cos2(x)
and w(x) = ω0sin(2x), whereas the PT -symmetric nonlinear
lattice modulation is given by the following periodic functions:
ν1(x) = ε1cos(2x) and w1(x) = − ω1sin(2x), see Ref. [20],
where ε0 and ω0 are the amplitudes of real and imaginary
parts of the linear OLs, respectively, and the amplitudes ε1 and
ω1 of the nonlinearity-modulation spatial distribution. Thus
in the most general case to be studied in this subsection we
take different periodic spatial distributions (different linear and
nonlinear lattice potentials). Therefore for the above choice of
the two jointly acting linear and nonlinear lattice potentials, the
real parts, the sign of the imaginary parts, and the amplitudes
of the modulation profiles are totally different.

First, we fix the parameters ε0 and ω0 of the PT -symmetric
linear lattice in order to investigate the effect ofPT -symmetric
nonlinear lattices on soliton propagation. Solving numerically
the linear eigenvalue equation (5) by using the plane wave ex-
pansion method, we obtain the corresponding band structure.
We then fix the values of the two parameters describing the
PT -symmetric linear OLs as ε0 = 4 and ω0 = 0.8. The spatial
modulation profile and the corresponding band structure are
displayed in Figs. 1(a) and 1(b), respectively. Then we numer-
ically solve Eqs. (2) and (3) by the spectral renormalization

FIG. 1. (Color online) (a) PT -symmetric complex-valued peri-
odic linear OLs for ω0 = 0.8 and ε0 = 4 (the solid curves represent
the real part of the modulation profile, whereas the dotted curves
represent the imaginary part of the modulation profile). (b) The band
structure corresponding to the lattice profile shown in (a).
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FIG. 2. Power P versus propagation constant μ for ε0 = 4 and
ω0 = 0.8 and (a) ε1 = 0.1 and ω1 = 0.1, (b) ε1 = 0.5 and ω1 = 0.5,
and (c) ε1 = 1 and ω1 = 1. The stable branches are plotted by solid
curves and the unstable branches are plotted by dashed curves.

method [25] and the modified squared-operator method [26],
respectively. The total soliton power P is defined as P =∫ +∞
−∞ |f |2dx. The dependences of soliton power P versus

propagation constant μ are shown in Figs. 2(a), 2(b), and 2(c),
for three sets of nonlinear OL parameters ε1 = 0.1 and ω1 =
0.1, ε1 = 0.5 and ω1 = 0.5, and ε1 = 1 and ω1 = 1, respectively.
From Fig. 2, we see that the soliton power increases with the
decrease of the amplitudes ε1 and ω1 of the nonlinearity-
modulation spatial distribution. This can be explained as
follows. Because we are considering here a self-focusing Kerr
nonlinearity, if the depth of nonlinear lattice increases, the
corresponding self-focusing effect exerted on the optical beam,
which is determined by [1 + v1(x)]|q|2q and the associated
nonlinear gain effect coming from the imaginary part of the
nonlinear lattice potential are becoming stronger. In addition,
for a certain depth of the nonlinear lattice, a higher power (or
peak amplitude) of solitons will also cause a much stronger
self-focusing effect on the optical beam. If the combination
of self-focusing and nonlinear gain effects is stronger than a
critical limit, the lattice solitons will collapse. So the existence
of solitons in our specific situation requires that their peak am-
plitudes (or powers) must decrease with increase of the depth of
the nonlinear lattice in order to avoid the destruction of the soli-
tons during propagation due to the presence of a very high self-
focusing effect. Note that if only the depth of the dissipative
part of nonlinearity modulation is increased, the soliton power
still decreases, i.e., the effect of the imaginary (dissipative) part
of nonlinearity modulation on the soliton power is smaller than
that induced by the real part of the nonlinearity modulation.

Further we investigate the longitudinal evolution of lattice
solitons. The robustness of the soliton propagation is tested
in direct numerical simulations of Eq. (1) by adding a
random noise to the soliton (typically we add 10% of the
soliton amplitude). The results of simulations are shown in
Fig. 3 where we plot both the soliton field profiles and their
corresponding evolutions during propagation. We get that the
stable soliton regions are as follows: 2.7 � μ � 3.4 for ε1 =

FIG. 3. (Color online) Soliton profiles (the solid curves show the
real parts and the dotted curves show the corresponding imaginary
parts) and soliton evolution for ε0 = 4 and ω0 = 0.8. Stable soliton
evolutions for μ = 2.7: (a), (b) for ε1 = 0.1 and ω1 = 0.1, (e), (f) for
ε1 = 0.5 and ω1 = 0.5, and (i), (j) for ε1 = 1 and ω1 = 1. Unstable
soliton evolutions for μ = 5: (c), (d) for ε1 = 0.1 and ω1 = 0.1, (g),
(h) for ε1 = 0.5 and ω1 = 0.5, and (k), (l) for ε1 = 1 and ω1 = 1.

