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We give a systematic theoretical description of homodyne detection in the case where both the signal and the
local oscillator pass through the turbulent atmosphere. Imperfect knowledge of the local-oscillator amplitude
is effectively included in a noisy density operator, leading to postprocessing noise. Alternatively, we propose a
technique with monitored transmission coefficient of the atmosphere, which is free of postprocessing noise.
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I. INTRODUCTION

Long-distance quantum communication [1,2] necessarily
deals with strong unwanted effects of the environment. In this
context, one usually compares two types of channels: optical
fibers and free space. For purposes of quantum optics, it is
important that in fibers [3] one usually deals with a stable
intensity attenuation and with strong depolarization effects.
In free-space channels [4,5], the situation is different: The
attenuation randomly fluctuates and the depolarization effect
is negligibly small.

An important method for measuring the quantum-light
characteristics is the technique of balanced homodyne detec-
tion [6,7]. In this case, the signal field is combined through
a 50:50 beam splitter with a strong coherent field, the local
oscillator. The difference of photocounts in two outputs of
the beam splitter is proportional to the field quadrature. By
applying this procedure for different values of the local-
oscillator phase, one could get complete information about the
quantum state of the signal. Particularly, one can reconstruct
the density operator in different representations [7-9].

The application of homodyne detection for long-distance
quantum communications in free-space channels meets the
problem of phase synchronization between the signal and the
local oscillator. A possible way to overcome this difficulty
could be based on the technique of the optical frequency comb
[10]. In this case, the detected signal will be randomized by the
atmosphere with respect to both the amplitude and the phase
[11]. A more traditional way to provide such a synchronization
is to derive the signal and the local oscillator from the same
source. However, in this case the local oscillator will also
be affected by the atmospheric turbulence. At least part of
this problem can be resolved by sending the signal and the
local oscillator from the same source in orthogonally polarized
modes [12]. Since the atmospheric depolarization effects
are negligible, the phase synchronization is not destroyed
in such an experiment. On the other hand, in this case
the local-oscillator amplitude randomly fluctuates due to the
atmospheric noise. As a result, the problem is how to connect
the photocount difference with the field quadrature.
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In the present paper, we consider the situation when the
signal and the local oscillator pass through the turbulent
atmosphere in orthogonally polarized modes. First, we analyze
the scheme proposed in Ref. [12]. In this case, the photocount
difference can be connected with the field quadrature by using
a certain reference value of the local-oscillator amplitude. This
is equivalent to the use of a reference transmission coefficient
of the atmosphere, for example, its mean value. This results
in a kind of noise, which is related to the postprocessing
procedure. Reconstructed with such a procedure, the density
operator may even fail to satisfy the fundamental requirement
of positive semidefiniteness, which is a serious disadvantage of
this method. To resolve this deficiency, we propose a procedure
with a permanently monitored transmission coefficient. This
renders it possible to recover the true values of the field
quadratures from the measured photocount differences. In this
case, the postprocessing noise disappears.

The paper is organized as follows. In Sec. II, we derive
an expression for the statistics of photocount differences for
the scheme considered in Ref. [12]. This result is used in
Sec. III, where the photocount difference is connected with
the field quadrature by using a fixed reference transmission
coefficient. A method based on monitoring the transmission
coefficient is developed in Sec. IV. In Sec. V, we derive input-
output relations for the normally ordered covariance matrix
and consider the effect of quadrature squeezing of the light
passing through the atmosphere. A summary and conclusions
are given in Sec. VI.

II. STATISTICS OF PHOTOCOUNT DIFFERENCES

Let us consider the experimental scenario as implemented
in Ref. [12] with the local oscillator copropagating with the
signal field in the same spatial but different polarization modes;
see Fig. 1. The half-wave plate HWP and the polarization beam
splitter PBS at the receiver prepare 50:50 field superposition
of the signal and the local oscillator as done in the standard
homodyne detection. The detectors D; and D, are used for
measuring the photocount difference An, which is applied for
further analysis.
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FIG. 1. (Color online) Scheme of homodyne detection for quantum light passing through the turbulent atmosphere as reported in Ref. [12].
The signal and the local oscillator are sent in two orthogonally polarized modes. After passing through the atmospheric channel and collection
by a telescope, homodyne detection is realized with the half-wave plate HWP, the polarization beam splitter PBS, and the detectors D, and D;.

