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Dynamics of nonequilibrium Dicke models

M. J. Bhaseen,1 J. Mayoh,2,* B. D. Simons,1 and J. Keeling2

1Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
2School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, United Kingdom

(Received 6 October 2011; published 17 January 2012)

Motivated by experiments observing self-organization of cold atoms in optical cavities, we investigate the
collective dynamics of the associated nonequilibrium Dicke model. The model displays a rich semiclassical phase
diagram of long-time attractors including distinct superradiant fixed points, bistable and multistable coexistence
phases, and regimes of persistent oscillations. We explore the intrinsic time scales for reaching these asymptotic
states and discuss the implications for finite-duration experiments. On the basis of a semiclassical analysis of
the effective Dicke model, we find that sweep measurements over 200 ms may be required in order to access the
asymptotic regime. We briefly comment on the corrections that may arise due to quantum fluctuations and states
outside of the effective two-level Dicke model description.
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I. INTRODUCTION

In recent years there has been rapid progress in controlling
the behavior of ultracold atoms using a wide variety of optical
techniques. This includes confining atoms in optical traps
and optical lattice potentials in conjunction with tremendous
advances in laser cooling. More recently it has become
possible to study the properties of Bose-Einstein condensates
(BECs) in ultrahigh-finesse optical cavities [1]. Closely related
experiments have also been performed on novel hybrid systems
combining optical fibers on atom chips [2–4]. A central feature
of these experiments is that one may access the strongly
coupled regime of cavity quantum electrodynamics (QED). In
this regime a large number of atoms, N , exchange photons
many times on the time scale set by cavity leakage. This
permits the exploration of coherent matter-light interactions
and the observation of the collective

√
N splitting of the

resulting eigenstates. It also leads to novel forms of collective
dynamics and cavity optomechanics [5–8]. Moreover, the light
leaving the cavity provides valuable information on strongly
correlated phases [9–12], thereby fostering links between
contemporary problems in cold atomic gases, quantum optics,
and condensed matter physics. These systems also offer
exciting possibilities as matter-light interfaces for quantum-
information processing. This wealth of activity is further
stimulated by pioneering circuit QED experiments [13,14],
which include direct observations of Berry phases [15],
vacuum fluctuations [16], collective behavior [17,18], and
three-qubit entanglement [19].

An important aspect of these developments is the potential
for novel phases and phase transitions induced by the cavity
light field. The latter mediates long-range interactions between
the atoms which may strongly influence their behavior. It
was recently predicted that an atomic cloud with additional
transverse pumping undergoes a self-organization transition
to a spatially modulated phase [20]; see Fig. 1. This was
confirmed experimentally by Vuletić and co-workers using
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thermal clouds in an optical cavity [21]. Above a critical
pumping strength the atoms self-organize to form a checker-
board pattern, as illustrated in Fig. 1. This dynamically
generated lattice leads to a strong enhancement of the cavity
light field due to coherent Bragg scattering. Heterodyne
measurements of the phase of the cavity output also reveal the
discrete Z2-symmetry breaking of the emergent lattice. More
recently, this self-organization phenomenon was investigated
experimentally using a BEC in an optical cavity [22,23]. In
this setup spontaneous sublattice symmetry breaking coexists
with superfluid phase coherence, giving rise to a novel form
of supersolid [24–26]. In addition it was pointed out that
this self-organization transition is a dynamical version of
the superradiance transition in the Dicke model [22,23,27].
The Dicke model [28–32] has a long history and describes
two-level systems or “spins” uniformly coupled to light. When
the matter-light coupling exceeds a critical value, the Dicke
model exhibits a continuous phase transition to a state with a
nonvanishing photon population and discrete parity symmetry
breaking; for a review of the Dicke model and its applications
in quantum optics, see Ref. [33].

In the present cold-atom setting the effective Dicke model
spin states are two distinct momentum states of the BEC
[22,23]. Their splitting is therefore controlled by the atomic
recoil energy, and this enables the Dicke model transition to be
observed using light with optical frequencies. This approach
is a close analog of an elegant theoretical proposal by Dimer
et al. [34] for realizing the Dicke model transition using a
Raman pumping scheme between distinct hyperfine states.
These atomic experiments also provide a direct implemen-
tation of a Dicke model Hamiltonian without any additional
diamagnetic terms. This circumvents the usual no-go theorems
for observing the superradiance transition [35–37]. The exper-
iments also have close connections to work on the collective
atomic recoil laser (CARL) [38–40]. For further work on
self-organized matter-light systems and the possibility of
novel phases and phase transitions in multimode cavities, see
Refs. [41–49].

A crucial feature of the cavity superradiance experiments
is that they are concerned with intrinsically open systems
with strong pumping and large cavity loss rates [22,23].
Any account of their physical properties therefore requires
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FIG. 1. (Color online) Experimental setup showing cold atoms
(red) in an optical cavity with transverse pumping [20–23]. (a) Below
the threshold pump power only the pump mode is present. (b) Above
the threshold the atoms self-organize into a checkerboard lattice and
are trapped in the interference pattern of the pump and cavity beams.
The self-organization transition for a BEC is described by the onset
of superradiance in an effective nonequilibrium Dicke model.

a nonequilibrium approach. Motivated by this experimental
situation, we recently explored key aspects of the collective
dynamics of BECs in optical cavities [50]. On the basis
of a semiclassical analysis of the generalized Dicke model
presented in Refs. [22,23], we obtained a surprisingly rich
phase diagram of nonequilibrium phases and phase transitions.
Most interestingly, we have found that the open system
displays two significant features. First, for the parameters
used in the recent experiments we find additional attractors
of the long-time dynamics that have not yet been seen in
experiment. In particular, the experiment suggests a normal
state without photons, in a region where the semiclassical
analysis predicts that the normal state is unstable. Second,
we find a rich array of phases in experimentally unexplored
regions of the phase diagram. This includes coexistence phases
and regimes of persistent oscillations. The aim of this present
paper is to shed further light on these pertinent issues and
to develop deeper links between theory and experiment. To
this end, we explore the semiclassical collective dynamics
with a specific emphasis on the emergent time scales and the
observability of the characteristic features. A key finding is
that these time scales vary quite considerably throughout the
phase diagram. Under the assumption that the effective Dicke
model fully describes the experimental system [22,23] our
primary conclusion is that the O(10 ms) duration of the current
experiments may not be sufficient to reach the long-time
asymptote in all cases. We discuss the prospects for observing
the predicted asymptotic states in longer-duration experiments
and in other realizations of the nonequilibrium Dicke model.
We also discuss the possible role of quantum fluctuations and
states outside of the effective Dicke model description.

The layout of this paper is as follows. In Sec. II we
provide an introduction to the recent experiments [22,23]
and the associated Dicke model. In Sec. III we discuss the
semiclassical dynamics of this inherently open nonequilibrium
system. In Sec. IV we present the dynamical phase diagram
for the presently available experimental parameters and discuss
the nature of the long-time attractors and the associated time
evolution. In Sec. V we investigate the characteristic time
scales governing the initial and final stages of the collective
dynamics and discuss the implications for finite-duration
experiments. In Sec. VI we investigate the phase diagram

for a broader range of parameters and discuss the appearance
of persistent oscillations. In Sec. VII we examine the effects
of contributions which go beyond the effective Dicke model
and its semiclassical treatment. We conclude in Sec. VIII
and provide directions for further research. We also include
technical Appendixes addressing the derivation of the effective
Dicke model, and the location of fixed points and their linear
stability properties. We also provide further details on the
phase diagram. In order to make the paper self-contained we
incorporate some of the principal findings of our previous
Letter [50].

II. EXPERIMENT AND NONEQUILIBRIUM
GENERALIZED DICKE MODEL

The experiment of Ref. [22] consists of an 87Rb BEC
with approximately N = 105 atoms prepared in their motional
ground state with |kx,kz〉 = |0,0〉. The atoms are placed in an
ultrahigh-finesse optical cavity of length 178 μm and cavity
loss rate κ = 8.1 MHz. As shown in Fig. 1 the BEC is subjected
to a transverse pump beam with Rabi frequency �p, wave
vector k, and frequency ωp. The latter is far detuned from the
atomic transition frequency ωa , in order to avoid population
of this excited level. One may therefore neglect the effects
of spontaneous emission. However, the pump frequency is
near detuned to the cavity frequency ωc, resulting in efficient
scattering from the pump beam into the cavity, and vice versa.
The coupling strength of a single atom to the cavity mode is
denoted by g0, and the corresponding level scheme is shown
in Fig. 2. The experiment is a close analog of a theoretical
proposal by Dimer et al. [34] for realizing the Dicke model by
using Raman pumping to couple to two ground-state hyperfine

|0, 0 | ± k,±k

| ± k, 0 ′|0,±k ′ | ± 2k,±k ′

ω0

ωa

ωc

ωp

g0
g0 g0

ΩpΩp

FIG. 2. (Color online) Level scheme corresponding to the ex-
perimental setup shown in Fig. 1. The pump beam has frequency
ωp , wave vector k, and Rabi frequency �p . The strength of the
cavity coupling is given by g0. The frequencies of the cavity and
the atomic transition are denoted by ωc and ωa , respectively. Here
|kx,kz〉 are momentum states of the atoms in the BEC, and excited
electronic states are denoted by a prime. The atomic ground state
with |kx,kz〉 = |0,0〉 and the symmetric superposition labeled as
|± k, ± k〉 constitute an effective two-level system governed by
an effective nonequilibrium Dicke model. The corresponding level
splitting is given by ω0 = 2ωr , where ωr = h̄2k2/2m is the atomic
recoil energy resulting from the absorption or emission of a single
photon. In general, multiphoton processes are required in order to
couple the ground state to higher-momentum states.
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levels. A notable difference is that the present experiment
exploits a Rayleigh scheme, involving distinct momentum
states rather than internal hyperfine states. This generically
leads to the presence of a back-reaction term, discussed below,
which may be avoided in the proposal of Ref. [34].

Absorption and emission of photons yields an effective
two-level spin system [22,27] where spin down corresponds
to the ground state |0,0〉, and spin up corresponds to the excited
momentum state |± k, ± k〉 ≡ 1

2

∑
α,β=± |αk,βk〉. The latter

denotes the symmetric superposition of momentum states
resulting from two-photon emission and absorption processes
with kx,kz ∈ {±k}. In this basis one may introduce collective
spin raising operators S+ = ∑N

i=1 | ± k, ± k〉i i〈0,0| where i

labels the atoms and S− is obtained by Hermitian conjugation.
The quantum dynamics of this inherently open system, with a
large cavity loss rate κ , can be described by the density matrix
equation in Lindblad form [51],

∂tρ = −i[H,ρ] − κ(ψ†ψρ − 2ψρψ† + ρψ†ψ), (1)

where ρ is the system density matrix, ψ is the cavity photon
mode annihilation operator, and t denotes time.1 The effective
Hamiltonian H takes the form of a generalized Dicke model
with [22,27,34]

H = ωψ†ψ + ω0Sz + USzψ
†ψ + g(ψ†S− + ψS+)

+ g′(ψ†S+ + ψS−), (2)

where S = (Sx,Sy,Sz) is the effective collective spin of length
N/2 and S± = Sx ± iSy . The derivation of Eq. (2) from
the microscopic description, together with a discussion of
higher-order contributions, is given in Appendix A. For weak
pumping, and in the limit that the atom-cavity detuning is
much larger than both the pump-cavity detuning and the
recoil energy [22,23], the coefficients are given by ω =
ωc − ωp − N (5/8)g2

0/(ωa − ωc) and ω0 = 2ωr , where ωr =
h̄2k2/2m is the atomic recoil energy. The term involving
U = −(1/4)g2

0/(ωa − ωc) describes the back reaction of the
cavity light field on the BEC, and may be interpreted as
the ac Stark shift due to the appearance of a weak optical
lattice in the cavity. In the experiment [22], both the pump
and the cavity are red detuned from the atomic transition,
so U is negative. However, both signs of U are physically
achievable. In the atomic ground state, the effective cavity
frequency ωeff = ω + USz is given by ωeff = ω − UN/2 =
ωc − ωp − Ng2

0/2(ωa − ωc),2 in agreement with Ref. [22].
The Hamiltonian (2) contains both co- and counter-rotating
matter-light couplings denoted by g and g′, respectively. In
the large atom-pump detuning limit relevant to the experiment
[22], one may write g = g′ = g0�p/2(ωp − ωa).

For the experimental parameters used in Ref. [22], ω0 =
0.047 MHz and UN = −6.5κ/4 = −13.3 MHz, where the
latter is inferred from the observed dispersive shift of the

1In these notations the rate of loss of energy is 2κ .
2In the notations of Ref. [22], the effective cavity frequency ωeff is

denoted by ω.

cavity frequency, ωeff = ωc − ωp + 2UN .3 In the subsequent
discussion we will endeavor to place these experiments in
a broader context, and without loss of generality we will
approximate these conditions as ω0 ≈ 0.05 MHz and UN ≈
−10 MHz; note that the latter differs from the value taken in our
previous Letter [50] due to a small discrepancy in the reported
Hamiltonian in Ref. [22]. Specifically, the Hamiltonian given
in Eq. (2) differs from Eq. (4) of Ref. [22] due to a discrepancy
in the indicated matrix element M = 3/4 in the notation of
Ref. [22]. This does not affect the location of the reported
superradiance transition, but is important for establishing the
broader phase diagram. In addition to the energy and time
scales appearing in the model described by Eqs. (1) and (2),
there is a limit on the duration of current experiments which is
set by the rate of atom loss. In the initial experiments [22] this
was of the order of 100 ms, but is notably longer in subsequent
experiments [23].