0.1 and ω1 = 0.1, 2.7 � μ � 3.2 for ε1 = 0.5 and ω1 = 0.5,
and 2.7 � μ � 3.0 for ε1 = 1 and ω1 = 1. These results clearly
show that lattice solitons can only stabilize in the low-power
range and that the stable soliton domain narrows with the
growth of the amplitudes ε1 and ω1 of nonlinear lattices.
Typical stable soliton evolutions for the propagation constant
μ = 2.7 are plotted in Figs. 3(a), 3(b) for ε1 = 0.1 and ω1 =
0.1, Figs. 3(e), 3(f) for ε1 = 0.5 and ω1 = 0.5, and Figs. 3(i),
3(j) for ε1 = 1 and ω1 = 1, while typical unstable soliton
evolutions for μ = 5 are given in Figs. 3(c), 3(d) for ε1 = 0.1
and ω1 = 0.1, Figs. 3(g), 3(h) for ε1 = 0.5 and ω1 = 0.5, and
Figs. 3(k), 3(l) for ε1 = 1 and ω1 = 1.

The lattice solitons are tightly bound by the mixed PT -
symmetric linear-nonlinear lattice; the high-amplitude solitons
are compacted within one spatial lattice period, which is
equal to π in all our simulations. The most unstable solitons
experience a fast decay of energy upon propagation, whereas
the less unstable ones exhibit slight oscillations of their peak
amplitudes.

Next, we consider in detail the effect of varying the
amplitudes of the real and imaginary parts of linear lattice
potential on soliton propagation when fixing the parameters
of nonlinear lattice potential; here we fix the values of the
nonlinearity-modulation profile to ε1 = 0.5 and ω1 = 0.5.

013831-3



HE, ZHU, MIHALACHE, LIU, AND CHEN PHYSICAL REVIEW A 85, 013831 (2012)

FIG. 4. (Color online) (a) The band structure and (b) total power
P versus propagation constant μ for ε0 = 3 and ω0 = 0.8 (the stable
region is plotted by a solid curve and the unstable domain is plotted
by a dashed curve). A typical stable soliton propagation for μ = 2
(c), (d) and a typical unstable soliton propagation for μ = 2.4 (e), (f).
Other parameters are ε1 = 0.5 and ω1 = 0.5.

On the one hand, we decrease the amplitude of the real part
of linear lattice potential from ε0 = 4 to ε0 = 3 and we fix
the second parameter of the linear lattice potential to ω0 =
0.8. The corresponding numerical results are displayed in
Figs. 4(a)–4(f). These numerical simulations show that the
propagation constant interval where the soliton is stable is
now 1.8 � μ � 2.1. By comparing this result for ε0 = 3 with
the above-discussed case (for ε0 = 4), which was shown in
Fig. 2(b), we find that the stability domain is smaller and
shifts towards lower values of μ. Also, it is worthy to notice
that the power slightly increases if we keep constant the
value of the propagation constant μ. On the other hand, if
we decrease the amplitude of the imaginary part of the linear
lattice potential from ω0 = 0.8 to ω0 = 0.6 we obtain the results
shown in Figs. 5(a)–5(f). In this case the stability domain is
2.7 � μ � 3.4. By comparing this stability range with that
obtained in the case when the value ω0 = 0.8 was chosen, see
Fig. 2(b) [recall that the solitons were found to be stable in
the interval 2.7 � μ � 3.2], we find that the stability region
for ω0 = 0.6 is larger than that for ω0 = 0.8 and that it shifts
towards higher values of the propagation constant μ. Note that
the powers that correspond to the same value of the propagation

FIG. 5. (Color online) (a) The band structure for ε0 = 4 and ω0 =
0.6. (b) Power P versus propagation constant μ (the stable region is
plotted by the solid curve and the unstable domain is plotted by the
dashed curve). A typical stable soliton evolution for μ = 2.9 (c), (d)
and a typical unstable soliton evolution for μ = 3.6 (e), (f). Other
parameters are ε1 = 0.5 and ω1 = 0.5.

constant μ hardly change if the value of the parameter ω0 of
the linear lattice potential changes from ω0 = 0.8 to ω0 = 0.6.

B. The study of a special case when the PT -symmetric linear
lattice potential is identical with the PT -symmetric

nonlinear lattice potential

In what follows we investigate the special case when
we consider identical PT -symmetric lattice potentials for
both linear and nonlinear OLs. We thus take the following
modulation profiles: v(x) = ε0 cos2(x), w(x) = ω0 sin(2x),
v1(x) = v(x), and w1(x) = w(x).

