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Quantum memory with a single two-level atom in a half cavity
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We propose a setup for quantum memory based on a single two-level atom in a half cavity with a moving
mirror. We show that various temporal shapes of incident photon can be efficiently stored and read out by shaping
the time-dependent decay rate y () between the atom and the light. This is achieved uniquely by an appropriate
motion of the mirror without the need for additional control laser or atomic level. We present an analytical
expression for the efficiency of the process and study its dependence on the ratio between the incident light field
bandwidth and the atomic decay rate. We discuss possible implementations and experimental issues, particularly
for a single atom or ion in a half cavity quantum optical setup as well as a superconducting qubit in the context

of circuit QED.
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I. INTRODUCTION

Efficient and faithful storage of quantum states of light lies
at the heart of long-distance quantum communication [1,2]
and remarkable progress and achievements have been done
in recent years [3,4]. A device allowing such storage, the
so-called quantum memory, can be implemented in various
physical systems, which can be either atomic ensembles
[3] or single atom-like systems [typically single atoms or
ions [5,6], quantum dots [7], superconducting qubits [8],
or nitrogen-vacancy (NV) centers [9]]. In the present paper
we concentrate on the latter situation and consider single
atom systems, where much experimental progress has been
done recently. The demanding part in these systems is that a
strong coupling between the atom and the light is required.
In the atomic system, this can be achieved by using high
numerical aperture optical elements [10-12] or a high finesse
cavity [5], where the quantum memory application has already
been demonstrated using a mapping of the polarization of the
light qubit onto a single 3’Rb atom. Single atom systems are
also well suited for creating and manipulating the quantum
information experiments demonstrating entanglement gener-
ation between two individual atoms [13] and quantum gate
operations between neutral atoms [14] and ions [15] have
been realized. Moreover, for long-lived information storage,
one usually needs to transfer the optical coherence into the
coherence between ground states. This is usually achieved
using another strong laser beam between the excited state and
the state used for storage.

In this paper, we propose a quantum memory setup
consisting of a single two-level atom in a half cavity, in which
we allow for an arbitrary motion of the mirror to modify the
atom-light interaction—a natural extension of the previous
work done by other authors [16-20]. We show by explicit
calculation that various temporal shapes of the input single-
photon pulse can be efficiently stored by the atom-mirror
system, provided the motion of the mirror is optimized. A
feature of this scheme is that there is no need for an additional
atomic level nor the strong control or transfer laser. We
discuss the memory efficiency and fidelity as well as possible
implementations, such as a single atom or ion in a half cavity

1050-2947/2012/85(1)/013823(8)

013823-1

PACS number(s): 42.50.Ct, 32.80.—t, 03.67.—a

or a superconducting qubit coupled to a one-dimensional (1D)
transmission line terminated by a superconducting quantum
interference device (SQUID).

The paper is organized as follows: we present a derivation
of the optimized time-dependent decay rate that maximizes
the efficiency of the storage in Sec. II. We illustrate these
results with an example of an input single-photon time-bin
qubit and discuss possible experimental realizations of the
quantum memory scheme in Sec. III.

II. QUANTUM MEMORY MODEL

A. General optical Bloch equations

We study a single two-level atom sitting in front of a moving
mirror (see Fig. 1). The incident pulse propagates along the z
axis and first interacts with the atom. The positive frequency
part of the continuum electric-field operator in the standing-
wave basis and the interaction picture reads [17,21,22]
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FIG. 1. Sketch of the quantum memory setup: an arbitrary single-
photon wave packet interacts with a two-level atom, which has an
initial distance L from the movable mirror, whose motion is described
by I(t). v, and y’ describe the decay rates into the pulse mode and
the environment, respectively (remark: in the implementation that we
consider, the pulse durations are much longer than L/c).