The probability distribution of the photocount difference
An in the Heisenberg picture is given by (cf. Ref. [13])

p., = Tr[p ROM], ()

where p is the input-signal density operator and IQZ?;SY

is the noisy positive operator-valued measure (POVM) of
photocount differences. The latter,
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is expressed in terms of the POVM of photocounts,
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where : - -- : denotes the normal ordering prescription. The
coherent-state vector |re’?) represents the local oscillator of
amplitude » and phase ¢. The vacuum-state vector |0) includes
all modes of the environment. Moreover, 7 is the detection
efficiency, and N, is the mean value of noise counts caused
by stray light as well as dark counts; see Ref. [14]. The
annihilation and creation operators b; and l;j , respectively,
represent the light modes at the ith output of the polarization
beam splitter PBS. This beam splitter and the half-wave plate
can be described by the input-output relations,
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where b, and by, are annihilation operators of the signal and
the local oscillator at the input of the beam splitter.

Next, we have to include in the consideration the effect
of the atmosphere. It can be performed using the approach
of fluctuating-loss channels [11,15-18]. Let a5 and ay, be the
annihilation operators of the signal and the local oscillator,
respectively, at the sender. The corresponding input-output
relation for light passing through the atmosphere reads as

by =Tas++/1— T2¢,, (6)
l;lo = Télo + 11— Tzélov (7)

where ¢s and ¢y, are operators of the environment modes being
in the vacuum state and 7T is the atmospheric transmission
coefficient. The following properties of relations (6) and
(7) are important. First, the transmission coefficient 7 is a

random variable. Second, since the depolarization effect of the
atmosphere is negligible, the transmission coefficients in both
polarization modes are perfectly correlated and equal 7. Third,
in the considered case, the absence of the depolarization means
the absence of dephasing, and hence T can be considered as
a real random variable. Finally, the commutation rules require
that T € [0,1].

The above treatment can be easily used in Eq. (1) with
the Glauber-Sudarshan P representation [19] for the signal
density operator,

+o00
p= / d*ala) P(a){el, (8)
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where P(«) is the Glauber-Sudarshan P function of the input
signal field (at the sender) and |o) is a coherent-state vector.
Substituting Egs. (2)—(8) into Eq. (1) and taking into account
that T is a random variable, one gets
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where
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is the Husimi-Kano Q symbol [20] of the POVM of photocount
differences, where

012 = T*[r* + || & 2r Re(ae )], (11)

P(T) is the probability distribution of the transmission
coefficient (PDTC) of the atmospheric channel, I, is the
modified Bessel function. For simplicity, further we refer to
the O symbol of the POVM as the POVM.

For the purposes of balanced homodyne detection, one
usually uses a local oscillator, which is strong compared to
the signal. After transmission through the atmosphere, the
intensity of the signal is still small compared to the local
oscillator, T2 |a|> <« T?r2. The contribution of the latter can
be comparable with the noise counts, 7272 ~ N,.. Following
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the argumentation of Ref. [13], one can approximate Eq. (10)
by

1
A 1
K2 (o) = f dTP(T) _
an 0 V2r (T2 + 2Nne)

(An —2nT?*r Re[ae™?])?
2(nT?r? 4 2Nye)

xexp|:— ] (12)

Equations (9) and (12) can be directly used for evaluating the
statistics of photocount differences when both the signal and
the local oscillator pass through the turbulent atmosphere.

III. POSTPROCESSING NOISE

The next problem is to connect the photocount differences
Afi with the field quadrature,

£(p) = %{&Tew +ae7'?]. (13)

The corresponding relation is given by (see, e.g., Ref. [7]),
¢ () Afi

X(p)= ,

Y T out\/z

where 7o, is the local-oscillator amplitude scaled by atmo-
sphere losses and detection efficiency. Its real value is

Fout = T /1. (15)

However, since in the considered experiment we do not have
any information about the current value of the fluctuating
transmission coefficient 7', we can use a certain reference
value T, and set

(14)

TFout = Tref\/ﬁn (16)

Because the real value of ry, given by Eq. (15) randomly
changes in the atmosphere and deviates from its reference
value (16), the obtained quadrature value suffers from a
kind of noise, which we refer to as postprocessing noise.
For this reason, the reconstructed density operator and any
characteristics obtained from the approximate quadrature
values are, in fact, contaminated by the corresponding noise
effects.

