
PHYSICAL REVIEW A 85, 013825 (2012)

Ultralow Raman lasing threshold and enhanced gain of whispering gallery modes
in silica microspheres

Mikhail Jouravlev, Daniel R. Mason, and Kwang S. Kim
Center for Superfunctional Materials, Department of Chemistry and Department of Physics, Pohang University of Science and Technology,

Pohang 790-784, Korea
(Received 25 February 2010; published 19 January 2012)

Remarkable demonstrations of a cavity-induced giant reduction of the Raman lasing threshold in silica
microspheres have been reported in Spillane et al. [Nature (London) 415, 621 (2002)], yet a complete quantum
electrodynamics (QED) treatment of this process including the rigorous expressions for the electromagnetic
modes of the sphere is lacking. In this paper, we employ a cavity QED approach to describe Raman lasing
in microscopic spherical dielectric resonators with third-order nonlinearity to derive explicit expressions for
the Raman gain and lasing threshold in terms of mode-overlapping coefficients determined from full analytic
expressions of the electromagnetic eigenmodes of a dielectric sphere. We present dependencies of the Raman
lasing threshold on the the order n of overlapping whispering gallery modes for microspheres with diameter
in the range 20–35 μm, demonstrating ultralow thresholds of between 70 and 90 μW, consistent with recent
experimental results. We explain the reduction of the lasing threshold as due to an increase in the overlapping
coefficients as the mode order is increased toward the regime where the modal energy is mostly confined to the
surface region of the resonator. The presented theory can be easily generalized to any microcavity of regular
morphology and for any combination of interacting whispering gallery modes.
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I. INTRODUCTION

Optical resonators and cavities with a very high quality
factor (Q factor) have attracted significant interest as a testing
ground for numerous fundamental quantum and nonlinear
optical phenomena, as well as for a range of potential
applications including single molecule detection and ultralow
threshold laser cavities [1,2]. The ability of a resonator to trap
photons for a duration spanning many optical cycles allows
the study of coherent single atom-photon interactions, and can
drastically modify the relaxation time of embedded atomic
emitters. The dielectric spherical resonator is well known to
have one of the highest Q factors out of any optical resonator
due to the excitation of whispering gallery modes (WGM) [3]
that are strongly confined near the resonator surface by total
internal reflection [4].

One of the cavity-enhanced optical processes that has
received significant attention is stimulated Raman scattering
(SRS) and Raman lasing [4]. In SRS, a fraction of the energy
of an optical pump is frequency shifted into a neighboring
spectral region due to Raman scattering by atoms or molecules
in the cavity. If the spectral region coincides with a resonant
frequency of a cavity mode, the energy at the shifted frequency
can occupy the mode (which is called a Stokes or anti-Stokes
mode). Lasing occurs when the usual threshold condition is
satisfied as the power of generation of the Raman shifted wave
matches its losses from the cavity. Aside from a cavity-induced
lowering of the Raman lasing threshold, of particular interest is
that the shifted frequency may lie in a spectral range difficult to
obtain in conventional semiconductor cavities through band-
gap engineering. In this regard, dielectric microspheres stand
to provide a new generation of highly compact and efficient
laser sources in spectral regions usually difficult to access.

Numerous experimental demonstrations of the lowering
of the SRS threshold in microresonators including silica

microspheres [5], toroid microcavities [6,7], and spherical
liquid microdroplets [8] have been attributed to cavity quantum
electrodynamic (QED) effects [9,10]. These include a Purcell
factor modification of the Raman transition rate of atoms
in a cavity compared to in the bulk, and a Rabi frequency
modulation of the Raman transition that governs the lasing
threshold in cavities of very high Q factor [4].

Kippenberg et al. [6,7] have developed a semiclassical
theory of SRS based upon coupled mode equations for the
pump and Stokes electric field amplitudes. The intensity-
dependent Raman gain is accounted for through an effective
gain parameter that includes a mode-overlapping coefficient
describing the spatial overlap of the pump and Stokes modes.
Yet further physical insight is gained from a full quantum
treatment where both the electromagnetic field and the molec-
ular levels are quantized. For example, Wu et al. [4,11,12]
developed a general QED theory of microcavity-enhanced
Raman gain in the strong-coupling regime where the frequency
linewidth of the Raman excitation is much larger than the
linewidth of the cavity resonance. They considered only a
single mode of the cavity to be occupied by a Stokes mode,
and coupling between the Stokes mode and the pump is
accounted for by an overlapping coefficient. In Ref. [4] they
considered the specific case of Raman lasing of molecules
in a � configuration in a spherical dielectric resonator with
the pump and Stokes waves occupying separate modes of
the cavity. They provide explicit expressions for the lasing
threshold in terms of the cavity Q factor and cavity radius via
a Rabi frequency that takes into account the finite linewidth of
the Raman transition.