III. SEMICLASSICAL DYNAMICS OF THE OPEN SYSTEM

Having discussed the effective Hamiltonian and the density
matrix equation of motion in Sec. II, we now turn to discuss
the dynamics arising from this model. This is essential in
order to interpret time-dependent nonequilibrium experiments
performed in an open cavity [22,23]. In view of the large
number of atoms comprising the Dicke model spin states, we
will first consider the semiclassical limit of this dynamics [50].
In Sec. VII we will briefly comment on the role of quantum
fluctuations.

A. Equations of motion and symmetries

The semiclassical equations of motion for the open system
described by Eqs. (1) and (2) are given by

Ṡ− = −i(ω0 + U |ψ |2)S− + 2i(gψ + g′ψ∗)Sz,

Ṡz = −igψS+ + igψ∗S− + ig′ψS− − ig′ψ∗S+, (3)

ψ̇ = −[κ + i(ω + USz)]ψ − igS− − ig′S+,

where S± ≡ Sx ± iSy , κ is the cavity loss rate, and we
neglect the effects of atom loss [22]. The Hamiltonian in
Eq. (2) conserves the total length of the collective spin since
[S2,Sα] = 0 for α = x,y,z. Likewise, Eq. (3) satisfies ∂tS2 = 0
for all κ . As such, the dynamics can be explored on the
Bloch sphere with |S| = N/2. In addition to this conservation
law there are further discrete symmetries. In particular, the
equations of motion in Eq. (3) are invariant under the parity
transformation

ψ → −ψ, S± → −S±, (4)

as in the equilibrium Dicke model. This symmetry is sponta-
neously broken on passing from the normal phase with ψ = 0
to the superradiant phase with ψ �= 0 [22,23]. The equations
of motion are also invariant under the combined variable and
parameter change

S → −S, ψ ↔ ψ∗, ω → −ω, g ↔ g′. (5)

3In the experiment [22], the spatial overlap of the cavity mode
profile and atomic density is not perfect, and so this feedback term is
reduced slightly from this ideal value.
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(a) (b) (c)

FIG. 3. (Color online) Schematic illustration of the different types
of behavior displayed by the semiclassical equations of motion in
Eq. (3), for trajectories on the Bloch sphere with |S| = N/2. (a)
Evolution from an unstable fixed point (open circle) to a stable
attractor (closed circle) of the long-time dynamics for all initial
conditions. Both the stable and unstable points have Ṡ = 0 and ψ̇ = 0.
However, for the stable attractor small perturbations decay, while for
the unstable fixed point fluctuations grow. (b) As for (a) but with
a hyperbolic fixed point (cross) having one stable and one unstable
eigenmode. Paths first approach and then leave the vicinity of this
hyperbolic point, before eventually reaching a stable attractor with
Ṡ = 0 and ψ̇ = 0. (c) Dynamics exhibiting a stable limit cycle with
Ṡ �= 0 and ψ̇ �= 0 for all initial conditions.

As we shall see in Sec. III B, both the symmetry in Eq. (4) and
the duality relation in Eq. (5) will have a direct manifestation
on the Bloch sphere portraits; the attractors are related by these
discrete transformations.

In order to get a full understanding of the behavior of
Eq. (3), it is necessary to address two questions. The first
regards the nature of the long-time attractors. The second
concerns the full time evolution and its connection to the
asymptotics. The former is important because there are
fundamental differences between the dynamical phase diagram
of the open system and the equilibrium phase diagram
of the Hamiltonian; even for κ → 0 these are generically
distinct. The latter question is crucial because the open-cavity
experiments have a finite duration and may not always reach
the long-time asymptote.

For most values of the parameters, the long-time asymptotes
are steady states and may be identified as stable fixed points.
That is to say, for these parameters there are values of S and
ψ for which Ṡ = 0 and ψ̇ = 0, and these steady states are
the eventual fate of the semiclassical dynamics for all initial
conditions. We will therefore discuss what these steady states
are, and where possible give analytical formulas for them. In
the following sections we will then use this information to
present dynamical phase diagrams, describing which stable
fixed points exist for different values of the parameters. We
will then address the dynamical bifurcations that correspond
to the phase boundaries, as well as addressing those cases
where the long-time asymptotes are more complicated than
steady states, such as persistent oscillations. We illustrate
these possibilities in Fig. 3.

Before discussing the semiclassical equations of motion
in Eq. (3), let us comment on some known limiting cases
that have been studied in the literature. With κ = 0, g′ = 0,
and U = 0, these equations correspond to the semiclassical
dynamics of the equilibrium Dicke model without the loss of
photons and without counter-rotating terms [52]. This model
arises in various contexts and has recently been discussed in
relation to nonequilibrium Cooper pairing [53–56]. In this

setting, the constituent fermions are modeled by Anderson
pseudospins [57], and the cavity light field ψ corresponds to
the closed molecular channel. A key finding of these studies
is the presence of collective oscillations. This may also be
seen by exploiting the integrability of the closely related BCS
(Bardeen-Cooper-Schrieffer) Hamiltonian [55,56]. The same
equations of motion also apply to polariton condensation
and the synchronization of oscillators [58,59]. Quantum
corrections to this collective dynamics have also been explored
in Refs. [60,61].

In contrast to the case when g′ = 0, when κ = 0, g =
g′, and U = 0, the equilibrium Dicke model is no longer
integrable. Nonetheless, the model is tractable in the thermody-
namic limit and displays a mean-field superradiance transition.
Strikingly, the energy levels reveal a crossover from Poisson
statistics to Wigner statistics in the vicinity of the critical
coupling [31,32]. This indicates the onset of quantum chaos
and is accompanied by chaotic attractors in the analogous
classical dynamics.

More recently, Dimer et al. [34] have proposed a novel
scheme for realizing the nonequilibrium Dicke model de-
scribed by Eqs. (1) and (2) with κ �= 0. The parameters in
this effective model are readily adjustable and they focus
on the particular case with g = g′ and U = 0. A notable
observation is that cavity losses lead to a shift of the mean-field
superradiance transition, in agreement with recent experiments
with U �= 0 [22,23,27].

It is evident from this survey of limiting cases that rich
collective dynamics is expected to emerge for the more general
system of equations given by Eq. (3) and in open-cavity
experiments. We shed light on this below.

B. Fixed-point attractors

In order to get a handle on the possible long-time steady
states, we first enumerate the solutions of the equations of
motion with Ṡ = 0 and ψ̇ = 0. These fixed-point solutions
may be either stable or unstable, and we postpone a discussion
of their stability properties until Sec. III C. It is readily verified
that the normal state (⇓) is always a possible steady-state
solution with all the spins pointing down, Sz = −N/2, and
no photons, ψ = 0. Likewise, so is the inverted state (⇑)
with all the spins pointing up, Sz = N/2, and no photons,
ψ = 0. More generally one may look for nontrivial solutions
with a nonvanishing photon population and a nontrivial
magnetization Sz. To find these configurations we first note
that a steady-state solution satisfying the first equation in
Eq. (3) automatically satisfies the second equation. As such
Eq. (3) reduces to a pair of complex equations. Denoting
ψ = ψ1 + iψ2 and S± = Sx ± iSy , one obtains[

ω0 + U
(
ψ2

1 + ψ2
2

)]
(Sx − iSy)

= 2[(g + g′)ψ1 + i(g − g′)ψ2]Sz (6)

and

[κ + i(ω + USz)](ψ1 + iψ2) = −i(g + g′)Sx − (g − g′)Sy.

(7)

In general these equations may be difficult to solve analytically.
However, simplifications occur when U = 0 or when g = g′.
We focus here on the latter since the experiments of Ref. [22]
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correspond to g = g′ and negative U . We discuss the behavior
for g �= g′ in Appendix B.

With g = g′, the fixed-point equations (6) and (7) read

(ω0 + U |ψ |2)Sx = 2g(ψ + ψ∗)Sz, (8a)

(ω0 + U |ψ |2)Sy = 0, (8b)

(ω + USz − iκ)ψ = −2gSx. (8c)

It follows from Eq. (8b) that there are two classes of
solution depending on whether Sy = 0 or ω0 + U |ψ |2 = 0.
We consider these two classes in turn and refer to the nontrivial
steady-state solutions as superradiant A (SRA) and B (SRB),
respectively. Assuming ω0 > 0, for U � 0 only the first type,
the SRA solution, may be present. This solution corresponds
to the familiar superradiant phase in the usual Dicke model
where U = 0. For U < 0 the second type, the SRB solution,
may exist [50]. As we shall discuss below, in general these
solutions are continuously connected in the broader parameter
space with g �= g′. Nonetheless, it is important to distinguish
between these distinct solutions of the steady-state equations
of motion when g = g′. We will discuss the experimental
consequences of this distinction in Secs. IV and V.

1. Superradiant A steady states

Equation (8c) may be rearranged as an equation for ψ and
substituted into Eq. (8a):

ω0(ω + USz)
2 + ω0κ

2 + 4g2US2
x = −8g2(ω + USz)Sz,

(9)

where we have canceled a factor of Sx �= 0 from both sides
of the equation. Using the fixed-length spin constraint S2

x =
N2/4 − S2

z , one obtains a quadratic equation for Sz. This may
be solved to yield [50]

Sz

N
=− ω

UN
±

√
g2N [4ω2 − (UN )2] − ω0UNκ2

(UN )2(ω0UN + 4g2N )
, (10)

where the accompanying steady-state photon population fol-
lows from Eq. (8c). In general only one of these roots
corresponds to a physical solution with |S| � N/2. However,
as we shall discuss in Sec. IV B and Appendix D, there are
regions of parameter space where both roots of Eq. (10) are
supported; see the regions denoted 2SRA in Figs. 5 and 17. In
addition, there are two possible signs for Sx = ±√

N2/4 − S2
z ,

where the associated sign of ψ is determined by Eq. (8c). This
sign choice corresponds to the parity symmetry in Eq. (4)
which is spontaneously broken at the superradiance transition.

The critical coupling strength corresponding to the onset of
superradiance starting from the normal (⇓) or inverted state
(⇑) is obtained by setting S = (0,0, ∓ N/2) in Eq. (9). One
obtains

g∓
a

√
N =

√
±ω0(ω2∓ + κ2)

4ω∓
, (11)

where ω∓ ≡ ω ∓ ωu and ωu ≡ UN/2. It is readily seen from
the Hamiltonian (2) that ω∓ plays the role of an effective cavity
frequency for the normal and inverted states, respectively.
For the special case where U = 0 this agrees with the

results of Dimer et al. [34]. In the additional limit κ = 0,
Eq. (11) reproduces the location of the superradiance transi-
tion, g

√
N = √

ωω0/2, for the equilibrium Dicke model with
counter-rotating terms. More generally, Eq. (11) gives the onset
of the SRA phase in the open-cavity system with transverse
pumping and g = g′, as recently confirmed experimentally
[22]. The explicit dependence on κ of the phase boundary in
Eq. (11) emphasizes the open character of the experimental
system.

2. Superradiant B steady states

For negative U it is evident from Eq. (8b) that another class
of solutions may be obtained if ω0 + U |ψ |2 = 0. Equation (8a)
may thus be fulfilled by taking ψ to be purely imaginary. It
then follows from Eq. (8c) that ω + USz = 0. This yields [50]

ψ = ±i

√
−ω0

U
, Sz = − ω

U
, Sx = ∓ κ

2g

√
−ω0

U
, (12)

where the magnitude of Sy follows from the normalization
condition S2 = N2/4. In order to obtain real solutions for Sy ,
we require S2

x + S2
z � N2/4. This is equivalent to the condition

g � gb where

gb

√
N = κ

√
ω0ωu

2
(
ω2 − ω2

u

) . (13)

In order to yield |Sz| < N/2 we require |ω| < |ωu|. In contrast
to the SRA solution which may exist for either sign of U

depending on the parameters, the functional dependence in
Eq. (12) clearly indicates that the SRB solution exists only for
U < 0. In the special case where g = gb and Sy = 0, the SRA
and SRB solutions coincide.

In conjunction with both possible signs for Sy = ±|Sy |,
Eq. (12) defines four distinct steady states. These divide into
two pairs of solutions, where the pairs of solutions are related
by the discrete parity symmetry in Eq. (4). As we shall see in
Sec. IV B, two of these four solutions correspond to stable
attractors of the long-time dynamics while the other two
solutions correspond to unstable fixed points; see Fig. 6(d).

C. Linear stability of fixed points and more exotic attractors

In Sec. III B we discussed the possible fixed points of the
equations of motion with Ṡ = 0 and ψ̇ = 0. Here we turn our
attention to the linear stability of these fixed points as potential
candidates for the long-time attractors. The calculations are
most transparent if we consider the instability of the normal
(⇓) and inverted states (⇑) where ψ = 0 and Sz = ∓N/2,
respectively. For arbitrary fixed points the approach is readily
generalized but is algebraically more involved; the details
are outlined in Appendix C. Writing ψ = ψ0 + δψ and
S− = S−

0 + δS− where ψ0 = 0, S−
0 = 0, and Sz = ∓N/2, and

substituting into Eq. (3), one obtains the linearized equations

˙δS− = −iω0δS
− ∓ igNδψ ∓ ig′Nδψ∗,

(14)
˙δψ = −(κ + iω∓)δψ − igδS− − ig′δS+,

where Ṡz = 0, ω∓ ≡ ω ∓ ωu, and ωu ≡ UN/2. Parametrizing
δψ = ae−iηt + b∗eiη∗t and δS− = ce−iηt + d∗eiη∗t and equat-
ing coefficients with the same time dependence, one obtains
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FIG. 4. (Color online) Dynamical phase diagram of the stable
attractors as a function of the cavity frequency ω and the coupling
g = g′ with parameters κ = 8.1 MHz and ω0 = 0.05 MHz taken
from Ref. [22]. The panels represent different values of the feedback
term U , going from U = 0 (top) to UN = −40 MHz (bottom). The
second panel corresponds to the experimental parameters used in
Ref. [22]. Points (a)–(f) marked in the bottom panel correspond
to the fixed-point illustrations shown in Fig. 6. The characteristic
time evolution at points (b), (f), and (g) is given in Figs. 7
and 8.

algebraic equations for a, b, c, and d. The self-consistency
equations characterize the possible instabilities and are given
by Eqs. (C1) and (C2). In the case where g = g′ the frequencies

η satisfy

(η2 − ω2
∓ − κ2)

(
η2 − ω2

0

)
∓4g2Nω∓ω0 − 2iκη

(
η2 − ω2

0

) = 0. (15)

The dividing line between exponentially growing and decaying
fluctuations corresponds to Eq. (15) having real solutions for
η. In this case the imaginary part of Eq. (15) vanishes when
either η = 0 or η2 = ω2

0. Demanding that the real part of
Eq. (15) vanishes when η = 0 yields Eq. (11). That is to say,
the normal and inverted states become unstable at precisely
the same point where the SRA state becomes possible. For
g � g∓

a , Eq. (15) has one unstable root, and in the language
of dynamical phase transitions this corresponds to a pitchfork
bifurcation. In the case of frequencies satisfying η2 = ω2

0 the
real part of Eq. (15) vanishes when ω∓ = 0. This implies that
the normal and inverted states also become unstable when
ω = ±UN/2, respectively. For values of ω beyond these
points, Eq. (15) develops two unstable roots, and the dynamical
phase transition corresponds to a Hopf bifurcation. As we shall
see in Secs. IV and VI, all of these instabilities describe bound-
aries in the emergent dynamical phase diagrams shown in
Figs. 4 and 13.