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.85.013823

WANG, MINAR, HETET, AND SCARANI

where k = w/c, ¢ is the vacuum speed of light, €, , with
A = {1,2} denotes the unit polarization of mode w, and the
coefficient A(w) accounts for the correct normalization of the
electric field (i.e., that the total energy of a single-photon Fock
state of frequency wy is fiwp). We denote the initial distance
between the atom and the mirror by L. The main goal of this
paper is to investigate the dynamics of a two-level atom and
a pulse in front of a moving mirror. The dynamics is given
by the time-dependent decay rate, which reaches its minimal
value O for an atom sitting at the node and maximal value 2y,
for the atom at the antinode of the cavity, a well-known result
from a quantum cavity electrodynamics. Here, we denoted
by yp the atomic decay rate in free space. We describe the
motion of the mirror by a time-dependent function /(¢), such
that the atom-mirror distance is given by L — [(¢) for any
time ?.
The atomic dipole operator in interaction picture reads

d=d@G_e ' + 6, ¢, 2)

where , is the atomic transition frequency and &y =
le) (g|.6- = |g) (el .6: = le) (e| — [g) (gl = 646 —6_64
are the usual two-level atom operators with ground and
excited states |g) and |e).

The dipole interaction Hamiltonian is equal to the scalar
product of the atomic dipole [Eq. (2)] and the electric field
[the positive part of which is given by Eq. (1)], H; = —d - E.
The Hamiltonian in the interaction picture, after making the
rotating-wave approximation, is given by

I:Il(l) = —ih Z / da)(gw’)hoﬁr&w sin{k[L — ()]} e iw—wut
A

—H.c)). €))

In the following, we assume that the atomic dipole d is oriented
parallel to the polarization of the field € and thus yielding the
maximized coupling

d A(w)
h 9
where is d = |d] is the scalar atomic dipole momentum.

The Heisenberg equations of motion of the field and atomic
operators are

“4)

8w = 8w, =

by = ghsin{k[L — (1))} '™ 6_, (5)

O Y . 2
o_ = 5 _+¢-

+6. / dwguiy, sin{k[L — 1(1)]} e @2 (6)

61 = _V/(az + 1)+ Ez
-2 f dwsin{k[L — ()]} [806 4+, e '@ + Hel],
@)

in which the decay term y’ and the noise operators { are
introduced to account for the interaction of the atom with
the environment. The explicit form of the noise operator is
discussed in [23]. Moreover, as a consequence of our initial
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conditions, the noise operators do not come into play, as
explained further in the text. By integrating Eq. (5), we can
separate the field operator into two parts:

(1) = dulio) + / dt' g* sink[L — ()]} €~ 6 (1",
®

where the first term refers to the initial field having evolved
freely from 7y to ¢t and the second term is the field created
by the atomic dipole during the time period t — 9. These
contributions are usually called the “free field” and the “source
field.”

After substituting Eq. (8) into Egs. (6) and (7), we get the
modified optical Bloch equations

6_(t) = —%:(r)ﬁ_

+6.(1) / dw g, sin{k[L — ()]} e7 '@~ 4, (o)

+6z(t)/ dr’ /dwlgwle—(t’)Sin{k[L—l(t)]}

x sin{k[L — I(1")]} e (@7 @)=1), 9

6.(t)=—y'[6.() + 11+, — Z/da) sin{k[L — I(t)]}

t
X (8B (Day(ty) e @~ £ He] -2 / dr’

x / dw |go|? sin{k[L — 1(t)]} sin{k[L — ()]}

% [efi(wfwa)(tft,)é_‘r(t)é\'_([,) + H.c.]. (10)

B. Characteristics of the quantum memory setup

We will now focus in the quantum memory application of
the considered setup and qualitatively discuss some charac-
teristics the system should meet. One can thus make further
assumptions, which in turn enables us to simplify the above
equations.

Let us denote a round-trip time of the light between the atom
and the mirroras T = 2L /c. In the ideal case we wish to absorb
a photon by the atom, where the maximum coupling reaches
2y, as discussed earlier in this section, and indicates a relevant
time scale (lower limit) for the photon duration. To prevent
losses due to spontaneous emission during the write process,
we thus require that (i) yp7 < 1 (Markov approximation).
Furthermore, the coupling can be tuned between its maximal
and minimal value by changing the atom-mirror distance on the
order of the wavelength A, thus changing the position of the
atom between nodes and antinodes at will. We thus assume
that (ii) /(r) ~ X. Typically, ct can be of the order of many
wavelengths, so T > [(¢)/c. With these arguments, we neglect
the change in the operators on time scales smaller or equal
to 7, so that 6(t £ 1) ~ &t £1(t)/c] =~ 6(¢). On the other
hand, one must keep such dependence in all phases present in
the equations in order to preserve the interferences. Then the
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atomic operators evolve as
6_(1)=—y®)6- )+
+6.(t) / dwg,, sin {k[L — 1()]} e “~“" 4,,(10),
(11
G.(t)=—yA0)[6.0) + 11+, — Z/da) sin{k[L — ()]}