While these approaches have provided excellent physical
insight into the Raman lasing process in microcavities,
including quantitative dependencies of the lasing threshold on
the cavity Q factor, Raman linewidth and pump-Stokes mode
coupling coefficients, they do not explicitly take into account
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the full nature of the electromagnetic modes of the cavity or
the nonlinear dielectric permittivity. In this regard, no insight
is gained into how the lasing threshold depends on the order
of interacting WGMs nor how to relate the lasing threshold to
material parameters usually considered in optics. Therefore, in
Ref. [13], a QED theory of Raman amplification in spherical
dielectric cavities was developed starting from the interaction
Hamiltonian explicit in the nonlinear dielectric permittivity
(both second- and third-order nonlinearity were considered)
and the electromagnetic modes of the sphere (from Mie theory
[14]). While expressions were derived for the Raman lasing
threshold in the strong-coupling regime in terms of the nonlin-
ear dielectric permittivity and mode-overlapping coefficients,
this study was limited to the overdamped regime, where the
Rabi frequency of the Raman transition is much less than the
rate of energy decay from the cavity; corresponding to Q fac-
tors in the range 104–107. Furthermore, in Ref. [13], calcula-
tions were specific to a second-order nonlinearity of the cavity.
In the case of ultrahigh Q factor (108–1011), the Rabi frequency
is commensurate or much greater than the cavity decay rate,
which is a likely condition in those experiments where ultralow
Raman lasing threshold is observed (e.g., Spillane [2]).

In this paper we present a general QED theory of the SRS
process in dielectric resonators in the strong-coupling and un-
derdamped regime, where the Rabi frequency is commensurate
or greater than the cavity decay rate. Raman scattering in
the cavity is described as a two-photon process of interaction
with three-level molecules of a � configuration, expressed
through a third-order nonlinearity [15]. Our starting point is
the associated Hamiltonian of third-order nonlinear interaction
between the pump and Stokes modes. Explicit expressions are
derived for the Raman lasing threshold and gain in terms of the
cavity Q factor, decay rate, Raman linewidth, and the mode-
overlapping coefficients. We provide calculations specific to
spherical dielectric resonators which include evaluation of the
rigorous expressions for the electromagnetic modes of the
sphere. Specifically, the dependence of the lasing threshold
on the mode order n is presented, which shows a decreasing
lasing threshold as n is increased toward the regime where
the pump and Stokes modes are mainly confined near the
resonator surface. We predict ultralow thresholds of Raman
lasing between 70 and 90 μW, consistent with previous
experiments Ref. [5].

II. NONLINEAR WGM INTERACTION

We consider a cavity to be uniformly doped with three-level
atoms of a � configuration that facilitate the interaction
between separate whispering gallery modes (WGM) occupied
by the pump and (anti-) Stokes fields [11,12], the latter
corresponding to a (positive) negative Raman frequency shift
of the pump. Occupation of a WGM by the pump is achieved
through, say, fiber coupling with a resonant incident beam,
while occupation of a separate WGM by the Stokes field
requires that the Raman transition bring it into the frequency
range of the corresponding cavity resonance. The Hamiltonian
for the third-order nonlinear interaction between the WGMs
in the cavity is given by Ref. [16]

Hsp = χ (3)
sp (Es · Ep)2, (1)

where χ (3)
sp is the third-order nonlinear susceptibility that is

uniform in the cavity, and we assume that the cavity is
embedded in a uniform linear dielectric with χ (3)

sp = 0. Es(r)
and Ep(r) denote the electric fields of the pump and (anti-)
Stokes modes. Hereafter the subscripts s and p refer to the
(anti-) Stokes and pump modes, respectively, and we simply
refer to Stokes modes without loss of generality.