Let us consider in more detail the effects of the postpro-
cessing noise. Based on Egs. (9), (12), (14), and (16), the
quadrature distribution in the considered case is given by

+o0
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is the resulting noisy quadrature POVM. Alternatively, Eq. (17)
can be rewritten in the Schrédinger picture as

+00
P 9) = / P Py (@KTx(g)ial,  (19)
—0oQ
where
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is the noisy P function of the detected signal, and A, = % +

% is the Laplace operator in phase space. Equation (21)
can be considered as the quantum-state input-output relation,
where the noisy density operator, represented by the P
function, is affected by (i) fluctuating losses due to the
signal transmission through the atmosphere, (ii) detection
losses and noise counts, (iii) postprocessing noise caused by
imperfect knowledge of the transmission coefficient. Any re-
construction of the density operator using homodyne-detection
data, obtained from Eq. (14) together with the approximation
(16), will yield the noisy quantum state (21). Similarly, any
characteristics obtained from such quadratures also correspond
to the noisy density operator.

As follows from Eq. (21), the contribution of noise counts
in the considered scheme can always be made negligible by
choosing a sufficiently strong local oscillator. In this case, the
quantum-state input-output relation reduces to

1 T2 T2 _ T2
Pnoiq — dT T ref ref Aa
(@) /0 P it exp|
T;
% P (Tzrjﬁ a) . (22)

This equation can be interpreted as the input-output relation
of a fluctuating-loss channel (cf. Ref. [11]) with the effective
transmission coefficient
TZ
Tot = —. (23)
¢ Tref
Additionally, the measurement procedure suffers from a kind
of effective noise counts whose mean value is
_ T? -T2

ref
Negr ~ T (24)

ref

However, the upper bound of T is not restricted anymore
by the value 1. Similarly, N may take negative values.
As a result, the noisy density operator obtained by using
Proisy(@) in Eq. (8) may fail to obey the requirement of
positive semidefiniteness. Such an unusual result simply
reflects quantum physical inconsistencies of the method of

data postprocessing under consideration.
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We consider an illustration of this fact for a single-photon-
added thermal state (SPATS). This state is obtained from the
single-mode thermal state with the mean photon number 71y,
by adding a photon by using parametric down-conversion. The
corresponding P function,

1 e
— (1 + Aplal —fgle ™, (25)
th

lo2

P(a) =

is regular, which allows its experimental reconstruction [21].
We also assume that fluctuating losses are caused by beam
wandering only; see the appendix. This results in log-negative
Weibull distribution for the PDTC [cf. Eq. (A1)].

For a consistent positive-definite density operator, the
diagonal elements in the Fock-number basis, that is, photon-
number distribution, should be always nonnegative. This
distribution can be reconstructed from the homodyne-detection
data; see Refs. [7,22]. In the strong-turbulence regime, the
postprocessing noise may result in negative values of the
photon-number distribution; see Fig. 2(a). However, such
fake effects can be substantially reduced in the case of weak
turbulence; see Fig. 2(b).
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FIG. 2. (Color online) Photon-number distribution (diagonal el-
ements of the effective density operator) for the SPATS with ny, =
1.11 (such as realized in Ref. [21]) disturbed by beam wandering
for the scheme with unmonitored transmission coefficient. In the
corresponding turbulence model, cf. the appendix, the beam-spot
radius, W, on the receiver aperture of radius a is W = 0.9a, and
the standard deviations of beam deflection are (a) o = a (strong
turbulence) and (b) o = 0.5a (weak turbulence). The correspond-
ing reference transmission coefficient is Tyt = 1/(T?) ~ 0.586 and
Tt = +/(T?) ~ 0.822, respectively. For both cases, we use the
detection efficiency n = 0.5. Negative probabilities demonstrate fake
effects caused by imperfect postprocessing.

PHYSICAL REVIEW A 85, 013826 (2012)

IV. MONITORED TURBULENCE

In order to exclude unwanted and fake effects of the
postprocessing noise, we propose to modify the scheme in
Fig. 1. For this purpose, the signal and the local oscillator
can be split, and a part of the local oscillator can be used for
monitoring the current value of the transmission coefficient;
see Fig. 3. In the most general case, the monitoring will
also be affected by different kinds of noise, for example by
the shot noise of the detector D3. In terms of the previous
section, this means that the value 7i.r can now be replaced by
the measured transmission coefficient Tj,e,s, Which randomly
fluctuates and correlates with fluctuating values of 7. The
corresponding noisy density operator is obtained similarly to
Eq. (21). However, the PDTC must now be replaced with the
joint PDTC P(T,Tyas) and integrated over both variables T
and Tineas- The joint PDTC can be given as