X [0+ 1)y (to) e ™" + H.c.].

The time-dependent decay rates y(¢) and y*(¢) are functions
of the motion of the mirror /(t),

12)

_ V_/ Yp o1 iwl(r=20()/c]
y() = > + > (I—e )s (13)
/ 21(1)
v =y +v {1 — cos |:a)a (‘L’ - )“ =2 Re[y(1)],
(14)

where y,, is the decay into the pulse mode, which makes up
the standard free space decay rate y, together with the decay
into the environment (the nonpulse mode) y’, such that y’ +
¥p = Yo. Using the Weisskopf-Wigner theory [24], p. 207],
the explicit formula of y, is given by y, = (g, 2. We would
like to note that in the derivation of the equations of motion,
Egs. (11) and (12), various contributions to the level shifts are
omitted (Lamb shift, van der Waals and Casimir-Polder shifts).
The reason is that for a typical atom-mirror distance L > A,
these level shifts are either negligible or constant [25]. The
only relevant dynamical level shift, which is the imaginary
part of y(¢) Eq. (14), is included.

With the general equations for the atomic operators
Egs. (11) and (12) and the electric field operator, discussed
more in detail in Appendix B, Egs. (B1)—(B3), it is now
possible to study the dynamics of absorption, storage, and
retrieval of a single-photon wave packet. Since the absorption
medium is a two-level system, we will consider in the
following the storage process only of a single photon in Fock
state ([23,26], p. 243). The single-photon Fock state pulse is
defined as

1) = / do (@i, [0) = / dig,mal o), (15)

where f,(w) is the spectral distribution function and &,(¢) is

the temporal shape of the wave packet, which are related by

Fourier transform
é p(t ) =

do fy(w)e @70, (16)

el
2w

In the following, we use p = in,out in order to label the input
and output pulse wave form &,(t). Moreover, all the other
considered quantities are labeled by w and r for the write and
read process, respectively.

C. Write process: Absorption

During the write process, we wish to efficiently absorb the
incoming photon and thus maximize the probability P that
the atom gets excited, where ideally P = 1. Considering an
incoming photon which is nonzero only between times #,, and
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tuo), which are the start and end time of the write process, the

write efficiency is defined as
P(i)
Nw= "% -
Sl dr &0

In the case of a single-photon pulse, which satisfies the nor-

A7)

0
malization condition fttf“ dt |§in(t)|2 = 1, the write efficiency

is then simply 7, = P(t9). The excitation probability can be
calculated using its definition

P(6) = 3 [1 4 (¥ (1)1 6:(0) [¥r ()], (18)

where [V (f,)) = |g,1in,0.) is the initial state of the total
system, with the atom being in its ground state, an incident
single photon in its Fock state, and the environment is in the
vacuum state.

So far we have included the environmental decay channel
described by the decay rate ' and the related noise operators
Z. One important point is that when considering the initial state
of the environment to be the vacuum state, the noise operators
do not come into play, since (¥ (t,,)| 1Y (ty)) = 0 (see also the
discussion in [23]). Although it is very challenging to achieve
experimentally, in the following we assume that all modes of
the field radiated by the atom to the mirror half space (i.e.,
to the left of the atom in Fig. 1) are covered by the mirror.
This implies y” = 0, y, = yo. It also enables us to separate the
effect of the time-dependent coupling y (¢) from the effect of
the decay to the environment. It is then clear from Eq. (14) that
the time-dependent decay rate y*(¢) changes between [0,2y;]
depending on the position of the mirror.