In order to find out the effect of modification of the
amplitudes of the real and imaginary parts of the linear and
nonlinear modulation profiles, on soliton propagation, we
select three typical sets of parameters: (i) ε0 = 4 and ω0 =
0.8, (ii) ε0 = 3 and ω0 = 0.8, and (iii) ε0 = 4 and ω0 = 0.6.
The PT -symmetric complex-valued periodic OLs and their
associated band structures are displayed in Fig. 6 for ε0 =
4 and ω0 = 0.8 [Figs. 6(a), 6(b)], for ε0 = 3 and ω0 = 0.8
[Figs. 6(c), 6(d)], and for ε0 = 4 and ω0 = 0.6 [Figs. 6(e),
6(f)]. The corresponding total powers P versus propagation
constant μ are shown in Fig. 7. The stability domains are found
to be 2.7 � μ � 3.5, 1.9 � μ � 3.0, and 2.7 � μ � 4.5, for
the above sets of parameters (i), (ii), and (iii), respectively.
These results clearly show that solitons can be stable only in
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FIG. 6. (Color online) PT -symmetric complex-valued periodic
linear OLs for (a) ε0 = 4 and ω0 = 0.8, (c) ε0 = 3 and ω0 = 0.8,
and (e) ε0 = 4 and ω0 = 0.6. In panels (b), (d), and (f) we plot the
band structures corresponding to the modulation profiles displayed
in panels (a), (c), and (e), respectively.

the low-power regimes and that the soliton stability region
increases with the decrease of the amplitudes of imaginary
parts of modulation profiles of both kinds of OLs. Also, the

FIG. 7. Power P versus μ for (a) ε0 = 4 and ω0 = 0.8, (b) ε0 =
3 and ω0 = 0.8, and (c) ε0 = 4 and ω0 = 0.6. The stable regions are
plotted by solid curves and the unstable regions are plotted by dashed
curves.

FIG. 8. (Color online) Soliton profiles and their corresponding
longitudinal evolutions. Stable propagations: (a), (b) ε0 = 4, ω0 =
0.8, and μ = 2.8; (e), (f) ε0 = 3, ω0 = 0.8, and μ = 2; (i), (j) ε0 = 4,
ω0 = 0.6, and μ = 2.8. Unstable propagations: (c), (d) ε0 = 4, ω0 =
0.6, and μ = 5; (g), (h) ε0 = 3, ω0 = 0.8, and μ = 4; (k), (l) ε0 = 4,
ω0 = 0.8, and μ = 5.5.

soliton stability region shifts towards the lower values of μ

with the decrease of the amplitude of modulation profiles of
real parts of both kinds of OLs. We thus conclude that the
parameters of PT -symmetric linear lattices play an important
role in controlling the magnitude of the soliton stability region.
The soliton profiles and the longitudinal evolution of typical
stable and unstable solitons are plotted in Figs. 8(a)–8(l).

Note that the present study can be extended in the direction
of considering in detail the competition between linear and
nonlinear lattice potentials, i.e., by choosing different gain
and loss combinations of the dissipative parts of both linear
and nonlinear lattice potentials.

IV. CONCLUSIONS

To summarize, in this work we reported the existence and
stability domains of lattice solitons confined by the joint action
of parity-time-symmetric linear and nonlinear lattices in Kerr
media. We concluded that the joint action of parity-time-
symmetric linear and nonlinear optical lattices can support
stable propagation of solitons in the semi-infinite gap, for a
variety of choices of the spatial distributions ofPT -symmetric
periodic confining lattice potentials. The stationary soliton
solutions constitute a one-parameter family in a dissipative
system where the balance between gain and loss effects must
be fulfilled, in contrast to zero-parameter dissipative solitons in
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optical systems described by Ginzburg-Landau-like nonlinear
dynamical models, see, e.g., [27,28]. Also, the comprehensive
numerical calculations show that lattice solitons in such mixed
linear-nonlinear lattices can stably propagate in the low-power
regime, but are unstable in the higher-power one. In particular,
the region of stability of soliton propagation can be controlled
by tuning the values of either the real or imaginary parts
of PT -symmetric linear and nonlinear optical lattices. It is
found that the domain where the solitons are stable can be
enlarged by decreasing the imaginary parts of either linear or
nonlinear lattice potentials, while the soliton stability range
shifts towards lower values of μ by decreasing the real parts
of linear lattice potentials. Thus the parameters of the linear
lattice periodic potential play an important role in controlling
the magnitude of the stability domains of lattice solitons in
such mixed linear-nonlinear optical lattices.

This work may be extended to other kinds ofPT -symmetric
nonlinear dissipative systems involving balance of gain and
losses at both the linear and nonlinear level. Our results may
find potential applications in controlling or routing light in
optical signal processing systems.
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