P(T, Tincas) = P(T) P(Timeas| T), (26)

where P(Tieqs|T) is the probability distribution of the mea-
sured transmission coefficient under the condition that its real
value is T'. This implies that the input-output relation for the
considered experimental scheme reads as

1 1 T2
Pnoisy(Ol) = / dT / dTmeas P(T) P(Tmeas | T) ]zn_4eas
0 0 n

(55 )
X exp
8Trr21eas 4|R2|2r2Tn21easn ¢

P < Tmeas (1) i (27)
T2 /1

where R, is the reflection coefficient of the beam splitter BS,.
Let us consider the situation when the noise of monitoring
is caused by the shot-noise of the detector Ds. In this case, the
detected number of photocounts 73 is related to the measured
transmission coefficient Tiess as n3 = r2n,|Ta|* T2, + M.
Here 7, and Nj are the efficiency and the mean number of
noise counts of detector D3, respectively; 75 is the transmission
coefficient of the beam splitter BS,. The measured transmis-
sion coefficient Tjeqs 1S thus obtained from the number of

photocounts n; via

1 n3—]V3

T2 (n)= ——r
: }’2|T2|2 773

meas

(28)

Since detector D3 records a fraction of the local oscillator, n,
obeys the Poissonian statistics

2 272 \, )
(773” I2I°T” + N3) 36_77372\T2|2T2—N3,

n,!

pn,|T) = (29)

This is the probability to get the photocount number 73,
conditioned on the value T of the transmission coefficient.
The conditional PDTC P(Tjneas|T) is obtained, by trans-

forming random variables n3 — Ti,e,s and using Eq. (28), in
the form

+00
P(Teas| T) = Z P(n3 |T)8[Tmeas — Tmeas(ng)]- (30)

ny=0
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FIG. 3. (Color online) Homodyne detection of quantum light passing through the turbulent atmosphere with monitoring the transmission
coefficient. The signal and the local oscillator are sent in two orthogonally polarized modes. After passing through the atmospheric channel
and collection by a telescope, the signal and the local oscillator are split by the polarization beam splitter PBS. A part of the local oscillator
transmitted through the beam-splitter BS, is used for monitoring the transmission coefficient with the detector D3. Another part, after setting
the needed phase by the phase modulator PM and conversion of the polarization direction by the half-wave plate HWP, is combined with the
signal on a standard homodyne detector, which consists of the 50 : 50 beam splitter BS, and two photodetectors D; and D,.

From this distribution, the conditional expectation value E of
T2 is found to be equal to T2,

meas

E(Tess|T) = T7. (31)
The corresponding conditional variance reads as
T? N
Var(72,,,|T) 2 (32)

= + S
mIT2r: - 2Tt

Equations (31) and (32) yield the relative error of T2,

Var Tnzleas|T) 1 + ]\73
E(Tr%eas|T) UB |T2|2 T?r2 7732 |T2|4 T4r4'
(33)

From this expression, it follows that for the measurement of
T? with the relative error € one has to use the local-oscillator

amplitude
: ,/] +,/] + €2N.
r=——/= — 4+ €2Ns.
Tl \/ne\ 2 4

Hence a problem of monitoring appears for tiny 7 values, for
which the value of the local-oscillator amplitude should be
really large. However, for this domain the signal is of poor
quality anyway. We can choose a minimal value T, of the
transmission coefficient 7 and postselect the values T > Tyi,.
Based on this assumption, Eq. (30) with the relative error € for
T2 reduces to

(34)

P(TmeaslT) = 8(T - Tmeas)v (35)

in which connection the local-oscillator amplitude should be
chosen according to Eq. (34) with T = T,,;,. Under these
conditions, the shot noise error of detector D3 becomes small.

Utilizing the §-function form (35) for the conditional PDTC
in Eq. (27), one gets

P noisy (Ol)

—/ldTP(T)e Moe A | Lop(®
~Jy Plarprery o \Tym)
(36)

The effect of noise counts can be omitted if the local-oscillator
amplitude obeys the condition

2 Ny

re>> RPTZ (37
In this case, the input-output relation (36) reduces to
Paoisy (@) = / TP ——p (L) . 06)
0 T°n \Tn

which appears to be similar to the case of an independently con-
trolled local oscillator (cf. Ref. [11]). However, an important
difference is that this relation does not contain phase noise of
the signal after passing through the turbulent channel. It is also
worth noting that the §-function form of the conditional PDTC
(35) excludes the postprocessing noise of the measured data.
For this reason, no fake quantum effects appear in Eqgs. (36)
and (38).