The set of coupled differential equations, Egs. (11) and
(12), for the atomic operators gives the absorption probability
(see Appendix A for details)

10 2
P(1g) = e~ (%) / dt Vg, ED| ., (19)
tw
where we define
t
Fw(t):/ dt'y,(t), (20)
t

with y,,(¢) given by Eq. (13) and the subscript w indicates the
write process in order to distinguish it from the read process,
which has in principle different decay function y,(z). The
effective time-dependent coupling strength reads

)
gu(t) = /2yp sin |:(1)a (% - %)} =V75(0.

The goal is now to find the time-dependent yZ(¢) that
maximizes the write efficiency for a given input field &;,(),
which can be done using Lagrange multiplier optimization
(271, p. 169),

2y

10

d 0 ! : 2 _ —
0 [P(tw)H(/t dt 1§n()] 1)}—0, (22)

w

where A is the Lagrange multiplier. This results in the
optimized write efficiency

M =1—e ), (23)
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with I () = j;t dt'y(t'), and the time-dependent decay rate
satisfying

N En()]”
0
Vw0 = (1= nw)+nw [ dt' |En(e)]

2y Dove() = 2y,
(24)

Vo) < 2yo;

where we have to account for the physical limitation of the
system, 0 < y2(¢) < 2y0.

After the absorption, the single photon is stored as the
excitation of the atom for a time period 7. During this period,
the static mirror position is such that the atom sits at the node,
ie., y5(t) =0, so that the atom remains in its excited state,
which implies that P(t0 < 1 < 1) = P(t°) during the storage
period.

D. Read process: Re-emission

For an on-demand readout of the stored single-photon pulse,
the atom-light interaction is turned on again at the starting time
of the readout process tf) =t, + T. As discussed above, we
consider no losses during the storage process, so that P(z°) =
P (tg) = 1. In analogy to the write efficiency, we define the
efficiency of the readout process ending at time ¢, as

Ji dt lgou(®P?
- P()
The temporal shape of the outgoing pulse &, (#) can be

derived from the electric-field operators Eqgs. (B1)—(B5) in
Appendix B as

Nr (25)

( t) = % ;
’gout Z? - T A(a)a)

2 .
_ i\/;e—zwa(z—z/c-s-rﬂ)yr(t) (Yol 6_(t — z/c) ‘I/I(IB)),
(26)

Wol ELz.0 [ (1))

with [Y9) = |g,0in,0.) and |1//(tr0)) = |e,0in,0.). The evolution
of the atomic operators can be also found using Egs. (11) and
(12),

P(t0)e 0. (27

r

(Yol 6_(t — z/0) [Y (7)) =

Since we are interested in the output pulse at certain position
z = L, the temporal shape of the output pulse &,,(¢) reads

gout([) = 'gout(z’t)|z=D>L

2P(1?)
- V( r) e lwa1=D/ctT/2) ) (1) o~ TH D (28)
0

which implies that the temporal shape of the output pulse can
be adjusted by controlling the time-dependent read decay rate

[Eou ()
N = Jpo dt’ ()

AOES (29)
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which is again subjected to the constraint that 0 < y2(¢) <
2yp. Plugging Eq. (28) into Eq. (25) one finds the expression
for the read efficiency,

ny=1—e i), (30)

with T2(1) = [, dt'y:(t)).
The total quantum memory efficiency is given by

n=nyn = (1—e ) (1 - ), 31)

So far we have derived an expression for the efficiency of
the readout process as a function of a time-dependent readout
decay rate y°(t). We should, however, emphasize a simple
reflection that an atom in the excited state with a nonzero
coupling to the field will necessarily decay. Typically, for a
constant y,, the decay will be exponential with 7, approaching
1 already for times of 1/y,. The readout can be thus made
simply by “waiting.”

In the following, we would rather require that the quantum
memory device yields the maximum fidelity F = 1. The
memory fidelity is expressed in terms of the outgoing pulse’s
projection on the input pulse as

2
[ dr g 0Eu)]

Jdt &P [ dt @)
Obviously, the ideal fidelity is achieved when the output pulse
has the same shape as the input pulse &,u () = /7 &n(t — T),

which can be achieved by changing the read decay rate in the
following way:

F = | {Lin] lou)?