In the above analysis we have outlined the existence of
various fixed points and briefly discussed their linear stability
properties. These considerations are essential because more
than one of these fixed points may exist at a given point in
parameter space. For example, the normal (⇓) and inverted
(⇑) fixed points always exist, possibly as unstable fixed points,
even in the presence of the superradiant solutions. As we shall
see in Sec. IV, there are in fact cases where more than one
stable fixed point exists at a given point in parameter space.
In addition to these coexistence phases, where the final state
depends on the initial conditions, it is also possible to find
regions of parameter space where no stable fixed point exists.
In these cases the system may be attracted to time-dependent
solutions such as limit cycles, as found in other nonlinear
dynamical systems. In the remainder of this paper we search for
the complete set of stable attractors of the long-time dynamics,
including fixed points, bistable and multistable coexistence
phases, and time-dependent trajectories.

IV. DYNAMICAL PHASE DIAGRAM OF LONG-TIME
ATTRACTORS FOR g = g′ AND U < 0

In the previous section we gave a brief overview of
the simplest fixed-point attractors and their linear stability
properties. In this section we build upon these results and
establish the dynamical phase diagram corresponding to the
semiclassical dynamics in Eq. (3). That is to say, we identify
which stable long-time attractors exist at a given point in
parameter space. In order to make contact with experiment
[22,23], in this section we restrict our attention to g = g′ and
U < 0. We begin in Sec. IV A by exploring the phase diagram
as a function of the remaining parameters g, ω, and U , where
the value of ω0 = 0.05 MHz is motivated by Ref. [22]. In
Sec. IV B we then focus on different points in the dynamical
phase diagram in order to clearly expose the nature of the
underlying attractors, including their stability properties and
their locations on the Bloch sphere. In Sec. IV C we then
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discuss the characteristic time evolution toward the stable
asymptotic states, and we rationalize these findings using
linear stability analysis. In some regimes of parameter space,
the time evolution can be rather slow, and we characterize
where this occurs. We discuss the significant implications
of these regions of long-lived transients for finite-duration
experiments in Sec. V.

A. Phase diagram of asymptotic stable attractors

As discussed in Sec. II, the experiments of Ref. [22]
are performed with ω0 � 0.05 MHz, κ = 8.1 MHz, UN �
−10 MHz, and g = g′. We therefore summarize the dynamical
phase diagram with these parameters. In order to provide some
orientation, we illustrate how this phase diagram relates to that
for the open Dicke model with U = 0, as a function of ω and
g. We consider fixed values of the feedback term U , starting
from the simplest possible case with U = 0, and decrease this
parameter through the experimental value; see Fig. 4.

In this nonequilibrium setting, each phase is labeled
according to the complete set of stable long-time attractors
of the semiclassical dynamics given in Eq. (3). That is to
say, the phase diagram corresponds to starting the system in a
wide variety of initial conditions and examining the totality of
stable end points. In this respect, the phase boundaries should
be thought of as dynamical phase transitions, which separate
distinct regimes of asymptotic behavior. In particular, the blue
and red boundaries in Fig. 4 correspond to the instability of the
normal (⇓) and inverted (⇑) states, respectively, and are given
by Eq. (11), while the accompanying horizontal segments
correspond to ω∓ = 0. The gold phase boundary indicates
the critical coupling for the onset of the SRB phase and is
given by Eq. (13). It is important to emphasize that, while
all of these dynamical phase boundaries may be investigated
experimentally, not all of them will emerge in a given
experiment; the relevant phase boundaries are determined by
the initial conditions. In particular, the experiments performed
so far all begin in the normal state (⇓) with no photons [22,23].
However, this is not a fundamental experimental restriction,
and it is essential to survey the totality of attractors for all
initial conditions, before considering particular initial states.

For U = 0 and ω > 0, the structure of Fig. 4 mirrors
the equilibrium phase diagram of the Dicke model, having
a transition from a phase at low g where only the normal state
(⇓) is possible, to a phase where only the SRA state occurs.
In the terminology of dynamical systems, this particular
dynamical phase transition occurs via a pitchfork bifurcation at
g
√

N =
√

ω0(ω2 + κ2)/4ω [34]; a pair of superradiant fixed
points emerge when the normal state loses stability. This
parallels the situation in the equilibrium Dicke model where
a pair of parity-related superradiant solutions emerges at a
continuous phase transition. It is notable that as ω → 0, the
critical value of g required for superradiance tends to infinity.
This is because for g = g′ only the real part of ψ drives
the polarization of the two-level system via the collective
coupling g(ψ + ψ†)(S+ + S−); as ω → 0, ψ becomes purely
imaginary as may be seen from Eq. (3). In addition, for ω < 0,
the open dynamical system shows behavior that could not
occur in thermal equilibrium; the normal state (⇓) becomes
unstable and the inverted state (⇑) with Sz = N/2 and ψ =

 0
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FIG. 5. (Color online) Vertical slice through the second panel
of Fig. 4 with UN = −10 MHz, corresponding to the experimental
parameters used in Ref. [22]. Variation of (a) |ψ |2, (c) Arg(ψ), and
(e) Sz on passing from the SRA to the SRB phase. In the vicinity of
both of these transitions there is a narrow region of bistability denoted
as 2SRA, where both of the SRA solutions given in Eq. (10) coexist;
see (b), (d), and (f) for magnified images of the highlighted regions.

0 is stable instead. It is evident from the Hamiltonian in
Eq. (2) that the inverted state is of higher energy than the
normal state. However, in contrast to the suggestions of
Ref. [62], the relevant question for the experimental realization
is dynamical stability, as opposed to minimum free energy.
This behavior is directly confirmed by the duality of the
equations of motion given in Eq. (5), and is reflected in the
ω → −ω inversion symmetry of Fig. 4.

For negative U , the phase boundaries between the normal
and inverted states and the SRA phase shift to lower and higher
frequencies, respectively, in accordance with Eq. (11); see
Fig. 4. This can be interpreted in terms of a state-dependent
shift of the cavity frequency ω∓ = ω ∓ ωu, as suggested by
the Hamiltonian (2) [20,42]. Within the region of overlap
the SRB phase may be stabilized, as shown in Fig. 4. In
particular, this results in a change in both the intensity and
the phase of the cavity light field as indicated in Fig. 5. In
addition, in the vicinity of these transitions between the SRA
and SRB states, a narrow coexistence region emerges, denoted
2SRA, where both solutions of Eq. (10) are physical; see
Appendix D. Indeed, such coexistence phases are abundant
in the phase diagram shown in Fig. 4. For example, as a result
of the effective frequency shifts induced by negative U , there
is a region at low g where both the normal and inverted states
coexist. More strikingly, for UN < −2κ in this overlap region,
there is an extension of the region of superradiant phases to
lower g, so that the SRB fixed point can coexist with both the
normal and the inverted states; see for example the point (d)
in Fig. 4. In such a region, there are multiple possible stable
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attractors, and the ultimate fate of the system depends on the
initial conditions. In particular, this will lead to multistability
of the cavity output field. In addition, hysteresis can occur in
these multistable regions. For example, increasing to a large
value of g and then slowly reducing the value would lead
to superradiant behavior at the point (d) shown in Fig. 4; in
contrast, slowly increasing g from zero would allow the system
to remain in the normal state for the same final parameters.

It is evident from the above discussion that the behavior
of the open system is extremely rich and is fundamentally
distinct from the equilibrium case with κ = 0. As emphasized
above and in Ref. [50], the behavior of the open system is
controlled by the stable attractors, which do not necessarily
coincide with the points of minimal free energy. As such,
there is a crucial distinction between the κ → 0 limit of the
dynamical system and the equilibrium behavior at κ = 0.4 In
order to address experiments with an open cavity one must
consider time-dependent dynamics and κ �= 0. In this setting,
equilibrium concepts should only be applied with caution.

B. Nature of attractors

In the previous section we have considered the dynamical
phase diagram with g = g′ and U � 0. Here, we provide a
detailed discussion of the nature of the long-time attractors
indicated in Fig. 4. We focus on the representative points (a)–(f)
shown in Fig. 4, and chart the associated motion of the spins
on the Bloch sphere with |S| = N/2. In Fig. 6, we show the
results obtained by numerical integration of the differential
equations in Eq. (3), using an adaptive time step fourth-order
Runge-Kutta routine from the Numerical Algorithms Group
library [63]. In addition to the characteristic trajectories, in
Fig. 6 we indicate the locations and nature of the various fixed
points with ψ̇ = 0 and Ṡ = 0. The nature of these attractors is
determined by the number of unstable eigenmodes for small
fluctuations. If no eigenmodes are unstable, the fixed point
is stable and is indicated by a filled circle. If one eigenmode
is unstable, it is a hyperbolic fixed point (or equivalently a
saddle node) and is marked as a cross. If two eigenmodes are
unstable, it is an unstable fixed point and is represented by an
open circle. For ω0 � κ there are never more than two unstable
eigenmodes, meaning that the state of the photon field rapidly
comes to follow the state of the collective spin.

In order to gain some orientation we discuss the individual
panels in Fig. 6. For the parameters used in Fig. 6(a), there
is one stable attractor on the Bloch sphere corresponding
to the normal state (⇓). This is the ultimate fate of the
system for all initial conditions as indicated in Fig. 4; the
inverted state (⇑) corresponds to an unstable fixed point. In
passing to Fig. 6(b), the normal state (⇓) becomes an unstable
hyperbolic fixed point and an SRA attractor with a nontrivial
magnetization Sz (or its parity symmetry partner on the other

4It is notable that in the regime where the dynamically stable
phase is SRB, the equilibrium system considered in Ref. [62] for
κ = 0 is thermodynamically unstable; the Hamiltonian is not bounded
from below and the minimum-energy state occurs at infinite photon
number. Such an infinite density is unphysical, particularly in the
presence of a nonvanishing photon loss rate κ .
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FIG. 6. (Color online) Bloch spheres with |S| = N/2 correspond-
ing to the points (a)–(f) in Fig. 4 showing the fixed points where
Ṡ = 0 and ψ̇ = 0. We distinguish between stable fixed points (filled
circles), unstable fixed points (open circles), and hyperbolic points
with one stable and one unstable eigenmode (crosses). The presence
of more than one stable attractor on the Bloch sphere corresponds
to a coexistence phase in Fig. 4. The trajectories show the typical
time evolution, where the initial conditions are chosen in order to
illustrate the attractors. In particular, the time scale for approaching
the SRA fixed point in (b) is significantly longer than the time
scale for approaching the SRB fixed point in (f). In the language
of dynamical systems the transition from (a) to (b) is a pitchfork
bifurcation where a single mode goes unstable. The transition from (c)
to (a) is a subcritical Hopf bifurcation where two modes go unstable
simultaneously. The transition from (c) to (d) involves the appearance
of eight additional fixed points; these correspond to two stable and
two unstable SRB fixed points and four hyperbolic SRA fixed points.
The transitions from (d) to (e) and (e) to (f) are inverse pitchfork
bifurcations in which a pair of hyperbolic SRA fixed points coalesce
at a previously stable fixed point.

side of the Bloch sphere) governs the long-time dynamics.
In contrast, in Figs. 6(c), 6(d), and 6(e) we see multiple
stable fixed points corresponding to the coexistence phases
⇓ + ⇑, SRB+ ⇓ + ⇑, and SRB+ ⇓, respectively; see Fig. 4.
For these parameters, the final state of the system depends
on the initial conditions, and we only highlight some typical
trajectories. Nonetheless, the totality of stable fixed points
completely accounts for the possible asymptotic behavior and
therefore discriminates between different dynamical phases. In
Fig. 6(f) we see both stable and unstable nontrivial fixed points
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corresponding to the superradiant phase SRB; see Fig. 4. Note
that in Fig. 6 we have focused on cases with ω > 0. For ω < 0
the fixed points can be immediately found from the duality
under the transformation given in Eq. (5). This corresponds to
inverting the Bloch spheres shown in Fig. 6.

While the attractors determine the long-time asymptotic
behavior of the system, there are cases where the evolution
proceeds on surprisingly long time scales. This may be seen
in Figs. 6(a)–6(d), where the time scale for relaxation toward
the fixed point is much longer than the period of the orbits
encircling it; indeed, the latter cannot be resolved in these
panels, leading to a dense covering of the Bloch sphere. In
addition, the total time interval for approaching the SRA fixed
point in Fig. 6(b) is much longer than that for approaching the
SRB fixed point in Fig. 6(f). We will investigate this crucial
distinction in more detail below.