As in the previous section, we illustrate the method with the
single-photon-added thermal states [cf. Eq. (25)]. Besides, we
suppose that this state is displaced with the coherent amplitude
y (cf. Ref. [11]) such that its P function is
1 _ e
3 [+ am)le —y|” — Amle ™ .
i

P(a) = (39)
As has been shown in Ref. [11], increasing the displacement
amplitude y results in diminishing the nonclassicality in the
scenario when the signal and local oscillator are radiated from
different sources. It turns out that this rule does not apply in the
considered case. The absence of phase fluctuations in input-
output relation (38) lifts strong restrictions for the coherent
amplitude of nonclassical states considered in Ref. [11]. The
quantum state in this case may preserve its nonclassical
properties. In Fig. 4, we show the P function for the scenario
with the monitored transmission coefficient. It is clearly seen
that the state is still nonclassical even for large values of the
coherent displacement amplitude y .

V. QUADRATURE SQUEEZING

Quadrature squeezing is a remarkable property of quantum
light, which can be observed by homodyne detection. In this
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FIG. 4. (Color online) P function of the displaced SPATS for
Ima = 0, with ng, = 1.11 (such as realized in Ref. [21]) and different
values of y, disturbed by beam wandering and detected with
monitored transmission coefficient. In the corresponding turbulence
model (cf. the appendix), the beam-spot radius, W, on the receiver
aperture of radius a is W = 0.94, and the standard deviation of
beam-deflection is ¢ = 10a. The detection efficiency is n = 0.5.

section, we consider how the disturbance of the signal and
the local oscillator by the atmosphere affects the detection of
quadrature squeezing. We consider two orthogonal quadra-
tures [cf. Eq. (13)] for a certain value of the local-oscillator
phase ¢,

X = X(e), (40)
b4
x2=£<<p+—>. @1)
2
A well-known relation,
(AX;AX)) = 5,, + (0 A% A% ), 42)

i,j = 1,2, connects the covariance matrix with its normally
ordered form. If a diagonal element (variance) of the latter
becomes negative for properly chosen ¢, the state is quadrature
squeezed.

Let us first consider the case with monitored transmission
coefficient; see Sec. IV. Based on Eq. (36), we can write the
input-output relation for the covariance matrix,

(t AR AX} Dnoisy = N{T(: AZ AR 2) + n{fi) (£ (AT?)
Noo(T72)

43
nr2| Ry|? @)

The first term of this relation resembles the standard attenua-
tion. The second term is caused by the atmospheric turbulence.
The third term of the equation describes the disturbance effect
of noise counts on the quadrature squeezing.

The contribution from noise counts disappears for a suffi-
Nnc
R

to large contributions of events with small 7', the value of (T ~2)
canbe really large. For example, if fluctuating losses are caused
by beam wandering (cf. the appendix and Ref. [16]), this term
is infinite. In practice, however, the measured transmission
coefficient is bounded by its minimal value Ti,,. This implies

ciently strong local oscillator when 2> fetl_") ) However, due

PHYSICAL REVIEW A 85, 013826 (2012)

that the third term of Eq. (43) becomes negligible for the
local-oscillator amplitude satisfying condition (37).

It is readily seen from the second term of Eq. (43) that the
disturbance effect of the turbulence on the quadrature squeez-
ing increases with increasing mean value of the quadrature
(%:). This means that states with a small coherent amplitude
have better chances of preserving this nonclassical property.
For the states with (£;) = 0, the squeezing of the ith quadrature
is disturbed in the same way as for standard attenuation.

Next we consider the case of unmonitored transmission
coefficient; see Sec. III. The corresponding input-output
relation for the covariance matrix is obtained from Eq. (21)
and reads as

<: AjetA)%j :)noisy = r/(Teff>( Axl ij > + 770@)( ><ATeff)
< eff) 1 Nnc
+ < 7 e

ref

) 8., (44

where T is given by Eq. (23). In contrast to the case
of monitored transmission coefficient, the third term in this
equation does not disappear even in the case of weak noise
counts.

The postprocessing noise may result in such an effective
covariance matrix that the corresponding density operator
is not positive semidefinite anymore. This means that the
Heisenberg uncertainty relation,

<A'£12)noisy <A£§)noisy 2 4_11’ (45)

is not satisfied; see Fig. 5. When the real transmission coef-
ficient appears to be much less compared with the reference
transmission coefficient T.¢, the negative effective noise [cf.
Eq. (24)] leads to such a nonphysical squeezing.