The pump and Stokes modes at frequencies ωs,p are
quantized upon replacing the cavity eigenmodes Es,p(r,t) by
their corresponding quantum mechanical operators:

Es,p(r,t) = −i

(
h̄ωs,p

2εs,p

)1/2 [
a+

s,p(t) − as,p(t)
]

Es,p(r), (2)

where a+
s,p(as,p) are the creation (annihilation) operators of

photons occupying the s and p modes; Es,p(r,t) are the
normalized eigenfunctions of the spherical cavity [14] (see
Appendix A). Substituting (2) into Eq. (1) we obtain the
Hamiltonian for coupling between the pump and Stokes modes
[11]:

Hsp = h̄{Sspapa+
s + H.c.}. (3)

Here H.c. denotes Hermitian conjugation, and

Ssp = ts tp(ωsωp)1/2χ (3)
sp Bc(ωs,ωp)(2)−1(εsεp)−1/2 (4)

is the integral coefficient of the Stokes-pump mode overlap-
ping. εs,p is the linear dielectric permittivity of the cavity (we
may assume that εs = εp), ts,p are the amplitudes of the cavity
modes obtained from the Mie theory [14], and Bc(ωs,ωp) is
the mode overlap integral taking the form [17],

Bc(ωs,ωp) =
∫
V

[E∗
p(r) · Es(r)]2dr∫

V
|Es(r)|2dr

∫
V

|Ep(r)|2dr
, (5)

where V is the cavity volume.
The electromagnetic energy loss from the cavity due to

phonon-photon interactions is included in the Q factors (as a
continuum model) by classical means [14,18].

The general photonic state in the cavity is |ψ〉 =∑
ns ,np

Cns,np
|np,ns〉, where |np〉 (|ns〉) represents the state

corresponding to np (ns) photons in the pump (Stokes) mode.
We consider that the interaction occurs only in pairs consisting
of one pump mode and one Stokes mode, and allow for the
possibility that a number of Stokes modes may be excited
due to the finite frequency width of the Raman transition �.
Furthermore, we consider that only a single pump mode is
excited by coupling with an incident laser beam of frequency
ωp. We seek the coefficients (Cnp

) and (Cns
) of the eigenstates

corresponding to a photon occupying the pump mode or
a Stokes mode, respectively. Similarly to in Ref. [12] the
Schrödinger equation with Hamiltonian Eq. (3) is integrated
according to the Wigner-Weisskopf method [19] to obtain the
set of linear differential equations:

ih̄
dCp

dt
=

∑
{s}

H ∗
spCs exp[i(ω − ωs)t],

(6)

ih̄
dCs

dt
= HspCp exp[−i(ω − ωs)t],

where the sum over {s} is a summation over all of the excited
Stokes modes. We consider now the limit that all of the excited
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Stokes modes in the cavity except one contribute a negligible
fraction of the total energy in the cavity (see Ref. [13]). Thus,
retaining only a single Stokes mode s in the summation and
integrating Eq. (6) we obtain

dCp

dt
= −

∫ t

0

∫ ∞

0
〈HspH ∗

sp〉Cp(t ′)
(7)

L(ωs − ω,γs) exp[−i(ωs − ω)(t − t ′)]dωdt ′,

where 〈HspH ∗
sp〉/h̄2 = np(ns + 1)S2

sp, γs is the Stokes mode
linewidth in the cavity, L(ωs − ω,γs) is a Lorentzian centered
at ωs that describes the density of the Stokes mode in the
frequency domain γs [19]. The initial condition is Cp(t =
0) = 1.

We consider the situation where � > γs which holds for a
cavity with high Q factor (108∼1011), that of � < γs applying
to the bulk or a low Q-factor cavity. We make the assumption
that the mode order n of the WGM occupied by the pump
and Stokes modes are large such that the electromagnetic
energy is mainly concentrated at a thin surface layer of the
microspheres (see below and Fig. 3; this regime corresponds to
large WGM overlapping coefficients). Furthermore, the mode
density of each WGM has been assumed to be described by
a Lorentzian [19]. The probability of Raman events in the
strong-coupling regime (� � γs) is obtained by integration
of Eq. (7) over the cavity linewidth γs (Refs. [11,12]) to
give |C(t)|2 	 exp(−ps,1,2t), where ps,1 and ps,2 are the roots
of the following secular equation: ps,1,2(ps,1,2 − γs) + βs = 0
and βs = np(ns + 1)S2

sp. When βs � (γs/2)2 we have ps,1,2 =
γs/2 ± iβ

1/2
s , the imaginary part corresponding to oscillation

of the rate of Raman events at the Rabi frequency [11,12]:

|ps,2| = (βs)
1/2. (8)