C. Time evolution

In order to shed light on the dynamical distinction between
the SRA and SRB fixed points, we examine the time evolution
starting near the normal state (⇓) for the parameters used
in Figs. 6(b) and 6(f) with ω > 0; see Fig. 7. By specifying an
initial condition which is not a stable fixed point, the dynamical
traces correspond to a sudden quench into the superradiant
state. However, since the initial state corresponds to an unstable
fixed point, the dynamics would remain stuck in the absence
of noise or quantum fluctuations. In practice, these inherent
fluctuations will destabilize the initial state, and a nontrivial
time evolution will take place.

In order to probe the intrinsic quench dynamics we consider
two different approaches for perturbing the initial condition.
The first approach is to displace the initial state by Sx =
Sy = √

N , corresponding to the characteristic size of quantum
fluctuations in the initial state; the subsequent semiclassical
time evolution gives the pale gray trajectories in Fig. 7. The
second approach is to use a Wigner-distributed ensemble of
initial conditions in order to incorporate harmonic fluctuations
around the normal state (⇓); see for example Refs. [64,65] and
Appendix F. The corresponding time dynamics is represented
by the black lines in Fig. 7. It is readily seen that both the√

N displacement and Wigner approaches are in quantitative
agreement regarding the overall time scales for evolution
toward the SRA and SRB fixed points. Although the amplitude
of the collective oscillations is partially washed out by the
Wigner distribution of initial spin states, oscillations of the
same period nonetheless remain in these examples.

Comparing the cases shown in Fig. 7, there is clearly
a significant difference in the relaxation time scales. For
evolution toward the SRA fixed point shown in the upper two
panels of Fig. 7, there are oscillations at frequencies of a few
kilohertz, with a decay time of order 100 ms. In contrast, for
evolution toward the SRB fixed point shown in the bottom two
panels of Fig. 7, the time scale of the “oscillation” is similar
(∼0.2 ms), but only one oscillation occurs before the steady
state is reached. As discussed in Ref. [50], the remarkably slow
dynamics near the SRA fixed point is related to the proximity to
a dynamical phase boundary in the extended parameter space
where g and g′ are allowed to vary independently. We will
return to explore this point further in Sec. VI B.
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FIG. 7. (Color online) Time evolution in the superradiant regime
with initial conditions that are close to the normal state (⇓). The
top two panels (and insets) correspond to point (b) in Figs. 4 and
6. The bottom two panels correspond to point (f). In each case, the
evolution of the semiclassical equations for a single initial condition
with Sx = Sy = √

N is shown in gray (marked SC). The average
evolution for a Wigner-distributed ensemble of initial conditions is
shown in black. The insets in the top two panels show magnified
images of the highlighted regions.

Thus far we have considered the time evolution at points (b)
and (f) in Fig. 4, corresponding to ω > 0. For completeness we
should also consider the time evolution at point (g) with ω < 0.
Owing to the duality in Eq. (5), the dynamics starting from
Sz = −N/2 with ω > 0 is related to the dynamics starting
from Sz = N/2 with ω < 0. We should therefore consider the
quench dynamics starting from Sz = −N/2 and ω < 0 sepa-
rately. This is illustrated in Fig. 8, along with the accompanying
dynamics on the Bloch sphere. It is notable that the dynamics
in this regime where ω− < 0 has a remarkably long time scale.
From the Bloch sphere, and the time dependence of Sz, it is
clear where this comes from: the trajectory first spirals around

013817-9



M. J. BHASEEN, J. MAYOH, B. D. SIMONS, AND J. KEELING PHYSICAL REVIEW A 85, 013817 (2012)

 0  50  100  150  200
t (ms)

 0

 20

 40

 60

 80

 100

 120

 140

|ψ
|2

SC
Wigner

-0.4

-0.2

0

0.2

0.4

S
z

ω=-30MHz, g√N=0.9MHz

FIG. 8. (Color online) Time evolution starting close to the normal
state (⇓) for the parameters at point (g) in Fig. 4. As in Fig. 7,
the semiclassical dynamics for both a single starting point with
Sx = Sy = √

N (marked SC) and a Wigner-distributed set of initial
conditions are shown. The latter is indicated in black, and the
semiclassical trajectory is shaded to match the Bloch sphere shown
as an inset; for these initial conditions the trajectory almost covers
the Bloch sphere.

the unstable normal state (⇓), growing in amplitude, until it
reaches the stable manifold of the hyperbolic inverted state
(⇑), from which it then transfers to spiral around the stable
attractor. As such, almost the entire Bloch sphere is covered
by this trajectory, and a very long waiting time of order 0.2
s is required before reaching the asymptotic state. In contrast
to Fig. 7 the long-time asymptote is not reached after 100 ms.
In Sec. V we will consider the implications of this type of
behavior for the phase diagram obtained in the experiments of
Ref. [22], which have a finite duration of order 10 ms.

V. GROWTH AND DECAY TIMES AND IMPLICATIONS
FOR FINITE-DURATION EXPERIMENTS

In the above discussion, we have seen that the time scale for
reaching the asymptotic attractors varies considerably between
different points in parameter space. In order to make contact
with experiment [22], it is therefore crucial to understand how
this time scale varies throughout the phase diagram. In this
section we address this key issue.

It is evident from Fig. 8 that in order to characterize the
temporal evolution we require at least two principal time
scales. The first is the time scale for departing from the initial
state, and the second is the time scale for approaching the
final asymptotic attractor. Both of these time scales may be
extracted by linearizing around the initial and final states
as appropriate, and calculating the eigenvalues (frequencies)
using the methods outlined in Sec. III C and Appendix C. In
Fig. 9 we use these eigenvalues to plot the characteristic time
for the normal state to become unstable, if it does so, and
the characteristic decay time in the approach toward the final
state; in the case of asymptotic coexistence phases we focus

ω

μ

μ

ω
√

⇑

⇓

FIG. 9. (Color online) Characteristic time scales of the semi-
classical dynamics. We use the same parameters as in Fig. 4 with
UN = −10 MHz corresponding to the experiments of Ref. [22]. (a)
shows the time required for the instability of the initial ground state
(⇓) to develop; in regions where this state is stable this time scale is
taken to ∞. (b) shows the asymptotic time scale for approaching the
final stable state. In the regions of multistability, the rate of attraction
to the final state for the given initial conditions (⇓) is shown. In both
panels the time scales show a strong variation throughout the phase
diagram, with notable implications for finite-duration experiments. A
vertical slice along the red dashed line is given in Fig. 10.

on the state that is actually reached in a quench experiment
that starts close to the normal state (⇓). It is clear from Fig. 9
that both of these fundamental time scales vary significantly
throughout the phase diagram. In particular, in the region
where ω− < 0, both the time scale for the initial destabilization
of the normal state and the time scale for decay toward the
asymptotic state are increased. The combination of these two
time scales provides a lower bound on the overall duration
of the intrinsic dynamics. For ω− < 0 we therefore expect a
slower approach to the asymptotic regime. In order to gain a
better handle on this issue, we provide an analytic discussion
of the constituent time scales below. We begin in Sec. V A 1
with an analysis of the initial growth times before examining
the final asymptotic decay times in Sec. V A 2. In Sec. V B we
then consider the implications for experiments which monitor
the photon intensity over a finite time interval.

A. Growth and decay times

1. Growth times

The initial growth time in Fig. 9(a) can be understood and
estimated analytically, by using the linearization discussed
in Sec. III C. Considering Eq. (15) for the normal state with
Sz = −N/2 the eigenvalues η obey

[(η + iκ)2 − ω2
−]

(
η2 − ω2

0

) − 4ω0ω−g2N = 0, (16)
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where ω− ≡ ω − UN/2. To obtain the growth rate for a
given set of parameters we must find the solution of Eq. (16)
with the largest positive imaginary part η′′. Solving Eq. (16)
numerically, we plot the corresponding growth time 1/η′′ in
Fig. 9(a). It is evident that there are distinct growth times in the
top and bottom portions of Fig. 9(a) separated by the critical
line ω− = 0. The origin of this distinction may be traced to
a change in behavior of the root structure of Eq. (16). For
the parameters shown in Fig. 9(a), when ω− > 0 a single one
of the four roots goes unstable, while for ω− < 0 two roots
with same imaginary parts go unstable simultaneously. In the
language of dynamical systems, the first scenario corresponds
to a pitchfork bifurcation, whilst the latter corresponds to a
Hopf bifurcation [66].

In order to gain a quantitative handle on the observed growth
times, we may exploit the small parameter ω0/κ in order to find
analytic approximations for η. Anticipating that |η| ∼ ω0 � κ

we neglect η in the combination η + iκ . This yields a quadratic
equation which provides

η ≈ ±
√

ω2
0 − 4ω0ω−g2N

ω2− + κ2
= ±ω0

√
1 −

(
g

g−
a

)2

, (17)

where g−
a is given in Eq. (11) and the plus sign corresponds

to the growing mode. For g > g−
a , η is imaginary, and the

characteristic growth rate is indeed of order ω0 as we assumed.
However, for ω− < 0 it is evident from the first form of
Eq. (17) that η ∈ R and therefore Eq. (17) cannot apply in
the lower region of Fig. 9(a). To fully describe the observed
behavior it is necessary to carry out the expansion of η to higher
order in ω0/κ . Parametrizing η = ±ω0

√
1 − (g/g−

a )2 + δ±,
where δ± � ω0 � κ , and substituting into Eq. (16), one
obtains

η ≈ ±ω0

√
1 −

(
g

g−
a

)2

− 4iκω0ω−g2N

(ω2− + κ2)2
. (18)

As shown in Fig. 10(a), the root with the plus sign in
Eq. (18) accurately reproduces the exact growth times ob-
served in Fig. 9(a). In particular, for ω− > 0 one may neglect
the last term in Eq. (18), but for ω− < 0 it is essential to retain
this contribution as the leading term no longer corresponds to a
decay rate. In the former case where ω− > 0, the decay rate is
typically of order ω0 = 0.05 MHz; this corresponds to a time
scale of 20 μs, in agreement with the upper region of Fig. 9(a)
and the central portion of Fig. 10(a). In the latter case, where
ω− < 0, the decay rate is of order ω2

0/κ � 0.3 kHz, where
we use the functional dependence of the critical coupling in
Eq. (11). This corresponds to a much longer time scale of
order 3 ms, in agreement with the lower region of Fig. 9(a)
and the left-hand side of Fig. 10(a). In fact the exact time scales
diverge on approaching the phase boundaries where the ⇓ state
is stable; see Fig. 10(a). This may also be interpreted as critical
slowing down [50]. For example, approaching the left region
of ⇓ in Fig. 10(a) from the right, one has η ∼

√
g−

a − g; this
is analogous to an equilibrium mean-field exponent zν = 1/2.
On the other hand, approaching the left region of ⇓ from the
left, one has η ∼ (ω − UN/2). This latter behavior arises from
the second term in Eq. (18) and exists only in the open system
with κ �= 0; it is analogous to a critical exponent zν = 1. A
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FIG. 10. (Color online) Vertical slice through Fig. 9 with g
√

N =
0.6 MHz. (a) Initial growth time obtained by linear stability analysis
around the normal (⇓) state. The open circles show the exact
semiclassical results obtained numerically from the quartic Eq. (16).
The solid line corresponds to the approximation given in Eq. (18)
where the plus sign corresponds to the unstable mode. (b) Asymptotic
decay time obtained by linear stability analysis around the appropriate
final asymptotic state. The open circles correspond to the eigenvalue
of |ηĨ − M̃| = 0 with the largest imaginary part, where M̃ is given by
Eq. (C5). The solid gold (mid gray) line corresponds to the imaginary
part of Eq. (20) and the solid yellow (light gray) line corresponds to
the exact result in Eq. (22). In both panels, the shaded regions indicate
where the normal state (⇓) is stable. Both time scales show a strong
dependence on the parameters.

divergent growth time may also be seen in the lower left corner
of Fig. 9(a), since g → 0 in the second term of Eq. (18). For
recent discussions of critical behavior in driven open cavities,
see Refs. [67–70].

2. Decay times

Turning to the asymptotic decay time in Fig. 9(b), we
consider the approach toward the three stable fixed points ⇑,
SRA, and SRB, which differ from the initial state ⇓. In order
to extract the associated time scales we must linearize around
the asymptotic fixed points and find the eigenvalue with the
smallest imaginary part.

For decay toward the inverted state (⇑), we may invoke
our previous result in Eq. (18) with the replacement ω− →
ω+. In order to extract the time scale governing the approach
toward the SRA state, we must linearize around this fixed
point. Following the general approach used in Sec. III C, this
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yields the characteristic equation

[(η + iκ)2 − ω̃2]

[
η2 −

(
ω̃0N

2Sz

)2
]

= −2ω̃0ω̃

Sz

|2gSz − UψSx |2, (19)

where ω̃ ≡ ω + USz and ω̃0 ≡ ω0 + U |ψ |2 are useful vari-
ables suggested by Eq. (3); for more details see Appendix C
and Eq. (C11). The ultimate time scale controlling the decay
toward the fixed point is governed by the slowest roots of
Eq. (19). Anticipating that these have |η| ∼ ω̃0N/2Sz � κ ,
we may once again neglect the term η in the combination
η + iκ . This yields a quadratic equation for η with solutions
η = ±η0 where η0 ∈ R. In order to refine this approximation,
we parametrize η = ±η0 + δ± where δ± � ω0 � κ , and
substitute into Eq. (19). Retaining terms up to linear order
in δ, one obtains

η ≈ ±η0 + 2iκω̃0ω̃|2gSz − USxψ |2
(ω̃2 + κ2)2Sz

. (20)

In the limit U = 0 one finds Im(η) ≈ −κω2
0/(ω2 + κ2), where

we use Eq. (9) to substitute for Sz. This agrees with our
previous findings [50] and yields a characteristic decay rate
of order ω2

0/κ � 0.3 kHz. This is consistent with the 3 ms
time scale found in Figs. 9(b) and 10(b). In addition, in the
limiting case of the SRA phase where ψ = 0 and Sz = −N/2,
we recover the characteristic frequencies of the normal (⇓)
state as given by Eq. (18). As shown in Fig. 10(b), Eq. (20)
accurately reproduces the results obtained by direct numerical
solution of Eq. (19).