(32)

nr [t + (20 = 19)])°
L=, [odt gt + (2 = 19)]]
290 DY) = 2.
(33)

Vi) = 5 VA0 < 2003

Due to the similarity of the underlying physics, we would
like to note that the expressions for read and write efficiency,
Egs. (23) and (30), are analogous to those in Ref. [20].

III. SIMULATIONS AND POSSIBLE IMPLEMENTATIONS

A. Simulation with time-bin qubit

With the help of Eqgs. (24) and (33), we can now study
the performance of the quantum memory as a function of the
input light field. In the following, we consider a specific case
of anormalized Gaussian-shaped time-bin single-photon pulse
described as

Ein(t) = a e T2y gt TURN T2 (34

where the real coefficients «, 8 satisfy a4+ B2=1,tb—tis
the relative time delay, ¢ is the relative phase between the two
time bins, and the bandwidth o is assumed the same for each
time bin. The performance of the quantum memory is studied
for different bandwidths o of the pulse with « = 8. In Fig. 2,
two particular situations are considered, one with photon
bandwidth smaller and the other one with photon bandwidth
larger than the double of the atomic decay rate 2y4. In Fig. 2(a),
we seto = 0.2yy. In this case, the quantum memory efficiency
reaches its maximal value, n = 1: the amplitude of the output
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FIG. 2. (Color online) Storage (¢t < 0) and retrieval (r > 0) of a
Gaussian-shaped time-bin single-photon pulse for different values of
bandwidth: (a) 0 = 0.2y ; (b) 0 = 5. The input intensity (dashed
black line) and the output intensity (solid black line) of the pulse
is shown in (i), with the input intensity normalized to amplitude 1.
The required optimum write and read decay rate y.(¢) and y (¢) is
shown by dashed and solid red line in (ii), respectively. It can be seen
that for the smaller bandwidth, case (a), Max[y; ,(t)] < 2y, and the
efficiency is close to 1; on the other hand, for the larger bandwidth,
case (b), where y has to be truncated at 2y, the efficiency is less
than 1.

pulse (solid black line) is the same as the input pulse (dashed
black line) as can be seen from Fig. 2(a) (i). On the other hand,
Fig. 2(b) with 0 = 5y shows a decrease of the efficiency.
The optimized decay rates y(f) and y*(t) are represented
by dashed and solid red lines, respectively. The shapes of
the optimum coupling decay rates are given by Eqgs. (24)
and (33) and might be qualitatively understood as follows.
For write efficiencies n,, ~ 1, the write decay rate y2:(¢) is
proportional to the intensity divided by the time integral of the
intensity. This ratio can be high at the beginning of the write
process (first time bin), when the denominator is small, but
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FIG. 3. Total efficiency of the quantum memory device as a
function of the bandwidth o of the input pulse. The curve was obtained
with Gaussian-shaped time-bin single-photon wave packet Eq. (34)
for ideal fidelity F = 1. The inset is a zoom of the region of /vy
between 0 and 2.

gets significantly smaller for the second time bin. A similar
argument holds for the read coupling decay. It is possible to
plot the motion of the mirror /() instead of the coupling decay
rate y*(¢) [see Eq. (14)]. In the example presented in Fig. 2,
the motion of the mirror is similar to the coupling decay rate
with the /(r) ranging from O to A /4 (corresponding to 2y, for
the decay rate) and we do not plot it explicitly. Finally, one
can see that for the photon bandwidth larger than the cutoff
frequency of the system 2y, the optimum decay rates y;., .(¢)
exceed this cutoff and are thus truncated at 2y,. This results
in the decrease of the storage efficiency, as shown in Fig. 2(b)
(i). The storage efficiency as a function of the ratio between
the photon bandwidth and the atomic decay rate is shown in
Fig. 3. The efficiency starts to decrease for o/ yy = 0.85, which
corresponds to FWHM = 24/2In2 o = 2y, as expected.