When (γs/2)2 � βs , ps,1 is real and the rate of Raman
events is exponentially decaying at the inverse time constant
|ps,1| = βs/γs . To realize Raman lasing in the cavity, the
corresponding rate ps,1,2 should be commensurate with the
cavity decay time constant τR = γ −1

s , whereas for the bulk we
take the decoherence time for the effective two-level Raman
active molecule τR = �−1. Taking into account the definition
of Q factor as the loading Q factor of the sphere coupled to the
pump [3,18,20], the number of photons occupying the pump
and Stokes mode is given by

np,s = Ip,sQp,sσp,s/
(
h̄ω2

p,s

) = PQp,s/
(
h̄ω2

p,s

)
, (9)

where Ip,s is the pump intensity in W/cm2, P is the pump
power in W, σp,s are the extinction cross sections of the p,s

eigenmodes [14,21], and (Qp,s) the Q factors of the pump and
Stokes modes, respectively.

Taking into account the linear dependence of the energy
losses of each mode of the cavity for the whole Raman lasing
decay rate, we have �c = β

1/2
s γcL(ωs − ωp,γc). Indeed, in

the limit of high-order WGM, neighboring Stokes modes are
almost completely frequency overlapping with mode s and
may be excited by the pump. The factor γcL(ωs − ωp,γc)
where γc is the linewidth of the cavity, gives the approximate
number of modes in the range ωs − ωp that are excited. The
total decay rate is then retrieved by multiplying the decay
rate of a single Stokes mode s by the total number of WGMs

excited by the Raman transition (where we have made the
assumption that γc ≈ γs). To obtain the dependence of decay
rate on the pump intensity in the limit ns � 1, we consider the
conservation of the energy of photons: ωpnp + ωsns = ωpn0

where n0 is the initial number of photons. The conservation
condition for the number of photons is obtained from the
Manley-Rowe equation, γpnp = γsns . After some algebraic
manipulation and in the limit of γs < γp, using Eq. (9), we can
estimate the decay rate of SRS in the cavity:

�c =
(

IpQpσp

h̄ω2
p

)
(γpγs)1/2(
1 + ωsγp

ωpγs

)SspL(ωs − ωp,γs). (10)

Using Eq. (8), the threshold condition for Raman lasing in the
cavity is [3,4,11]

(βs)
1/2 = γs. (11)

The imaginary part of the decay rate describes the Raman
lasing gain with the modulation frequency �M = (βs)1/2.

Taking into account Eqs. (9)–(11) for the threshold power
of Raman lasing, we have

P st
th = h̄ω2

p

Qp

(
γs

γp

)1/2
γs

Ssp

(
1 + Qs

Qp

)
. (12)

III. CAVITY-ENHANCED GAIN OF WGM RAMAN LASING

The Raman gain in the cavity and bulk is Gc = nth,c
s /Lc

eff

and Gb = nth,b
s /Lb

eff , respectively, where L
c,b
eff is the effective

length of photon transport, and nth,c
s and nth,b

s are the threshold
photon numbers in the Stokes mode of the cavity c and
bulk b, respectively. Raman lasing in the bulk must obey
the threshold condition: � = nth,b

p (nth,b
s + 1)ρ0Vb(Sb

sp)2, which
characterizes the lifetime of photons in Stokes modes of the
bulk, where ρ0 is the bulk density of modes in the volume
Vb [19]. Sb

sp denotes the perfect coupling in a large cavity or
bulk and accounts for the optimal spatial overlapping between
the input pump laser light and the Stokes mode. The integral
coefficient of the mode overlapping is Bb

sp = 1 in a bulk
medium. From Eqs. (8) and (11) we obtain the threshold
condition which provides the relation between nth,c

s and nth,b
s ,

thus the relative gain for Raman lasing is given by

Gc

Gb

=
(

�

γs

)2
Qs

ωsρ0Vb

(
Sc

sp

Sb
sp

)2

. (13)

This expression describes the relative cavity enhancement of
the Raman gain compared to the bulk. The relative gain in
terms of the density of cavity modes relative to the bulk Dc =
L(ωs − ωp,γs) is [19]

Gc

Gb

=
(

�

γs

)2
Dc

ρ0Vb

[Bc(ωs,ωp)]2. (14)