For decay toward the SRB state, the results are much
simpler. In this case the characteristic frequencies satisfy

[η(η + iκ) − 4gUψ2Sy]2 = 0, (21)

where ψ ≡ ψ1 + iψ2; see Appendix C. In the case of the stable
SRB fixed points discussed in Sec. III B 2, where (ψ,Sy) =
±(i

√
(−ω0/U ),|Sy |), one readily obtains exact results for the

repeated roots of Eq. (21):

η = −i
κ

2
±

√√√√−κ2

4
+ 2ω0κ

√
g2 − g2

b

g2
b

, (22)

where we use the fact that S2
y = ω0κ

2(g−2 − g−2
b )/4U . The

decay toward the SRB state is governed by the slowest
mode corresponding to the positive root in Eq. (22). Since
ω0 � κ we may Taylor-expand this root to obtain Im(η) �
−2ω0

√
g2/g2

b − 1 + O(ω2
0/κ). As shown in Fig. 10(b), the

exact analytical result (22) is in agreement with the numerical
solution of Eq. (21) as required.

From the above analysis we see that the characteristic decay
rates toward the SRA and SRB states are of order ω2

0/κ and
ω0, respectively. These correspond to decay times of the order
of 3 ms and 20 μs, which yields a faster approach toward the
SRB phase in comparison to the SRA phase. This is confirmed
by the typical trajectories on the Bloch sphere as shown in
Figs. 6(b) and 6(f). It is readily seen that many more orbits are
executed in reaching the SRA fixed point. We see that the SRA

and SRB attractors differ in their dynamic characteristics, in
addition to their steady-state forms.

B. Photon intensity map extracted at intermediate times
and implications for finite-duration experiments

Having examined the characteristic growth and decay times
across the phase diagram, we now consider the consequences
for finite-duration experiments. In particular, for ω− < 0, the
semiclassical dynamics predicts relatively long growth times
and comparably long approach times, as shown in Fig. 9.
In Fig. 11 we compare the resulting photon intensity map
obtained after a hypothetical infinite-duration experiment to
that obtained after 10 ms. It is readily seen that the lower
region, corresponding to ω− < 0, has not fully reached the
asymptotic regime.

In order to make close contact with the experiment of
Ref. [22], we should also incorporate the details of their
data aquisition scheme. In particular, the photon intensity
map is obtained by increasing the laser intensity over a 10
ms interval and recording the photon intensity during this
period. This procedure is then repeated for other detunings
and an intensity map is generated. In order to facilitate a direct
comparison, we incorporate the effects of the sweep in our
numerical simulations, where we take g2 ∝ t . In Fig. 12(a) we
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FIG. 11. (Color online) Photon intensity maps showing |ψ |2 after
two different time intervals, with initial conditions that are close to the
normal state (⇓) with Sx = Sy = √

N . We use the same parameters
as in the second panel of Fig. 4 with UN = −10 MHz, corresponding
to the experiments of Ref. [22]. (a) Intensity map obtained in the final
asymptotic state with t → ∞, showing the distinct regions of SRA,
SRB, and ⇑ states. (b) Intensity map obtained after 10 ms showing
good qualitative agreement with the asymptotic attractors in (a), but
with a slower approach in the SRA regions. A cross section of (a)
with g

√
N = 1.0 MHz is provided in Fig. 5.
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FIG. 12. (Color online) |ψ |2 found by increasing g2 ∝ t and
recording the value achieved as a function of time. We use the same
parameters as in Fig. 4 with UN = −10 MHz, corresponding to
the experiments of Ref. [22]. The sweep is chosen so that g2N =
(t/t0) × 2.5 MHz2, where t0 = 10 ms in (a) and (b) and t0 = 200
ms in (c). The top two panels correspond to the experimental sweep
duration used in Ref. [22]. (a) Comparison of the steady-state value of
|ψ |2 with that obtained by a semiclassical evolution (marked SC) and
Wigner-distributed initial conditions, for the value of g

√
N reached

at a given time with ω = 40 MHz. (b) Photon intensity map obtained
after a 10 ms sweep. (c) Photon intensity map obtained after a 200 ms
sweep. In comparing these figures to Fig. 5 of Ref. [22], one should
note that the vertical scale on our intensity plots is the photon
frequency ω appearing in Eq. (2). In comparison, the authors of
Ref. [22] use the detuning of the pump from the bare-cavity frequency
as the vertical scale, hence the inverted and shifted axis.

show how, for one value of ω, |ψ |2 evolves with increasing
matter-light coupling. We take g2N = (t/t0) × 2.5 MHz2,
where t0 = 10 ms in Figs. 12(a) and 12(b), and 200 ms in
Fig. 12(c). As discussed in Sec. IV C, we present both a single
semiclassical trajectory with Sx = Sy = √

N and the results of
Wigner-distributed initial conditions. As found previously, it is
readily seen from Fig. 12(a) that quantum fluctuations reduce
the oscillations in the photon intensity, but that the overall
dependence conforms to the semiclassical analysis. Moreover,
for this set of parameters, the results of the 10 ms sweep are
also in good agreement with the steady-state photon intensity.

We may therefore use the semiclassical approach to map out
the resultant phase diagram.

A notable finding is that, in other regions of the phase
diagram, sweeps longer than 10 ms may be required in order
to reveal signatures of the asymptotic attractors. To see this
more clearly, in Figs. 12(b) and 12(c) we show the results of
the semiclassical evolution in Eq. (3), with

√
N displacement

of the initial state, and a sweep profile. It is readily seen that for
ω− > 0 the results of the 10 ms sweep are already quite close
to those for the long-time asymptotic state. However, as can
be anticipated by the large instability growth and asymptotic
approach times for ω− < 0, the normal state (⇓) persists.
Despite its ultimate instability, the 10 ms is insufficient for
the instability to grow. In contrast, with a sweep duration of
200 ms, one can see the instability of the normal state in this
region, although the final asymptotic state of the semiclassical
dynamics has not been reached.

VI. GENERAL PHASE DIAGRAM

Having discussed the phase diagram and the collective
dynamics for the experimentally explored case with g = g′ and
U < 0 [22], we now consider the broader parameter space. In
Sec. VI A we consider the case with g = g′ and U > 0, and in
Sec. VI B we examine the case with g �= g′. Notable features
of both of these cases are parameter regimes in which no stable
fixed point exists and for which persistent oscillations arise.

A. Phase diagram for g = g′ and U > 0

The sign of U can be varied by switching between red
and blue detuning of the cavity light field with respect to the
atomic transition. This may be seen from the derivation of the
effective Dicke model Hamiltonian, as outlined in Sec. II and
Appendix A. In Fig. 13 we show the resulting phase diagram
with g = g′ and U > 0; this is the analog of the phase diagram
shown in Fig. 4.

With U > 0, the phase boundaries at ω± = 0 shift in the
opposite direction to those obtained with U < 0. As such, the
boundaries separate, rather than overlap, as shown in Fig. 13.
Instead of finding coexistence phases, as found in Fig. 4, a
regime of persistent oscillations emerges as shown in white
in Fig. 13. In this region, no steady state is ever reached, and
the photon number continues to oscillate periodically at long
times. This is illustrated in Fig. 14.

For these persistent oscillations with g = g′ it is possible
to characterize their behavior analytically. In this case the
emergent state is a limit cycle [50]. To see this one may note
from Fig. 14 that the asymptotic behavior has constant Sz,
and in fact Sz = −ω/U . From the equations of motion in
Eq. (3), we see that Ṡz = −ig(ψ + ψ∗)(S+ − S−). However,
it also clear from Fig. 14 that Sy �= 0 and so S+ �= S−. We
therefore require Re(ψ) = 0, as found in the SRB steady state.
With these conditions on Sz and ψ , Eq. (3) simplifies. Writing
S− = re−iθ , where r2 = N2/4 − ω2/U 2 is a constant of the
motion, one obtains

θ̇ = ω0 + U |ψ |2, ψ̇ + κψ = −2igr cos θ. (23)

This pair of coupled first-order equations describes the exact
dynamics of the persistent oscillations. Since the motion is
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FIG. 13. (Color online) Dynamical phase diagram as a function
of ω and g = g′ for U � 0. The phase boundaries at ω± = 0 separate
with increasing U , and a regime of persistent oscillations emerges.
The dynamics in this regime is shown in Fig. 14. In contrast to Fig. 4,
the SRB phase is absent here since U � 0.

in a two-dimensional plane, the attractor is a simple limit
cycle [66]. In Eq. (23), the phase angle θ continually increases,
but has alternate fast and slow regions; the motion is faster
when |ψ | is larger as may be seen in Fig. 14. Such behavior
is analogous to that of a damped driven pendulum. In fact,
for κ � ω0 + U |ψ |2, one may adiabatically eliminate |ψ | to
obtain θ̇ = (ω0 + λ) + λ cos(2θ ) where λ = Ug2r2/2κ . This
is the equation of motion for a damped driven pendulum,
and since ω0 > 0 it is driven above the threshold required
for persistent oscillations.

B. Phase diagram for g �= g′

Up until now, we have mainly restricted our discussion
to the experimentally realized case where one necessarily
has g = g′ [22]. However, there are important reasons to
explore what happens when this condition is relaxed. In
particular, there are a number of phase boundaries in the
extended g,g′ parameter space, and these can be rather close
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FIG. 14. (Color online) Persistent oscillations at ω = 10 MHz,
UN = +40 MHz, and g

√
N = 1 MHz, starting close to the normal

state (⇓) with Sx = Sy = √
N . The upper panel shows the attraction

toward persistent oscillations, illustrating the transient behavior at
short times and the persistent oscillations at later times. The inset
shows the same data on the Bloch sphere using the same shading
scheme. For all times after ∼15 ms, the trajectory on the Bloch sphere
is restricted to a circle at constant polar angle. The lower panel shows
the time dependence of |ψ |2 and S in the persistent-oscillation regime.

to the experimental situation with g = g′. As highlighted in
Ref. [50], proximity to these phase boundaries is instrumental
in explaining regions of slow decay in the g = g′ dynamics.
Second, the proposal of Dimer et al. [34] considers a Raman
scheme, rather than Rayleigh scattering, and involves different
hyperfine atomic states. In this setting, separate tuning of g

and g′ could be achieved by using circularly polarized pump
beams in a ring cavity [34]. For these reasons, we consider the
behavior for g �= g′.

In Fig. 15 we set UN = −40 MHz and explore defor-
mations by δg ≡ g′ − g at four different values of fixed
ḡ ≡ 1

2 (g + g′). There are three key aspects to note. The
first concerns the existence of nontrivial phase boundaries
in proximity to the δg = 0 or g = g′ axis. In particular, as
one transits along the δg = 0 axis in Fig. 15(d), there are
two distinct scenarios depending on whether |ω| > |ωu| or
|ω| < |ωu|, where ωu ≡ UN/2. In the former case there is
a proximate phase boundary for small δg/ḡ and associated
critical slowing down. In the latter case the closest phase
boundary is horizontal and is therefore not crossed by changing
δg. Therefore, for a broad range of |ω| < |ωu|, one may avoid
close proximity to a phase boundary and the associated critical
slowing down. This ω dependence of the emergent time scales
is confirmed in Fig. 7. The second notable feature in Fig. 15(d)
is that the SRA and SRB phases, which are distinct for g = g′,
are continuously connected for g �= g′. This may be traced
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FIG. 15. (Color online) Dynamical phase diagram at UN =
−40 MHz as a function of δg ≡ g′ − g and ω for a number of values
of ḡ = 1

2 (g + g′). Vertical dashed lines indicate cuts shown in Fig. 18.

to the lack of factorization of the equation of motion for Ṡz,
which simplifies at g = g′ to Ṡz = −ig(ψ + ψ∗)(S+ − S−).
The third notable feature is that there are again regions of
persistent oscillations, shown in white, where no stable fixed
points exist. As shown in Fig. 16, the detailed dynamics differs
from the persistent oscillations discussed in Sec. VI A, as may
be seen from the feature that Sz is no longer constant.

In general it may be difficult to gain a purely analytic handle
on the equations of motion in Eq. (3) when g �= g′ and U is
present. However, in the adiabatic limit with κ → ∞ one may
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FIG. 16. (Color online) Persistent oscillations for UN =
−40 MHz, ω = 40 MHz, g

√
N = 0.998 MHz, and g′√N = 1.002

MHz, corresponding to δg/ḡ = 0.004 or g′/g = 1.004. The panels
mirror those in Fig. 14. The shading in the top panel match those
in the inset, highlighting the initial and intermediate trajectories, and
the final persistent oscillations.

eliminate the photons and consider the dynamics of the spins
alone. In this limit the equations of motion reduce to the form

Ṡ = {S,H } − D1(S) − D2(S), (24)

where the effective Hamiltonian is given by

H = ω0Sz − ω̃
(
G+S2

x + G−S2
y

)
κ2 + ω̃2

, (25)

with ω̃ ≡ ω + USz. The additional contributions

D1 = 2κ�S × (S × ẑ)

κ2 + ω̃2
,

(26)

D2 = 2κ2U
(
G+S2

x + G−S2
y

)
(κ2 + ω̃2)2

S × ẑ

are damping terms with G± ≡ (g′ ± g)2 and � ≡ g′2 − g2.
The existence of the photon leakage κ therefore means that
there are two non-Hamiltonian terms in the effective spin
dynamics. In the special case where U = 0 the term D1 has
the same form as the damping in the Landau-Lifshitz-Gilbert
equations [71,72] and D2 = 0. The former tries to drive the
system toward either the normal or the inverted state. In this
U = 0 limit the Hamiltonian contribution in Eq. (25) also
reduces to an effective Lipkin-Meshkov-Glick Hamiltonian
[73–76].