The covariance matrix completely characterizes quantum
states in the Gaussian approximation. They can be used, for

Product of noisy variances

0.0 0.2 0.4 0.6 0.8 1.0
Reference transmission coefficient, T,q¢

FIG. 5. (Color online) Product of noisy variances,
(Aif)noisy(Aizz)noisy, vs the reference transmission coefficient,
T:et, for the scheme with unmonitored turbulence. The solid (dashed)
line corresponds to the vacuum state (8-dB squeezed vacuum state)
at the transmitter. We suppose that fluctuating losses are caused by
beam wandering with the standard deviation of beam deflection
o = 40a and with the beam-spot radius W = 0.95a, which leads to
35-dB mean losses. The detection efficiency is n = 0.5. The shaded
area corresponds to the violation of the Heisenberg uncertainty
relation.
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example, for continuous-variable protocols of quantum-key
distribution with coherent and squeezed states [23]. Evidently,
in order to get a consistent effective density operator in
this approximation, one should use an appropriate reference
transmission coefficient T..¢. This means that the effect of the
postprocessing noise may preserve consistency of the noisy
density operator even in the case of using the scheme with
unmonitored transmission coefficient.

VI. SUMMARY AND CONCLUSIONS

Homodyne detection of quantum light passing through
the turbulent atmosphere with the local oscillator sent in
the orthogonally polarized mode is a promising technique
for long-distance quantum communication based on contin-
uous variables. In this connection, a problem appears of
how to connect a measured photocount difference with the
field quadrature. Indeed, when the receiving local-oscillator
amplitude is a fluctuating variable, this question is not trivial
anymore. We consider two possible solutions for this problem.
One possibility could be based on some reference value for
the local-oscillator amplitude transmission coefficient (e.g.,
its mean value). Alternatively, here we proposed a method
based on the monitoring of the transmitted local oscillator with
the aim of having control over the fluctuating transmission
coefficient of the turbulent atmosphere. In both cases, the
quantum state of the received light can be characterized by
a noisy density operator, which includes also information
about shortcomings of the measurement and postprocessing
procedures of the used methods.

When the local-oscillator amplitude (and thus the trans-
mission coefficient) is monitored, the main limitations are
caused by stray-light and dark-count noise. These effects
can be, in principle, eliminated by a sufficiently strong local
oscillator and the postselection of events with an appropri-
ately chosen threshold value of the transmission coefficient.
In the simpler procedure, using a fixed reference value
of the local-oscillator amplitude, the shortcomings caused
by the resulting postprocessing noise are much more dramatic.
The resulting disadvantages cannot be eliminated anymore. In
such a scenario, the noisy density operator may even violate the
fundamental requirement of positivite semidefiniteness. Thus
fake quantum effects may occur due to the used postprocessing
procedure. However, even based on this technique one may
obtain a consistent noisy density operator in the Gaussian
approximation, provided that the reference transmission co-
efficient is properly chosen. We believe that these methods
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may be of some interest in the context of continuous-variable
quantum key distribution.
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APPENDIX: PDTC FOR BEAM WANDERING

Here we remind readers of some results of Ref. [16], in
particular the explicit form of the PDTC when the fluctuating
losses are caused by beam wandering. If the beam is randomly
deflected around the aperture center according to a two-
dimensional Gaussian distribution with the variance o2, the
PDTC is given by the log-negative Weibull distribution,

P(T) 2R° 21 D - L 2fom Do :
= n— exp| — — n—
2T T Pl 7252 T

(A)

for T € [0,T)] and O else. Here the parameters Ty, A, and R
are expressed in terms of the beam-spot radius at the aperture
W and the aperture radius a,

612
TO = 1— exXp [—ZW},

o ew[ 4Bl
WL —exp[ — 4 Jo(47)

y [m ( 215 )T (A3)
L—exp [ — 435 lo(447)

()]
R=al|ln . ~ . (A%
I —exp [ — 4l (447)

In the case when the turbulence is weak and the beam is
focused on the aperture, the beam-deflection variance can be
approximately evaluated as

(A2)

02 ~ 1.919 C223 2 W)~ 13, (A5)

where C? is the index-of-refraction structure constant, Wy
is the beam-spot radius at the radiation source, and z is
the distance between source and receiver aperture [5,24].
Integration with the PDTC P(T) must be performed in the
Lebesgue sense with respect to the measure d[R(2 In %)%].
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