This expression demonstrates that the enhancement is linear in
Dc, and proportional to the square of the integral coefficients of
spatial overlapping of the pump and Stokes modes Bc(ωs,ωp)
and the square of the frequency overlapping factor (modified
Yokoyama-Brorson’s factor [22]) �/γs . The concentration of
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Raman active molecules N in the cavity can be obtained
from N = Gcσ

−1
M , where σM is the molecular extinction cross

section [14]. The extinction cross-section coefficients of the
microcavity depend on both its material and morphological
parameters. The enhancement factor is inversely proportional
to the density of states of the Raman modes in the cavity
(� � γs). For the photon spectrum of WGM Raman lasing
see Appendix B.

IV. RESULTS AND DISCUSSION

Here we present calculations specific to dielectric spherical
microspheres. To place our results in context with recent
experimental work, we start by estimating the mode index
n of WGM excited by the coupling fiber in Refs. [5,7] as
given by ρ = 2πr/λp ≈ n [21] where r is the radius of the
sphere, λp is the wavelength of the pump, and ρ is called
the size parameter. Taking into account that the pump laser
wavelength is λp = 1.55 μm and r ≈ 20–35 μm we have that
the range n of the WGM is approximately 84–147, and is the
range of interest of n in our calculations. Further, the material
parameters of the sphere are taken to be ε

1/2
s,p = 1.44 − i10−7

and χ (3)
sp = 1.4 × 10−14 [23], and the pump of wavelength

λp = 1.55 μm is assumed to have a line width of 300 kHz.
The laser pump central frequency is considered to be scanned
repeatedly through a range of 	60 GHz around the resonance
frequency of a single WGM with mode index n. Figure 1
shows the dependence of the power threshold of Raman
lasing on the pump-Stokes mode interacting combination
T Mn − T Mn−1 for radii of the sphere equal to (a) 20 μm
and (b) 35 μm (Ref. [5]). The main interest in Fig. 1 is
the extremely low threshold power for the interacting WGMs
with mode numbers 80 � n � 160. We see from Fig. 1 that
for a microsphere radius of 20 μm that the threshold power
of stimulated Raman lasing [Eq. (12)] decreases from 90 to
70 μW in the range 85 � n � 110. For a microsphere radius
of 35 μm (Figs. 1 and 2) the calculated threshold power P st

th
of Raman lasing for 125 � n � 160 is 150 − 50 μW, while

FIG. 1. Threshold power Pth of stimulated Raman lasing of over-
lapping modes T Mn − T Mn−1 with the radii of silica microsphere
(a) 20 μm and (b) 35 μm. T Mn is the resonant pump mode. The
refractive index of the silica microspheres is assumed m = ε1/2

s =
1.44 − i10−7 throughout.

FIG. 2. Gc/Gb versus n for mode combinations: (1) T Mn −
T M∗

n and (2) T Mn−1 − T Mn. The radius of the microsphere is
r = 35 μm. (Inset) Threshold of the stimulated Raman lasing versus
diameter of the silica microsphere for WGM interaction combina-
tions: (1) T Mn − T M∗

n , (2) T Mn−1 − T Mn, (3) T Mn−2 − T Mn, and
(4) T Mn−3 − T Mn for n = 140.

that for 110 � n � 120 is ∼150 μW, the former range of n

giving good agreement with the measured threshold power in
Ref. [5].

In Fig. 2 we present the Raman lasing gain in the cavity
relative to in the bulk [Eq. (14)] as a function of the
mode index number n for two different mode-overlapping
combinations T Mn − T M∗

n (where ∗ denotes nondegeneracy
of the eigenmode [21]) and T Mn−1 − T Mn for a micro-
sphere of radius r = 35 μm. One can see that the relative
gain grows within the mentioned range of n (Fig. 2) due
to a dramatic increase of the mode-overlapping coefficient
Bc(ωs,ωp) (Fig. 3). It is remarkable that the relative gain
Gc/Cb can exceed 102 and higher. In the limit of very large n,
the Stokes mode and the pump mode become almost identical,
ensuring the largest mode overlap. In the inset of Fig. 2 we
present the dependence of lasing threshold on the diameter of
the sphere for a number of different mode interaction combi-
nations. This figure demonstrates a reduced lasing threshold as
the interacting modes correspond to a more similar mode order
n and an associated increased mode-overlapping coefficient.
The reduction of the lasing threshold with a decreasing
diameter of the sphere is easily explained due to an increase
in Q factor of the pump and Stokes modes as the cavity size is
reduced.