A notable aspect of the adiabatic limit with κ → ∞ is that
the resulting dynamics in Eq. (24) resides solely within the
two-dimensional surface of the Bloch sphere. The Poincaré-
Bendixson theorem [66] therefore excludes the possibility of
chaotic attractors. In contrast, for κ = 0, the conservative

013817-15



M. J. BHASEEN, J. MAYOH, B. D. SIMONS, AND J. KEELING PHYSICAL REVIEW A 85, 013817 (2012)

Dicke model with g = g′ and U = 0 is known to exhibit
chaotic behavior in the superradiant regime [31,32]. In view
of this difference, it would be interesting to explore the
possibility of strange attractors for intermediate κ . However,
for the parameters we have explored numerically we see no
evidence for strange attractors. Indeed, for g = g′ and U > 0
we have demonstrated the existence of a limit cycle governed
by Eq. (23). Nonetheless, it is worth noting that the nonlinear
equations of motion in Eq. (3) are closely related to the
Maxwell-Bloch equations for a laser [77]. These are known
to be equivalent to the paradigmatic Lorenz equations [78],
the archetypal example of dissipative chaos. However, an
important difference from the Maxwell-Bloch equations is the
absence of external driving in Eq. (3). It would be instructive
to explore the ramifications of this in more detail. For work
on chaos in a closely related optomechanical system, see
Ref. [79]. Further discussion of the phase diagram for g �= g′
is given in Appendix E.

VII. BEYOND THE EFFECTIVE DICKE MODEL AND ITS
SEMICLASSICAL TREATMENT

In the preceding sections, we have discussed the semiclas-
sical dynamics of the nonequilibrium Dicke model and its
relation to experiments on the self-organization of BECs in
optical cavities [22]. Within the semiclassical description of
this model, we have found a rich variety of stable attractors
including nontrivial steady states, persistent oscillations, and
regimes of bistability. Having established a wide variety
of predictions for the semiclassical behavior of the open
Dicke model, we now consider what effects may arise in
going beyond this effective description. In Sec. VII A we
first consider modifications to the Dicke model itself, arising
from higher-momentum states and other terms in the effective
Hamiltonian. In Sec. VII B we briefly comment on the possible
modifications due to higher-order quantum effects.

A. Modifications of the effective Dicke model

As outlined in Sec. II, the derivation of the effective
Dicke model involves a projection onto the subspace of
the two lowest-lying momentum states; see Appendix A.
Without this projection, there would also exist coupling to
higher-momentum states such as

1√
2

∑
α=±

|α2k,0〉, 1√
2

∑
α=±

|0,α2k〉, 1

2

∑
αβ=±

|α2k,β2k〉.

(27)

In general, the occupation of these excited states is expected
to be small for low-intensity cavity light fields, as supported
by the time-of-flight images of Ref. [22]. Nonetheless, there
are regimes of parameter space where these states may be
important. In particular, these high-momentum states may
destabilize certain phases predicted by the reduced Dicke
model. Specifically, the inverted state involves excitation to
the north pole of the Bloch sphere and may be susceptible
to destabilization. Indeed, in the parameter regimes where
the effective Dicke model predicts the inverted state, kinetic
approaches predict heating [80]. Likewise, regions of the

superradiant phase in which the majority of the atoms are
in the nonzero-momentum state may be unstable.

Although the stability of these particular states may be
modified, we anticipate that many of our predictions are only
weakly affected by these additional states. This is supported by
the clear quantitative agreement between the experimentally
observed onset of superradiance and the reduced Dicke model
[22]. Our findings within the projected subspace may also
describe experiments exploiting internal hyperfine states [34],
where no higher levels exist.

In addition to the effects of higher-momentum states, one
should also note that the intensities of the forward- and
backward-propagating pump beams are not of equal magnitude
in the experiments of Ref. [22]; they differ by a factor of 0.6 due
to losses on reflection. This introduces a coupling to the state
1
2

∑
α,β=± β|αk,βk〉 which exhibits odd parity under reflection

in the pump direction. We expect such contributions to play a
similar role to higher-momentum states.

A further source of possible departure from the idealized
Dicke model with g = g′ arises because of the finite atomic
recoil energy. As we demonstrate in Appendix A 2, the pro-
cesses leading to g and g′ correspond to different detunings of
the intermediate states, so that δg/ḡ = ωr (ωc − ωp)/2(ωa −
ωp). We have investigated the possible impact of g �= g′ in
Sec. VI B and in Appendix E, where we show that differences
δg/ḡ of the order of 10−3 can cause one to cross a phase
boundary. However, for the typical values of the detunings
used in Ref. [22], this asymmetry is of order δg/ḡ ∼ 10−12.
It is therefore too small to have any significant effect on
our findings. Nonetheless, in experiments with a smaller
atom-pump detuning, this asymmetry could play a crucial role.

B. Corrections to semiclassical dynamics

In the above discussion we have focused primarily on the
semiclassical dynamics of the effective Dicke model through
the solutions of the equations of motion given in Eq. (3).
In some places we have also incorporated the leading effect
of quantum fluctuations by using Wigner-distributed initial
conditions. This may be interpreted as including subleading
1/N corrections, where N is the number of atoms [65]. More
generally, it would be profitable to investigate the full quantum
dynamics governed by the density matrix equations of motion
in Eq. (1). However, it is important to bear in mind that
since the density matrix describes an ensemble average it
will in general mask the effects of spontaneous symmetry
breaking. It will also wash out collective and persistent
oscillations [81]. Nonetheless, in a single experimental run
one still observes spontaneous symmetry breaking [22,23],
and the density matrix describes the average over many runs;
see, for example, Ref. [82]. In order to recover information on
these nontrivial features within the density matrix formulation,
one may consider higher-order correlation functions. We leave
this problem for future work.

VIII. CONCLUSIONS

In this paper, we have explored the collective dynamics of
ultracold atoms in transversely pumped optical cavities. Within
the framework of the effective nonequilibrium Dicke model
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we present a detailed discussion of the rich phase diagram
of asymptotic attractors, including steady states, coexistence
phases, and regimes of persistent oscillations. We show that the
inherent time scales for the destablization of the initial state,
and the decay time toward the asymptotic attractors, show
strong variations throughout the dynamical phase diagram.
Crucially, we have demonstrated that two distinct principal
time scales emerge, corresponding to the energy scales ω0 and
ω2

0/κ . The scale ω0 characterizes both the typical frequency
of collective oscillations and their decay rate for a broad
range of parameters. The slower scale ω2

0/κ governs the decay
rate in proximity to dynamical phase boundaries, and may
be interpreted as critical slowing down. Most notably, in the
regime ω < ωu, sweep experiments over 200 ms may be
required in order to reach the asymptotic regime. It would
be profitable to explore this experimentally, and we discuss
the broad implications for finite-duration experiments. In
particular, the superradiant phase divides into two distinct
regimes, denoted SRA and SRB, with the relaxation rates
ω2

0/κ and ω0, respectively. From a theoretical perspective
it would be valuable to investigate the role of quantum
fluctuations and the effects of states outside of the two-level
Dicke model description. It would also be interesting to explore
the ramifications of these findings in other realizations of the
Dicke model.
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APPENDIX A: DERIVATION OF THE GENERALIZED
DICKE HAMILTONIAN

Here we provide a derivation of the generalized Dicke
Hamiltonian for ultracold atoms placed in an optical cavity, as
illustrated in Fig. 1. For simplicity, we consider a homogeneous
system, and neglect the effects of the finite beam waist of the
pump and cavity fields:

H = ωcψ
†ψ +

∑
i

(
ωaσ

ee
i − h̄2∇2

i

2m

)

+
∑

i

(
σ

eg

i + σ
ge

i

)
[g0(ψ + ψ†) cos(kxi)

+�f cos(kzi − ωpt) + �b cos(kzi + ωpt)]. (A1)

The Hamiltonian acts on both the center-of-mass position of
the atoms and their electronic state. The latter is restricted
to the two states involved in the optical transitions, denoted
by e and g for the excited and ground states, respectively.
In this basis σ ee

i = |e〉i〈e|i and σ
eg

i = |e〉i〈g|i . The sum over
i runs over the number of atoms present in the cavity, N .

The matter-light interactions correspond to the dipole coupling
of the atomic transition to the fields of the cavity and the
forward and backward pump fields. The cavity field ψ has
explicit quantum dynamics, while the time dependence of the
pump fields is externally imposed. The cavity-atom coupling
is designated g0. The pump strengths �f (b) describe the pump
beam in the forward (backward) direction, where we allow
for imperfect retro-reflection as discussed in Ref. [22] and
Sec. VII. We have neglected any difference between pump
and cavity wave vectors.

The matter-light coupling in Eq. (A1) contains both co-
and counter-rotating terms. The rotating-wave approximation
consists of neglecting the counter-rotating terms on the basis
that the detuning is large compared to the coupling strengths.
This approximation is valid here, since ωc,ωa,ωp are all
optical frequencies, and of order 400 THz. This is to be com-
pared to the coupling strengths �f,b

√
N ∼ g0

√
N ∼ 1 GHz.

Working in the rotating frame at the pump frequency
ωp and neglecting the counter-rotating terms, the Hamil-
tonian (A1) can be rewritten in the form H = H0 + H1,
where

H0 = �cψ
†ψ + �a

∑
i

σ ee
i − h̄2

2m

∑
i

∇2
i (A2)

and

H1 =
∑

i

[
g0ψ cos(kxi) + �f

2
eikzi + �b

2
e−ikzi

]
σ

eg

i + H.c.

(A3)

Here �c = ωc − ωp is the cavity-pump detuning and �a =
ωa − ωp is the atom-pump detuning.

As described in Sec. II, the effective Dicke model is a
low-energy description within the electronic ground state,
valid if the coupling to the electronic excited state is small
compared to the detuning �a . As such, one may proceed by
making a Schrieffer-Wolff [83] transformation and eliminating
the excited electronic state. This gives a transformed Hamilto-
nian H̃ = H0 + (i/2)[S,H1] where [S,H0] = iH1. One should
choose S so that H̃ has no coupling between the resulting
dressed electronic states:

iS = 1

2
[�f eizf̂ + �be

−izf̂ ∗ + g0ψ(eix ĝ + e−ix ĝ∗)]

× σ eg − H.c.,

where, for simplicity, position and momenta are now expressed
in units of the cavity wavelength. In addition, we have
suppressed the atom labels and the summation. Here the
differential operators f̂ and ĝ are given by

f̂ = 1

�a + ωr (1 − 2i∂z)
, ĝ = 1

�a − �c + ωr (1 − 2i∂x)
,

where ωr = h̄2k2/2m is the recoil energy. The resulting
Hamiltonian has the form

H̃ = H0−
�2

f

4
f̂ − �2

b

4
f̂ ∗− �f �b

8
(f̂ e−2iz + f̂ ∗e2iz + H.c.)

− g2
0

8
ψ†ψ[ĝ(1 + e−2ix) + ĝ∗(1 + e2ix) + H.c.]
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− g0

8
ψ†(�f eiz + �be

−iz)(ĝe−ix + ĝ∗eix) + H.c.

− g0

8
ψ(eix + e−ix)(�f f̂ e−iz + �bf̂

∗eiz) + H.c.,

(A4)

where f̂ ∗ and ĝ∗ denote the complex conjugates of the
Hermitian operators f̂ and ĝ. In writing Eq. (A4) we have
eliminated the excited electronic states, but have made no
further approximations. As a result, the form of H̃ is rather
unwieldy. In order to expose the resulting behavior we
will consider two classes of approximation: the small-recoil
approximation ωr/�a � 1 and the weak-pump approximation
q = �f �b/(4ωr�a) � 1. Both of these approximations are
valid for the experiments of Ref. [22], and we will now consider
each in turn.

1. Small-recoil approximation ωr � �a

If the recoil energy ωr is small compared to the atom-pump
detuning �a , then one may set ωr = 0 as a first approxima-
tion. In this case f̂ � �−1

a and ĝ � (�a − �c)−1 become c

numbers and the form of Eq. (A4) simplifies considerably.
This approximation is well justified for the parameters of
Ref. [22] as ωr/�a � (50 kHz)/(1 THz) ∼ 5 × 10−8. In this
approximation Eq. (A4) becomes

H̃ = −ωr∇2 − 1

4�a

[
�2

f + �2
b + 2�f �b cos(2z)

]
+

[
�c − g2

0

�a − �c

cos2(x)

]
ψ†ψ

− g0

4

[
1

�a

+ 1

�a − �c

]
cos(x)

× [
i(�f − �b) sin(z)(ψ† − ψ)

+ (�f + �b) cos(z)(ψ† + ψ)
]
. (A5)

We proceed by introducing a basis set of atomic center-of-mass
states for the atoms in their electronic ground state. The first
two of these states will correspond to the “spin-down” and
“spin-up” states of the effective Dicke model. These basis
states are given by the eigenstates of the first line of Eq. (A5),
which may be written as

�σ,m,n(x,z) = φσ,m(z)

{
cos(nx)√

π
, n > 0,

1√
2π

, n = 0.
(A6)

The energies are given by E = ωr (n + εσ,m) + const, where

d2φσ,m

dz2
+ [εσ,m − 2q cos(2z)]φσ,m = 0 (A7)

is the Mathieu equation [84] and σ = ± label the
even and odd solutions. The Mathieu parameter q =
�f �b/(4�aωr ) is a dimensionless measure of the pump-
ing strength. Due to the form of the matrix elements
arising from the terms linearly dependent on g0 in
Eq. (A5), not all of the configurations of σ,m,n are coupled.
Only those states that can be reached by a sequence of
absorption and emission processes, starting from an atom in the
ground state, need to be included. If �b = �f , then only the
even Mathieu functions φ+,m(z) need to be included. However,

if �b �= �f , the odd Mathieu functions φ−,m(z) should also be
considered.