B. Implementations

We will now discuss possible implementations of our
protocol. The described quantum memory device requires a
single two-level system with a tunable distance to the mirror
and a strong coupling to the light field. Strongly coupled two-
level systems can be implemented using optical setups with
ions and atoms [10,16], quantum dots [28], superconducing
qubits in circuit QED configuration [8,29] or atoms coupled to
surface plasmons on conducting nanowires [30], or to tapered
optical nanofibers [31].

As for the quantum optical implementations, there is a
variety of atoms and ions used in trapping experiments,
typical examples being, e.g., a '®Ba® ion in a Paul trap
[16,32,33] or 87Rb atom in a far-off-resonance trap (FORT)
[10]. In the case of Ba% ions, the typical two-level transition
is between the ground state |6S,2,mr = 1/2) and excited
state |6Py/2,mp = —1/2) at A =493 nm with a linewidth
yo = 15 MHz [32]. For this system, as experimental realization
with half cavity a tunable atom-mirror has been reported [34]
(an analogous experimental setup with quantum dot has been
alsorealized [28]). This, together with an atom-mirror distance
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L of order of centimeters, meets very well the assumption
required for quantum memory: )7 < 1. On the other hand,
the durations of incoming photon of the order up to 1/yy
require the motion of the mirror at the same time scale, which
might be hard to achieve by a mechanical motion. One possible
solution is to use a long-lived quadrupole transition (for which
the lifetime can be seconds [e.g., Ca™ or Ba™)], which would
allow for slower mechanical motion of the mirror achievable
with current technology. Another possibility is to move the
atom itself, which can be done very fast in dipole or Paul
traps. The drawback of this approach is that the atom would
get slightly out of the focus of the mirror, reducing thus the
maximum achievable coupling decay rate [25]. It might be also
be possible to use an EOM in the integrated setup to modulate
the optical path length [30,31].

The spatial overlap of the incident field and the atomic
dipole pattern needs to be taken into account in realistic sys-
tems, as discussed elsewhere in more detail for hemispherical
mirror [25] and for parabolic mirror [35,36]. The consequence
of imperfect spatial overlap is the decay into the environment
y’, which would reduce the write efficiency as well as, and
more importantly, the storage process [since the storage time T
is often required to be much larger than the photon duration, the
population of the excited state o< exp(—y'T) is more affected
during the storage, because exp(—y'T) < exp(—y't,), where
t, is the pulse duration]. Obviously, the quantum memory
scheme works only for single-photon Fock states, which
are available experimentally [37]. Finally, we would like
to mention that the quantum memory works also for the
polarization qubits. In this case the required level scheme is a
V configuration, standardly available for typical atoms used in
the experiments.

The proposed quantum memory device can be also imple-
mented in the fast growing domain of circuit QED, where
the effective two-level system can be realized by different
kinds of superconducting qubits [8,29]. Typical resonant
frequencies of a superconducting qubit lay in the microwave
region of order of 1-10 GHz with population decay rates of
order of 1-10 MHz [38—40]. Generation of various photonic
states, including a single-photon Fock state, was demonstrated
in several experiments [39,41,42] thus laying the ground
for potential realization of the presented quantum memory
scheme. The configuration of superconducting qubits coupled
to a transmission line resonator has the beauty of well defined
one-dimensional (1D) mode and perfect spatial overlap, which
results in strong atom-light interaction. Moreover, an open
transmission line with one side terminated by a SQUID
operated with a variable magnetic flux acts as a mirror with
a tunable qubit-mirror distance. This was realized recently in
the remarkable demonstration of dynamical Casimir effect by
Wilson et al. [43], with oscillation frequency of the SQUID
mirror of 11 GHz. Currently, schemes and proposals directly
linked to the quantum memory applications are actively inves-
tigated both theoretically [44] and experimentally [45—48]. In
one of the realized experiments, a superconducting qubit with
a large decoherence rate (order of MHz) was coupled to a tran-
sition with a long coherence time (up to 2 ms) in a NV center in
a diamond [49]. This technique can be applied also to our pro-
posal to achieve long storage time for the microwave photons.
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IV. CONCLUSION