Another feature to be mentioned is that the threshold and
gain curves are characterized by a steplike behavior. It is
thought that these steplike features are related to the selection
rules of interaction of the modes of the sphere (see, e.g.,
Ref. [13]) which separate regions of similar mode-overlapping
coefficients. A detailed explanation of this phenomena is
beyond the scope of the current paper, and will be the topic of
a future work.

In practice, experimental measurement of the effective
decay rate (i.e., cavity Raman linewidth) and cavity-enhanced
gain of the Stokes modes Eq. (10) would provide the
concentration of Raman active molecules as well as the
energy-dependent Raman frequency shift of the ensemble of
molecules in the microcavity.
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FIG. 3. The spatial distribution of electric field intensity of
WGMs shows the mode overlapping, and the emission fields for a
Raman microsphere laser (intrinsic pump quality factor of Q = 108,
T M100, r = 20 μm) excited near the threshold for stimulated Raman
lasing.

V. CONCLUSION

In summary, on the basis of cavity QED theory we have
investigated Raman lasing in high Q factor microcavities by
coupling of quantized pump and (anti-) Stokes modes. We
obtained analytical expressions for the normalized Raman
lasing threshold and gain of a cavity which provides a
good basis for experimental investigation of Raman lasing,
Eqs. (10)–(14) being valid for a high Q cavity with third-order
nonlinearity and having any regular shape. We have made
calculations specific to dielectric microspheres which include
the rigorous expressions for the electromagnetic modes (Mie
theory), and have presented dependencies of the Raman lasing
threshold and gain on the order and combination of interacting
WGMs in spheres of various diameters. These results are
in excellent agreement with the ultrahigh gain and ultralow
threshold of Raman lasing in silica resonators observed in
recent experiments [5].

The reduced lasing threshold occurs due to internal energy
accumulation and nonlinear interaction between the cavity
modes when both pump and (anti-) Stokes modes are resonant
with WGMs. An increase in the order n of interacting WGMs
is shown to reduce the lasing threshold due to a significant
increase in the mode-overlapping coefficients. The threshold
is further reduced as the diameter of the cavity is decreased due
to an associated increase in the Q factor of the interacting pump
and Stokes modes. Reducing the cavity size even further may
improve the performance of these lasers. Nonlinear micro- and
nanocavities, and hemispherical lenses are promising for these
purposes [24].

Due to their small size and high Q factor, Raman micro-
lasers based on WGM microspheres are attractive devices for

potential applications including high-resolution spectroscopy,
remote sensing, telecommunications, single-molecule sensors,
and single-photon counters.
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APPENDIX A: EIGENMODES

In this section we provide exact expressions for WGM
overlapping coefficients [Eq. (5)]. The TE and TM pump and
Stokes modes in Eq. (5) are the solutions of the Helmholtz
equation [14]:

�∇ × �∇ × �Ej (�r) + k2
j

�Ej (�r) = 0 (A1)

for TE modes and

�∇2 �Ej (�r) + k2
j

�Ej (�r) = 0 (A2)

for TM modes, respectively, obeying the boundary conditions
and satisfying the normalization conditions within the cavity
volume V [14]: ∫

V

�Ei(�r) �Ej (�r)dV = δij . (A3)

We assume that both the resonator and the surrounding
medium are nonconductive and nonmagnetic. To calculate the
integral coefficients of WGM overlapping the electric field in
the cavity is written as a series of partial waves which are
solutions of the Maxwell equations in spherical coordinates
[14,21],

Ep,s = E0

∞∑
l=1

il
2l + 1

l(l + 1)

[
tTE
l M3

o1l − itTM
l N3

e1l

]
, (A4)

where E0 is the amplitude of the incident laser beam that
illuminates the cavity, i is the unit imaginary number, �r =
(r,θ,ϕ) is the position vector in spherical coordinates, tTE

l and
tTM
l are the partial wave amplitudes (Mie coefficients in the

simplified case), and M and N are the eigenmodes of the cavity
[partial waves, Eqs. (A5) and (A6)]. The functions in the series
Eq. (A4) are given by

M1,3
σ1l(�r) = �∇ × �rf 1,3

σml(�r), (A5)