To recover the effective Dicke model, one must restrict
attention to the two lowest states and work in the limit
�f = �b = �. In this case, the lowest coupled states are
�+,0,0 and �+,1,1. The values of the parameters ω,ω0,U

in the effective Dicke model in Eq. (2) can be found by
evaluating 〈�+,0,0|H̃ |�+,0,0〉 and 〈�+,1,1|H̃ |�+,1,1〉. In terms
of the Dicke model parameters in Eq. (2), the energies of a
configuration with nph photons and all N atoms in either their
ground or excited states are given by

E↓,↑ = ∓ω0

2
N +

(
ω ∓ UN

2

)
nph. (A8)

By comparing E↓ and E↑ with the expressions for
〈�+,0,0|H̃ |�+,0,0〉 and 〈�+,1,1|H̃ |�+,1,1〉, one may identify
the coefficients ω, ω0, and U . We find

ω = �c − 5g2
0N

8(�a − �c)
, U = − g2

0

4(�a − �c)
, (A9)

where we have carried out the summation over atoms and
made use of the results 〈�+,0,0| cos2(x)|�+,0,0〉 = 1/2 and
〈�+,1,1| cos2(x)|�+,1,1〉 = 3/4. These coefficients agree with
those of Ref. [27] when the pump and cavity frequencies are
near detuned. The two-level energy splitting is given by the
difference of the eigenvalues of the states written in Eq. (A6),
and so

ω0 = ωr (1 + ε+,1 − ε+,0). (A10)

Evaluating the off-diagonal elements 〈�+,0,0|H̃ |�+,1,1〉 and
equating 〈�+,0,0|H̃ |�+,1,1〉 = gψ† + g′ψ , one finds the re-
maining Dicke model parameters,

g = g′ = −g0�

2

[
1

�a

+ 1

�a − �c

]

× 1√
2

∫ π

−π

dz φ+,0(z) cos(z)φ+,1(z). (A11)

Up until this point all the results we have derived
in Eqs. (A9)–(A11) are formally exact for arbitrary q =
�f �b/(4�aωr ). However, the fact that one can restrict
consideration to the two lowest-momentum states is valid only
for weak pumping, i.e., small q. We will therefore focus on the
small-q limit; in Appendix A 3 we will return to the general-q
case, including also the presence of higher-momentum states.
In the small-q limit one obtains

ω0 ≈ 2ωr, g = g′ ≈ −g0�

4

(
1

�a

+ 1

�a − �c

)
, (A12)

where we have used the approximations φ+,0(z) ≈ 1/
√

2π and
φ+,1 ≈ cos(z)/

√
π . If one further neglects the cavity-pump

detuning �c in comparison to the atom-pump detuning �a ,
then these expressions reduce to those given in Ref. [22]. In
Appendix A 2 we will generalize the results of this section to
include the effects of nonzero ωr/�a .

2. Corrections due to nonzero ωr/�a

In order to quantify the effects of nonzero ωr/�a ,
we return to Eq. (A4), but continue to make use of

013817-18



DYNAMICS OF NONEQUILIBRIUM DICKE MODELS PHYSICAL REVIEW A 85, 013817 (2012)

the q = 0 approximation used in the second half of the
previous section. The main difference that nonzero ωr

introduces is that g and g′ are no longer equal. One
obtains

g = −g0�

4

[
1

�a + ωr − �c

+ 1

�a − ωr

]
,

(A13)

g′ = −g0�

4

[
1

�a − ωr − �c

+ 1

�a + ωr

]
,

where for simplicity we set �f = �b = �. In the limit
ωr → 0, these reduce to Eq. (A11). In Sec. VI B, we show
that a phase boundary can be crossed if the fractional
difference δg/ḡ is large enough. At leading order in ωr/�a ,
the fractional difference given by Eq. (A13) is δg/ḡ =
ωr�c/�

2
a . For the experimental parameters in Ref. [22], this

fractional difference is too small to cross the phase boundary.
However, for smaller �a this fractional difference may become
significant.

The results in Eq. (A13) are obtained by the same procedure
as in the previous section, by evaluating the off-diagonal matrix
element and equating 〈�+,0,0|H̃ |�+,1,1〉 = gψ† + g′ψ . In
deriving Eq. (A13) we use the basis states �+,0,0(x,z) =
1/(2π ),�+,1,1(x,z) = cos(x) cos(z)/π , which follow from

Eq. (A7) at q = 0. We further employ the identities∫ π

−π

dζ

2π
[D̂e−iζ + D̂∗eiζ ] cos(ζ ) = 1

x
,∫ π

−π

dζ

2π
[eiζ D̂ + e−iζ D̂∗] cos(ζ ) = 1

x − 2ωr

,

where D̂ = [x − i2ωr∂ζ ]−1.
The remaining parameters of the Dicke model are

U = −g2
0

4

[
1

δ + 3ωr

+ 2

δ − ωr

− 2

δ + ωr

]
,

ω = �c − g2
0

8

[
1

δ + 3ωr

+ 2

δ − ωr

+ 2

δ + ωr

]
,

ω0 = 2ωr − �2

4

[
1

�a + 3ωr

+ 2

�a − ωr

− 2

�a + ωr

]
,

where δ = �a − �c ≡ ωa − ωc. In the limit of ωr → 0 these
reduce to Eq. (A9) and the small-q expansion of Eq. (A10).
These expressions are found using the same procedure as
outlined in the previous section, by equating E↓ and E↑
in Eq. (A8) with the expressions for 〈�+,0,0|H̃ |�+,0,0〉 and
〈�+,1,1|H̃ |�+,1,1〉. To evaluate these expressions we use
the results f̂ |�+,0,0〉 = (�a + ωr )−1|�+,0,0〉 and ĝ|�+,0,0〉 =
(�a + ωr − �c)−1|�+,0,0〉 together with

∫ π

−π

dζ

π
cos(ζ )

[
1

x − i2ωr∂ζ

(1 + e−2iζ ) + c.c. + (1 + e2iζ )
1

x − i2ωr∂ζ

+ c.c.

]
cos(ζ ) = 4

x − 2ωr

+ 2

x + 2ωr

,

where x = �a + ωr and x = �a + ωr − �c for integrals
involving f̂ and ĝ, respectively.

3. Equations of motion in extended state space

When the parameter q is not small, the restriction to two
atomic states is no longer valid. Including higher-momentum
states, it is no longer possible to map the problem onto an
effective spin Hamiltonian. However, it is still possible to
derive a semiclassical description of the coupled atom and
cavity system. In this generalized case, the semiclassical
description consists of a Gross-Pitaevskii equation for a macro-
scopically occupied atomic wave function χ (x,z) coupled to
a quasiclassical Heisenberg equation for the photon field ψ .

Decomposing the atomic wave function in some basis
χ (x,z) = ∑

α χα�α(x,z) and splitting the Hamiltonian into
the parts

H̃ = h(0) + ψ†ψh(1) + (ψ† + ψ)h(2) + i(ψ† − ψ)h(3),

the explicit equations of motion read

i∂tχα = (
M

(0)
αβ + |ψ |2M (1)

αβ

+(ψ∗ + ψ)M (2)
αβ + i(ψ∗ − ψ)M (3)

αβ

)
χβ, (A14)

i∂tψ = (
χ∗

αM
(1)
αβ χβ − iκ

)
ψ + χ∗

αM
(2)
αβ χβ + iχ∗

αM
(3)
αβ χβ,

(A15)

where we have defined M
(n)
αβ ≡ 〈�α|h(n)|�β〉. As long as q

is small, one may truncate to two atomic basis states and
thereby recover the semiclassical equations in Eq. (3), where
Sz = |χ1|2 − |χ0|2 and Sx + iSy = χ∗

1 χ0.

APPENDIX B: FIXED POINTS WITH ARBITRARY
g AND g′

In general it is difficult to obtain explicit closed-form
expressions for the steady-state solutions of Eq. (3). However,
in the special case where U = 0, simplifications occur for
arbitrary g and g′. More generally, for arbitrary U , g, and g′,
one may obtain self-consistent implicit solutions. We discuss
these cases below.

1. U = 0

In the case where U = 0, the nonlinear equations become
linear equations for the variables ψ1, ψ2, Sx , and Sy , where Sz

enters via the coefficients. Decomposition of Eqs. (6) and (7)
into their real and imaginary parts yields
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ω0Sx = 2(g + g′)Szψ1,

−ω0Sy = 2(g − g′)Szψ2,
(B1)

κψ1 − ωψ2 = −(g − g′)Sy,

ωψ1 + κψ2 = −(g + g′)Sx.

The last two equations may also be written in the form

(ω2 + κ2)ψ1 = −ω(g + g′)Sx − κ(g − g′)Sy,
(B2)

(ω2 + κ2)ψ2 = −κ(g + g′)Sx + ω(g − g′)Sy.

The condition for nontrivial solutions yields the determinantal
self-consistency equation

4(g2 − g′2)2S2
z + 4ωω0(g2 + g′2)Sz + (ω2 + κ2)ω2

0 = 0.

(B3)

This may be solved to yield

Sz =
−ωω0(g2 + g′2) ±

√
(2ωω0gg′)2 − ω2

0κ
2(g2 − g′2)2

2(g2 − g′2)2
,

(B4)

corresponding to a nontrivial superradiant phase with ψ �=
0. In the limit g = g′ one obtains Sz = −ω0(ω2 + κ2)/8ωg2.
The critical coupling strength for the onset of superradiance
corresponds to Sz = −N/2 and is given by

g
√

N =
√

ω0(ω2 + κ2)

4ω
, (B5)

in agreement with the results of Dimer et al. [34]. It also
coincides with Eq. (11) for the onset of the SRA phase
when U = 0. The explicit dependence on κ in Eq. (B5)
emphasizes that the transition occurs in an open system. In
the limit κ = 0 one recovers the location of the superradiance
transition, g

√
N = √

ωω0/2, for the equilibrium Dicke model
with counter-rotating terms.

2. U �= 0

In the general case with arbitrary U , g, and g′, the steady-
state solutions of Eq. (3) are more difficult to obtain in an
explicit form. However, one may still obtain self-consistent
solutions which relate the photon density to Sz for example.
In turn, these implicit consistency equations may be solved
numerically. For generic parameters the steady-state equations
of motion may be obtained from Eqs. (B1) by replacing ω0 →
ω̃0 and ω → ω̃, where ω̃ ≡ ω + USz, ω̃0 ≡ ω0 + Un, and n ≡
|ψ |2 = ψ2

1 + ψ2
2 . For a given photon occupation number, n,

nontrivial solutions satisfy the determinantal Eq. (B3) with
these replacements. Using the explicit form of ω̃ ≡ ω + USz,
one obtains a modified quadratic equation for Sz:

(χ2 − 16g2g′2)S2
z + 2ωω̃0χSz + (ω2 + κ2)ω̃2

0 = 0, (B6)

where we define χ ≡ 2(g2 + g′2) + Uω̃0. This has solutions

Sz = ω̃0

χ2 − 16g2g′2

[
−ωχ ±

√
16g2g′2(ω2 + κ2) − κ2χ2

]
.

(B7)

In order to have real solutions to Eq. (B7), one requires
16g2g′2(ω2 + κ2) − κ2χ2 � 0. This translates into the con-
dition that max(0,n−) � n � n+ where

n± = U−2[−2(g2 + g′2) − Uω0 ± 4gg′κ−1
√

ω2 + κ2].

One should restrict attention to those cases where |Sz| < N/2.
Having found a solution for Sz in terms of the number of
photons n, one may also find an equation for n in terms of Sz.
Using the analogs of the first two equations in Eq. (B1) with
ω0 → ω̃0,

|ψ |2 = ψ2
1 + ψ2

2 = ω̃2
0S

2
x

S2
z

[
1

4(g + g′)2
+ r2

4(g − g′)2

]
, (B8)

where r ≡ Sy/Sx . Using the fixed-length spin constraint S2 =
N2/4, one may eliminate S2

x = (N2/4 − S2
z )/(1 + r2) in favor

of the ratio r . This ratio may be obtained by using the analogs
of the first two of Eqs. (B1) to substitute ψ1 and ψ2 into the
analog of the third equation:

r = A
(

g − g′

g + g′

)
, A = − ω̃0κ

ω̃ω̃0 + 2(g − g′)2Sz

. (B9)

Substitution into Eq. (B8) yields

n = |ψ |2 = ω̃2
0

4S2
z

(
N2/4 − S2

z

)
(1 + A2)

(g + g′)2 + (g − g′)2A2
. (B10)

APPENDIX C: LINEAR STABILITY FOR
ARBITRARY STATES

In Sec. III C we linearized the equations of motion around
the normal (⇓) and inverted (⇑) states. The corresponding
self-consistency equation is given by∣∣∣∣∣∣∣∣∣

η + iκ − ω∓ 0 −g −g′

0 η + iκ + ω∓ g′ g

∓gN ∓g′N η − ω0 0

±g′N ±gN 0 η + ω0

∣∣∣∣∣∣∣∣∣
= 0.