In conclusion, we showed by a fully quantized calculation
that a single-photon Fock state pulse with various temporal
shapes can be efficiently stored and retrieved from a quantum
memory device consisting of a single two-level atom in a
half cavity. The principle is that the time-dependent atomic
decay rate can be dynamically tuned between zero and the
maximum 2y, by changing the distance between the atom
and the mirror. The cutoff frequency of the system, given by
double the free space decay rate of the atom, imposes the limits
on the input photon bandwidth for which the photon can be
efficiently stored. We analyzed the dependence of the storage
efficiency as a function of the photon bandwidth. Finally, we
discussed possible implementations of the proposed quantum
memory scheme, such as single atoms or ions in a half cavity
or a superconducting qubit coupled to a 1D transmission line
terminated by a SQUID.
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APPENDIX A: WRITE PROCESS—ABSORPTION

In order to find out the value of (¥ (¢,)|6,(¢) |¥(t,)) and
thus the absorption probability P(z), we have to solve a set of
time-dependent differential equations, which is obtained from
the average of Eq. (12) on the initial state | (¢,,)) = |g, lin,0.),

$(t) = Ms(t) +b. (A1)
with
(8, 1in, 0] 6:(2) |8, 1in,0c)
S(t) = (g71il’170€| 6+(t) |g90in706>
(gvoinvoel 6'7(1‘) |g,1invoe>
— Vo) —28u(1) —28,(t) —Yu(t)
m=[ 0 -y 0 |, b=]-2.0]|,
0 0 O —gu()
(A2)

with initial condition
sT(t)) = (=10 0).
The solution of the Eq. (A1) gives us the absorption probability

as a function of time,

t 2
e 0 / di' eV g,, (1) ()] -
t

w

P@) = (A3)

We want to optimize the absorption probability P with respect
to the normalized input pulse f dt |é§in(t)|2 = 1. Following the
method of Lagrange multipliers and performing a functional
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differentiation of Eq. (22), we find out that the optimum write
process must satisfy

1
V1w

From here we can extract the required time-dependent decay
rate y2(¢), which is expressed in Eq. (24).

e THED/2 g () g~ TH 0)/2

&in(1)] = (A4)

APPENDIX B: READ PROCESS—RE-EMISSION

By inserting Eq. (8) into the field operator Eq. (1), and
again under the assumptions yp7 < 1 and [(¢) & A, we have
the simplified scattered field operator

ER@n = EP @+ BV, (B1)

where £ i’L)(z,t) is the free evolution electric field

Eﬁ)(z,t) =i /OO d wA(w) sin{k[z — ()]} eI a, (1),
0
(B2)

and E§+)(z,t) is the electric field scattered by the atom,
. b4 )
E§+)(Z,l) — _iEA(wa) S, |:e—lwa(f—{f/2+[z—2l(l)]/6})

X 6_ (t — E) ® (; — E) e i@alt—(z/c—7/2)]
c c

o (=2)ol-D) o(5H)
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_emiodt—(t/2=2/e) & (t n E) e (, + E)
c C

X & (L Z) :|
c

In Eq. (B3), the usage of the Weisskopf-Wigner theory allows
us to put A(w) ~ A(w,) out of the integration. Since we are
only interested in the right propagating field in the region
z > L (see Fig. 1), the step function G)(%) implies that the

third term in Eq. (B3) does not contribute to the total field.
To find out the temporal shape of the output pulse after the

readout process, we first study the c-number electric field of
the input pulse,

(B3)

A(+) _ T
Ol E,"(z,0) [1in) = —\/;A(wo)[f;‘(t —z/c) =& +z/0)],
(B4)

where wy is the carrier frequency of the input pulse, and again
A(w) = A(wp) in Weisskopf-Wigner approximation. When the
atom and pulse are in resonance with each other A(wy) =
A(w,), the total field is given by the interference of the right
propagating pulse &£(r — z/c) and the left propagating pulse
E(t+z/0).

Similarly, the electric field contributing to the output pulse
at the position of interest (i.e., outside the atom-mirror system,
z > L), is only the right propagating part. In this case, we have
the temporal shape of the output pulse given by

2 1 .
Eout(z,1) = \/; A (ol Ef(z.0) [ (1))
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