N1,3
σ1l(�r) = 1

nk
�∇ × �∇ × �rf 1,3

σml(�r), (A6)

where k is the free space wave number, �r is the unit vector in
the r direction, σ = e or o identifying even or odd symmetry,
respectively, and

f
f

eml(�r) = ψl(nkr)P m
l (cos θ ) cos(mϕ), (A7)

where ψl(nkr) are the Riccati-Bessel function of first order
which should be replaced by the Riccati-Hankel function ζ 1

l

when the upper index of f is not 1 but 3, whereas the cosine
function should be replaced by sine when σ = o. In Eq. (A7)
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the refractive index is n. The spherical eigenfunctions have the
form,

�Hn = −im

√
ε0

μ0
E0 �N1,3

σmn (A8)

when

�En = E0 �M1,3
σmn (A9)

and,

�Hn = −im

√
ε0

μ0
E0 �M1,3

σmn (A10)

when

�En = E0 �N1,3
σmn, (A11)

which can be used to determine the magnetic fields. The
continuity of the tangential components of both the electric
and magnetic fields across the surface of the sphere provide us
with the partial wave amplitudes [14].

We consider the electromagnetic eigenmode basis vectors
according to Ref. [14] in the semiclassical QED theory of
Raman scattering [17]. The main focus of our numerical
calculations is the mode-overlapping coefficient as used in the
theoretical investigation of Raman scattering in microcavities
[17].

Bc(ωp,ωs) =
∫
V

| E∗
p(r)|2|Es(r)| 2dr∫

V
| Es(r)| 2dr

∫
V

| Ep(r)| 2dr
, (A12)

where Ep, Es , and ωp and ωs are the electric fields and
eigenfrequencies of the pump and Stokes modes, respectively,
and V is volume of the microscopic cavity. It can be seen
from Eq. (A12) that the overlapping between the pump and
Stokes modes is a function of E∗

p(r) · Es(r), such that there is
zero interaction if the modal fields are orthogonally polarized
with respect to each other. Indeed, energy transfer between
the pump and Raman photons is facilitated only by vibrations
of the molecules of the medium, which is characterized by
conservation of the number of photons [15,25] and there
is no mechanism to facilitate energy transfer between the
pump and Stokes photons of different polarizations when the
medium is isotropic. We have assumed an isotropic medium in
Eq. (5), and hence separated the Ep and Es components in

the same direction when calculating the matrix element for the
interaction Hamiltonian between the pump and Stokes photons
[11]. Indeed, when both Ep and Es are plane waves, Eq. (5)
is a simple and reasonable criteria for us to judge if Raman
scattering is possible in an isotropic medium. The criteria of
orthogonality of eigenfunctions is the Cauchy-Bunyakowski-
Schwarz inequality [26]:∣∣ ∫

V
E∗

p(r) · Es(r)dr
∣∣2

∫
V

| Ep(r)| 2dr
∫
V

| Es(r)| 2dr
� 1. (A13)

Equation (A13) shows the orthogonality between Ep and Es ,
which implies the cancellation among the components of
scattering vector fields.

APPENDIX B: PHOTON SPECTRUM OF WGM RAMAN
LASING IN STRONG-COUPLING REGIME

Since the decay rate of interacting Stokes and pump modes
depends on the laser pump power, spatial mode overlapping
has a Lorentzian form. We rewrite Eq. (7) to give an expression
for the probability amplitude of the state with photon in mode
|s〉 after the relaxation process. With the decay rate in the form
of Eq. (10), we have for the intensity of spectra,

I (ω) = βs

2π

(
γs

2

)2[
[ξ (� − ξ ) + βs]

2 +
(

γs

2

)2

(� − ξ )2

]−1

.

(B1)

In the tuned case when � = ω − ωs = 0 we have Eq. (B1),
ξ = ωp − ωs . Then Eq. (B1) becomes

I (ωs) = 1

4

γsβ
st,sp
s

ξ
L

(
βsp,st

s − ξ 2,ξγs/2
)
. (B2)

For β
sp,st
s of spontaneous and stimulated Raman lasing we have

βsp
s = P

sp

th QpS2
sp

h̄ωp

(B3)

and

βst
s =

(
P st

th Qp

h̄ωp

)2 (
1 + ωsγp

ωpγs

)−2
γp

γs

S2
sp. (B4)
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