(C1)

This yields a quartic equation

0 = [(η + iκ)2 − ω2
∓]

(
η2 − ω2

0

) + (g2N − g′2N )2

∓ 2η(η + iκ)(g2N − g′2N ) ∓ 2(g2N + g′2N )ω∓ω0,

(C2)

whose roots characterize the possible instabilities. In the case
where g = g′, Eq. (C2) reduces to Eq. (15). More generally
one may linearize the equations of motion in Eq. (3) around
an arbitrary state, so that ψ = ψ0 + δψ , S− = S−

0 + δS−, and
Sz = Sz

0 + δSz, one obtains

˙δS− = −iω̃0δS
− − iU (ψ∗

0 δψ + ψ0δψ
∗)S−

0

+2i(gψ0 + g′ψ∗
0 )δSz + 2i(gδψ + g′δψ∗)Sz

0,

˙δSz = −igδψS+
0 + igδψ∗S−

0 + ig′δψS−
0 − ig′δψ∗S+

0

−igψ0δS
+ + igψ∗

0 δS− + ig′ψ0δS
− − ig′ψ∗

0 δS+,

˙δψ = −(κ + iω̃)δψ − iUψ0δS
z − igδS− − ig′δS+, (C3)

where ω̃ = ω + USz
0 and ω̃0 = ω0 + U |ψ0|2. Parametriz-

ing δψ = ae−iηt + b∗eiη∗t , δS− = ce−iηt + d∗eiη∗t , and
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δSz = f e−iηt + f ∗eiη∗t , one obtains a set of algebraic equa-
tions for the coefficients a, b, c, d, and f . The corresponding

secular equation is given by |ηI − M| = 0, where I is a 5 × 5
unit matrix and

M =

⎛
⎜⎜⎜⎜⎜⎝

ω̃ − iκ 0 g g′ Uψ0

0 −(ω̃ + iκ) −g′ −g −Uψ∗
0

−2gSz
0 + Uψ∗

0 S−
0 −2g′Sz

0 + Uψ0S
−
0 ω̃0 0 −2(gψ0 + g′ψ∗

0 )

2g′Sz
0 − Uψ∗

0 S+
0 2gSz

0 − Uψ0S
+
0 0 −ω̃0 2(gψ∗

0 + g′ψ0)

gS+
0 − g′S−

0 −gS−
0 + g′S+

0 −(gψ∗
0 + g′ψ0) (gψ0 + g′ψ∗

0 ) 0

⎞
⎟⎟⎟⎟⎟⎠. (C4)

In general, there are in fact only four independent equations owing to the fixed-length constraint S2 = N2/4. This is reflected by
a redundant zero mode, η = 0, corresponding to longitudinal fluctuations in the length of the spin. Although Eq. (C4) captures
all of the essential information, it is convenient to eliminate this zero mode and use a 4 × 4 matrix representation for the physical
transverse degrees of freedom. Differentiating the fixed-length constraint with respect to time yields 2SzṠz + (S+Ṡ− + S−Ṡ+) =
0. Linearizing around a fixed point gives 2Sz

0
˙δSz + S+

0
˙δS− + S−

0
˙δS+ = 0, as may be verified by use of Eqs. (C3) and (3). Using

the normal-mode parametrization, one obtains the relationship f = −(S+
0 c + S−

0 d)/2Sz
0 between the coefficients. Eliminating f

from the linear equations yields |ηĨ − M̃| = 0, where Ĩ is a 4 × 4 unit matrix and

M̃ =

⎛
⎜⎜⎜⎝

ω̃ − iκ 0 g − Uψ0S
+
0 /

(
2Sz

0

)
g′ − Uψ0S

−
0 /

(
2Sz

0

)
0 −(ω̃ + iκ) −g′ + Uψ∗

0 S+
0 /

(
2Sz

0

) −g + Uψ∗
0 S−

0 /
(
2Sz

0

)
−2gSz

0 + Uψ∗
0 S−

0 −2g′Sz
0 + Uψ0S

−
0 ω̃0 + (gψ0 + g′ψ∗

0 )S+
0 /Sz

0 (gψ0 + g′ψ∗
0 )S−

0 /Sz
0

2g′Sz
0 − Uψ∗

0 S+
0 2gSz

0 − Uψ0S
+
0 −(gψ∗

0 + g′ψ0)S+
0 /Sz

0 −ω̃0 − (gψ∗
0 + g′ψ0)S−

0 /Sz
0

⎞
⎟⎟⎟⎠. (C5)

1. Stability of the normal (⇓) and inverted (⇑) states with
arbitrary g and g′

In the case of the normal (⇓) and inverted (⇑) states where
ψ0 = 0 and Sz = ∓N/2, the determinantal equation |ηĨ −
M̃| = 0 reduces to Eq. (C1). This corresponds to the quartic
equation given in Eq. (C2). In order to find when the roots
become unstable it is convenient to decompose the quartic
polynomial into its real and imaginary parts so that A∓(η) +
iB∓(η) = 0 where

A∓(η) = (η2 − ω2
∓ − κ2)

(
η2 − ω2

0

) + (g2N − g′2N )2

∓2(g2N + g′2N )ω∓ω0 ∓ 2η2(g2N − g′2N ),

B∓(η) = 2κη[η2 − ω2
0 ∓ (g2N − g′2N )]. (C6)

We may thus find the roots of the equation B∓(η) = 0
and subsequently impose the condition A∓(η) = 0 on these
solutions. It is readily seen that B∓(η) = 0 has a solution η = 0
corresponding to an exponentially growing mode without
oscillations. Substituting this value into the expression for
A∓(η) yields the condition A∓(0) = 0:

(ω2
∓ + κ2)ω2

0 + (g2N − g′2N )2 ∓ 2(g2N + g′2N )ω∓ω0 = 0.

(C7)

In the special case where g = g′ one recovers the critical
condition for the onset of the SRA phase as given by Eq. (11).
Alternatively, there is also an instability with a finite frequency
η2 = ω2

0 ± (g2N − g′2N ) corresponding to B∓(η) = 0.

Demanding that A∓(η) = 0 yields a critical condition for the
ratio of the couplings,

g′2

g2
= (ω∓ + ω0)2 + κ2

(ω∓ − ω0)2 + κ2
, (C8)

rather than their absolute scales. This instability condition
manifests itself as the phase boundaries shown in the upper
panels of Figs. 15 and 19. Denoting δg ≡ g′ − g, ḡ ≡

ω
 (

M
H

z)

g√N (MHz)

⇓+⇑

SRB+⇓+⇑

SRB
+⇓

SRA+⇑

SRB

 17

 18

 19

 20

 0  0.5  1  1.5

SRA+⇑
2SRA

SRB
19.68

19.70

1.60 1.65

FIG. 17. (Color online) Magnified portion of the bottom panel
of Fig. 4 in the vicinity of the tricritical point where three phase
boundaries cross. In addition to the phases visible in Fig. 4, there
is a narrow region denoted as 2SRA, where the two distinct SRA
solutions given by Eq. (10) coexist; see inset.
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Fig. 16 (d) g′/g=1.004

FIG. 18. (Color online) Evolution of the phase diagram shown in
the bottom panel of Fig. 4 as one varies the ratio g′/g, increasing
from 1.000 (top) to 1.004 (bottom). We use the same phase labeling
conventions as in Fig. 4. Vertical dashed lines indicate cuts shown in
Fig. 15.

(g + g′)/2, and noting that ω0 � κ , the phase boundary given
by Eq. (C8) may be approximated as

δg

ḡ
≈ 2ω0ω∓

ω2∓ + κ2
. (C9)

In a similar fashion Eq. (C7) may be recast as

ḡ2 ≈ (g∓
a )2 − δg2/4

1 − δg2N/ω0ω∓
, (C10)
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δg/g-

(c) g-√N=0.9MHz

FIG. 19. (Color online) Analog of the phase diagram in Fig. 15
for UN = +40 MHz. We use the same phase labeling conventions
as in Fig. 4. The panels show the dependence on δg ≡ g′ − g for
fixed ḡ = 1

2 (g + g′). The white region corresponds to a regime of
persistent oscillations. Vertical dashed lines indicate cuts shown in
Fig. 20.

where g∓
a is given by Eq. (11). For the range of parameters

shown in Figs. 15 and 19, δg � ḡ,g∓
a , and Eq. (C10) is

effectively independent of δg/ḡ; this yields the horizontal
phase boundaries in Figs. 15 and 19.

2. Stability of SRA and SRB phases with g = g′

When g = g′ the SRA phase has Sy = 0 and S± = Sx . In
this case the matrix M̃ has eigenvalues η, satisfying

[(η + iκ)2 − ω̃2]
[
η2 − (ω̃0N/2Sz

0)2]
+2ω̃ω̃0

Sz
0

|2gSz
0 − Uψ0S

x
0 |2 = 0, (C11)

where ω̃ = ω + USz
0 and ω̃0 = ω0 + U |ψ0|2.

When g = g′ the SRB phase has ω̃ = ω̃0 = 0 and ψ ≡
ψ1 + iψ2 is purely imaginary. In this case the diagonal blocks
of M̃ are proportional to unity and zero, respectively. The
eigenvalues satisfy Eq. (21) which is the square of a quadratic
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FIG. 20. (Color online) Analog of the phase diagram shown
in Fig. 18 for UN = +40 MHz. We use the same phase labeling
conventions as in Fig. 4. Vertical dashed lines indicate cuts shown in
Fig. 19.

equation. The exact eigenvalues corresponding to fluctuations
around the stable SRB fixed points are given by Eq. (22).

APPENDIX D: TRANSITIONS NEAR THE
TRICRITICAL POINTS

As noted in Ref. [50] for UN < −2κ , three of the phase
boundaries in Fig. 4 cross at the point ω = √

ω2
u − κ2,g =√−ω0U/4. As shown in Fig. 17, in this vicinity there is a

narrow region where the two distinct SRA solutions given by
Eq. (10), together with their parity symmetry partners, are
stabilized; see also Fig. 5. On Fig. 4 these occur within the
width of the line marking the boundary of the SRA+ ⇑ and
SRB regions. At g = gb the two pairs of SRA solutions merge
and switch to two pairs of SRB solutions. After this, one of
each pair is stable while the others are unstable, as generically
occurs in the SRB phase.

APPENDIX E: FURTHER CUTS THROUGH THE PHASE
DIAGRAM WITH g �= g′ AND U �= 0

In Sec. VI B we presented the dynamical phase diagram
with g �= g′ and UN = −40 MHz, illustrating the dynam-
ical phase boundaries which emerged for small differences
between g and g′. Here we provide further cuts through the
phase diagram in order to fully expose the rich topology. In
Fig. 18 we show a sequence of cuts with UN = −40 MHz
for different values of g′/g. These may be compared with
the bottom panel of Fig. 4, which has g′/g = 1. In view of
the duality relation in Eq. (5), we only show the results for
g > g′. For completeness, in Figs. 19 and 20 we also show
cuts of constant ḡ = (g + g′)/2 and g′/g, respectively, with
U = +40 MHz. The central white region in these figures is
continuously connected to the regime of persistent oscillations
described in Sec. VI A. We note that the regions where the
normal and inverted states are stable have identical shapes to
those seen for U = −40 MHz in Figs. 15 and 18, respectively,
but are displaced vertically.

APPENDIX F: WIGNER DISTRIBUTION

The sampling of initial conditions from a Wigner dis-
tribution is readily achieved by combining a Holstein-
Primakoff representation for the collective spin operators,
Sz = −N/2 + a†a and S− � √

Na [85,86], with a harmonic
oscillator decomposition of the auxiliary bosons, a = (q +
ip)/

√
2. The corresponding Wigner distribution W (q,p) =

e−q2−p2
/π reflects the Gaussian ground-state wave function

of the harmonic oscillator. In terms of the Bloch sphere
coordinates with S− = (N/2) sin(θ )e−iφ , this corresponds to
θ �

√
(q2 + p2)/(N/2) and φ = −Arg(q + ip). In a similar

fashion, the Wigner distribution of the initial photon field
ψ = (Q + iP )/

√
2 is given by W (Q,P ) = e−Q2−P 2

/π . In
order to employ these ensembles we sample initial conditions
from these distributions of (q,p) and (Q,P ) and time-evolve
the semiclassical equations of motion. We then average the
final results over the initial distributions W (q,p) and W (Q,P ).
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and T. Esslinger, Nature (London) 450, 268
(2007).

[2] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and
J. Reichel, Nature (London) 450, 272 (2007).

[3] T. P. Purdy and D. M. Stamper-Kurn, Appl. Phys. B 90, 401
(2008).

[4] M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke,
and E. A. Hinds, Nat. Photonics 5, 35 (2011).

[5] F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science
322, 235 (2008).

[6] S. Ritter, F. Brennecke, K. Baumann, T. Donner,
C. Guerlin, and T. Esslinger, Appl. Phys. B 95, 213
(2009).

013817-23

http://dx.doi.org/10.1038/nature06120
http://dx.doi.org/10.1038/nature06120
http://dx.doi.org/10.1038/nature06331
http://dx.doi.org/10.1007/s00340-007-2879-0
http://dx.doi.org/10.1007/s00340-007-2879-0
http://dx.doi.org/10.1038/nphoton.2010.255
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1007/s00340-009-3436-9
http://dx.doi.org/10.1007/s00340-009-3436-9


M. J. BHASEEN, J. MAYOH, B. D. SIMONS, AND J. KEELING PHYSICAL REVIEW A 85, 013817 (2012)

[7] T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma,
and D. M. Stamper-Kurn, Phys. Rev. Lett. 105, 133602 (2010).

[8] N. Brahms and D. M. Stamper-Kurn, Phys. Rev. A 82, 041804
(2010).

[9] I. B. Mekhov, C. Maschler, and H. Ritsch, Nat. Phys. 3, 319
(2007).

[10] W. Chen, D. Meiser, and P. Meystre, Phys. Rev. A 75, 023812
(2007).

[11] N. Brahms, T. P. Purdy, D. W. C. Brooks, T. Botter, and D. M.
Stamper-Kurn, Nat. Phys. 7, 604 (2011).

[12] S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and
K. B. Whaley, Phys. Rev. A 69, 043805 (2004).

[13] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[14] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M.
Gambetta, A. Blais, L. Frunzio, B. Johnson, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, Nature (London) 445, 515
(2007).

[15] P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl,
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